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We analyze the performance of a ferroelectric liquid crystal on silicon display (FLCoS) as a binary po-
larization diffraction grating. We analyze the correspondence between the two polarization states emer-
ging from the displayed grating and the polarization and intensity of the diffracted orders generated at
the Fourier diffraction plane. This polarization-diffraction analysis leads, in a simple manner, to config-
urations yielding binary amplitude or binary phase modulation by incorporating an analyzer on the re-
flected beam. Based on this analysis, we present two useful variations of the polarization configuration.
The first is a simplification using a single polarizer, which provides equivalent results for amplitude or
phasemodulation as the more general operational mode involving two polarizers. The second variation is
proposed to compensate the reduction of the diffraction efficiency when the operating wavelength differs
from the design one (for which the FLCoS liquid-crystal layer acts as a half-wave plate). In this situation
we show how the ideal grating performance can be recovered in spite of the phase-shift mismatch origi-
nated by chromatic dispersion. In all cases, we provide experimental results that verify the theoretical
analyses. © 2009 Optical Society of America

OCIS codes: 230.3720, 050.0050, 230.0230.

1. Introduction

Liquid-crystal displays (LCDs) have become attrac-
tive devices for applications such as diffractive
optics, adaptive optics, or optical metrology [1,2].
While nematic LCDs are the dominant technology,
devices based on ferroelectric liquid crystals have
grown in importance since they can switch up to
100 times faster than standard nematic liquid crys-
tals. Ferroelectric LCDs (FLCDs) have found applica-
tions in diffractive optics for the generation of digital

holograms [3,4], adaptive beam steering systems [5],
and polarization gratings [6–8]. Recently, liquid-
crystal on silicon (LCoS) technology is becoming par-
ticularly attractive for use as spatial light modula-
tors (SLMs) because of its high reflectivity and
excellent fill factor, and ferroelectric LCoS (FLCoS)
displays have been also developed for that purpose.
These are reflective devices suitable for applications
when a fast optical response is required [9–11].

The ferroelectric liquid-crystal layer inside a
FLCoS device can be considered as a uniaxial med-
ium with the optical axis in the layer plane (the op-
tical axis is given by the direction of the liquid-crystal
director). The device acts as a rotatable waveplate,
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such that the direction of the applied voltage rotates
the birefringent axes by an angle Δθ between two
stable positions [12]. A common FLC modulator con-
figuration for display applications consists of adjust-
ing the FLC layer to act as a half-wave plate (HWP)
(introducing a phase shift ϕ ¼ 180°) with a switching
angle (also named tilt angle) of Δθ ¼ 45° [1]. In this
ideal situation, input of linearly polarized light inci-
dent onto the display results in two emerging polar-
ization states that remain linear and are mutually
orthogonal [12]. Therefore, if the output polarizer
is oriented parallel to one of these linear states, this
state is fully transmitted, while the second one is
fully absorbed. However, when any of these ideal con-
ditions is not accomplished (typically the phase shift
differs from the value ϕ ¼ 180° when the operating
wavelength is not the design one) the two emerging
states do not remain orthogonal, and the ideal perfor-
mance as an intensity optical switch with maximum
contrast ratio is lost. Strategies to compensate this
effect and recover an almost perfect performance
have been accomplished by using elliptically polar-
ized light [12,13].
Here we analyze the performance of a FLCoS dis-

play to generate a polarization diffraction grating
(PDG). PDGs are diffraction gratings with a periodic
spatial variation of the state of polarization (instead
of the periodic variation of a scalar magnitude as in
standard amplitude or phase diffraction gratings)
[14]. The PDG period is high enough compared to
the incident light wavelength, so the scalar diffrac-
tion treatment can be applied to each orthogonal po-
larization components separately. Different PDG
designs have been proposed in the literature [15–17],
demonstrating novel and interesting diffraction
properties, as well as applications for polarimetry.
Since FLCDs are binary devices, we will consider
here only binary PDG. In fact, some of the early
works on PDG were developed using FLCDs [6,8].
The novelties of our approach with respect to these
previous works are: (1) We use a recently developed
combined Jones matrix–Fourier transform approach
that was introduced to analyze polarization-
diffraction elements [18], which provides an alterna-
tive, complementary, and powerful method to
analyze PDG. (2) We present how this PDG analysis
leads, in a simple and direct way, to polarization con-
figurations leading to their actuation as either bin-
ary amplitude or as a binary phase diffraction
grating. (3) Finally, we show how the reduction of
the PDG efficiency caused by the phase-shift mis-
match can be compensated by illuminating the dis-
play with elliptically polarized light.
The outline of the paper is the following. In Sec-

tion 2 we briefly review and apply a reverse engineer-
ing method to characterize the FLC modulator
physical parameters required to properly operate
the display. As a result, we experimentally character-
ize the rotation of the principal axes of our FLCoS
display, as well as the phase-shift introduced for
two different operating wavelengths. We show that,

for one of the wavelengths, the display operates in
the ideal mode, while there is an important phase
mismatch for the second wavelength. In Section 3
we present the theoretical study of the binary PDG
based on the application of the Jones–Fourier form-
alism [18]. We derive the intensity and polarization
properties of the diffraction orders generated by a
grating addressed to the display. This analysis is
then applied in Section 4 to the simplest case of a bin-
ary HWP PDG to derive the configurations leading to
amplitude or phase diffraction gratings. In Section 5
this analysis is extended to the case when the wave-
length is not the design one, and a method to opti-
mize the diffraction efficiency based on using an
elliptically polarized light configuration is presented.
In all cases, we include experimental results that
verify these theoretical studies. Finally, the conclu-
sions of the work are provided in Section 6.

2. Characterization of the FLCoS Physical Parameters

One first step when using a commercial LCD for non-
display applications is the characterization of the
physical parameters that control the optical modula-
tion of the device. This knowledge allows adapting
different polarization configurations to produce dif-
ferent responses. In our case, we use a commercial
FLCoS display from CRL-Opto, model RXGA 1.5C.
This is a reflective display with 1024 × 768 pixels,
each with an active area of 11:4 μm × 11:4 μm and
a pixel pitch of 12 μm × 12 μm (thus having an excel-
lent fill factor of more than 90%). This LCD is de-
signed to display color images by using the field
sequential color (FSC) technique. For that reason,
the device is integrated with a white LED that se-
quentially illuminates the display with red, green,
and blue light. This sequential red–green–blue
(RGB) illumination is synchronized with RGB color
image components that are displayed in the device.
The device is also designed to produce grayscale le-
vels by using pulse width modulation (PWM), achiev-
ing 12 bits of color depth (4 bits for each channel).

In our case, and since we are interested in its use
as a diffraction grating, we substitute the white LED
sequential illumination by a continuous monochro-
matic illumination from an Ar─Kr laser. Figure 1(a)
shows our experimental setup. The FLCoS modula-
tor is illuminated with the unexpanded Ar─Kr laser,
and polarizer P1 selects the orientation of the input
polarization. An interference filter (IF) is used to se-
lect the wavelength of the laser (568 or 647nm). An
achromatic quarter-wave plate (QWP) is used to gen-
erate circularly-polarized light before P1 to maintain
constant intensity impinging on the display as polar-
izer P1 is rotated. To avoid the use of beam splitters,
we illuminate the display with a small angle of inci-
dence of only 1:5°. The reflected beam is directed onto
a second polarizer (P2) and to an optical detector
(Newport model 1815-C). The detected signal is mon-
itored on an oscilloscope.

The physical parameters that determine the de-
vice’s optical modulation are the liquid crystal (LC)
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director orientation and its angular rotation (Δθ), in-
duced upon applying a voltage signal, and the phase
shift (ϕ), introduced by the LC layer for the operating
wavelength. Here we apply a simple reverse engi-
neering procedure proposed in [12] to measure these
physical parameters. The method consists of simul-
taneously rotating both polarizers (P1 and P2), while
keeping them always crossed, and measuring the
transmitted intensity. The normalized intensity of
the reflected beam in this situation is given by [7]

i ¼ sin2ð2φÞ sin2

�ϕ
2

�
; ð1Þ

where φ ¼ θP1 − θF represents the relative angle be-
tween the input polarizer (oriented at θP1) relative to
the FLC director (oriented at θF), and ϕ is the phase
shift introduced by the LC layer.
When the device is switched on, a bipolar electrical

signal with zero mean value is addressed to each pix-
el, resulting in two stable LC director orientations
(θFa and θFb), each one corresponding to a sign inver-
sion of the electrical signal. Figure 1(b) shows an ex-
ample of the oscilloscope trace measurement for an
arbitrary orientation of the polarizers (here the input
and output polarizers were both oriented at 15°). In

this result, a uniform white screen has been ad-
dressed to the display to provide equal signal to all
the pixels of the LCD. The selected laser wavelength
is λ ¼ 568nm. Two intensity levels (ia and ib) are
clearly visible, corresponding to the two LC stable or-
ientations (θFa and θFb). In addition, narrow peaks
appear at the polarity transitions of the voltage sig-
nal. If a black uniform image (instead of the former
white uniform image) is addressed to the display, an
inversion of the intensity signal is obtained for the
same configuration [see Fig. 1(c)]. The usual display
application is based on synchronizing this intensity
transmission signal with the illumination sequence.

Following the characterization procedure in [12],
intensities ia and ib are measured when polarizers
P1 and P2 are crossed and simultaneously rotated.
Figure 2 shows the experimental results of the nor-
malized intensity detected for the two Ar─Kr laser
lines of 568 and 647nm, respectively. The input po-
larizer θP1 is rotated in the range [0°–180°] and, for
each orientation, the second polarizer (analyzer) is
always crossed θP2 ¼ θP1 þ 90°. The harmonic func-
tion in Eq. (1) is experimentally observed in Fig. 2.
Null intensity is obtained for both wavelengths at
θP1 ¼ 0° and θP1 ¼ 90° for the second level (intensity
ib), and at θP1 ¼ 45° and θP1 ¼ 135° for the first level
(intensity ia). These angles denote the orientations of
the neutral axes of the FLC wave-plate layer in the
two stable positions, and therefore we experimen-
tally verify a tilt angle rotation ΔθF ¼ 45° between
them. According to Eq. (1), maximum relative trans-
mittance equal to sin2ðϕ=2Þ is obtained between two
null minima. For λ ¼ 568nm, the maximum trans-
mission reaches practically 100% transmission indi-
cating a phase shift close to the ideal value of ϕ ¼
180° (HWP behavior). On the contrary, for λ ¼
647nm, the maximum transmission reaches a value
around 63%, indicating a phase shift of only ϕ ¼ 105°.

Once the physical parameters of the display have
been calibrated, the polarization configuration can
be properly adjusted. A white screen is addressed

Fig. 1. (Color online) (a) Scheme of the operating system. (b), (c)
Oscilloscope traces corresponding to the detected optical intensity
for λ ¼ 568nm with the two polarizers oriented at 15°. (b) FLCoS
displays a uniform white screen. (c) FLCoS displays a uniform
black screen.

Fig. 2. (Color online) Normalized transmittances ia and ib of the
system polarizer–FLCoS display–analyzer, as a function of the in-
put polarizer angle. The analyzer is always crossed to the input
polarizer. Two Ar─Kr laser wavelengths are used: λ ¼ 568nm
and λ ¼ 647nm, respectively.
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once again to the display, and the wavelength λ ¼
568nm providing the ideal phase shift is selected.
The input polarizer is oriented at θP1 ¼ 0°, parallel
to the first stable LC director orientation. The output
state will emerge linearly polarized at 0° for the first
stable LC orientation, since the input polarization co-
incides with the principal axis. On the contrary, light
will emerge linearly polarized at 90° for the second
LC stable orientation (where the axes have rotated
by Δθ ¼ 45°). Figure 3 shows the oscilloscope traces
corresponding to different orientations of the analy-
zer when a uniform white image is addressed to the
display. In Fig. 3(a) the analyzer is oriented parallel
to the polarizer (θP2 ¼ 0°). For this configuration we

observe a perfect intensity rectangular response.
As expected, when the analyzer is rotated by 90°
[Fig. 3(c)] the inversion of the previous intensity sig-
nal is observed. When the analyzer is oriented at 45°
or 135°, the analyzer angle bisects the two linear
states emerging from the modulator, and both states
transmit with the same relative intensity of 0.5.
Figures 3(b) and 3(d) show this effect. However,
the transitions between the two stable states are
clearly visible as narrow peaks that point up or down
depending on the analyzer orientation. These peaks
arise from the rotation of the LC molecules between
the two stable orientations, as was noted in [12].
Next, we show the direct correspondence between
the modulation responses in Fig. 3 and the different
actuations of the display as a one-dimensional
diffraction grating with black and white addressed
gray levels.

3. Diffraction from a Binary Polarization Grating

A PDG is a space-variant periodic polarization ele-
ment. Unlike classical phase or amplitude diffraction
gratings, they introduce a periodic change of the po-
larization state, thus leading to a polarization-
dependent diffraction pattern. Therefore, PDG are
effective tools for polarization measurements in po-
larimetry and ellipsometry applications [14]. Here
we consider the simplest case, a binary PDG, which
can be directly displayed in our previously character-
ized FLCoS display. We apply a theoretical analysis
for these gratings based on the Jones–Fourier form-
alism developed in [18]. That method states that a
spatially-dependent polarization mask is described
by a Jones Matrix MðxÞ, and its diffraction pattern
can be calculated by a related Jones–Fourier matrix
~MðuÞ, whose elements are the Fourier transform of
the corresponding elements of MðxÞ, with u being
the spatial frequency. The diffraction pattern gener-
ated when the polarization mask is illuminated with
a given polarization state is calculated by multiply-
ing the Jones vector of the input beam (V in) by the
Jones–Fourier matrix ~MðuÞ. The advantage of using
the matrix ~MðuÞ is that it simultaneously accounts
for the polarization transformation at the grating
and the polarization transformation during the pro-
pagation, thus leading to specific equivalent polari-
zation elements for the whole process.

In this work we apply this method to analyze the
specific case of a binary PDG, which is defined as a
periodic succession of two polarization elements de-
scribed by their corresponding Jones matrices, Ma
and Mb. For simplicity we consider a grating with
a 50% fill factor. Assuming that the grating is infi-
nitely extended, it can be expressed as the following
Jones matrix:

MðxÞ ¼ Ma ·
�
rect

�
x

p=2

�
⊗

X
n

δðx − npÞ
�

þMb ·
�
rect

�
x

p=2

�
⊗

X
n

δðx − np − p=2Þ
�
;ð2Þ

Fig. 3. (Color online) Oscilloscope traces corresponding to the de-
tected optical intensity for λ ¼ 568nm, when the FLCoS displays a
white uniform screen and with the input polarizer oriented at 0°.
The output polarizer is oriented at (a) 0°, (b) 45°, (c) 90°, and
(d) 135°.
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where n are integer numbers, p is the grating’s per-
iod, ⊗ indicates the convolution operation, δð·Þ is the
Dirac delta distribution, and rectð·Þ is the rectangle
function defined as [19]

rectðxÞ ¼
8<
:

1 if jxj < 1=2
1=2 if jxj ¼ 1=2
0 if jxj > 1=2

: ð3Þ

The Jones–Fourier matrix ~MðuÞ, calculated by
Fourier transforming each component of the Jones
matrix in Eq. (2), results in

~MðuÞ ¼ 1
2
ðMa þMb expð−iπupÞÞsinc

�
p
2
u

�

·
X
n

δ
�
u −

n
p

�
; ð4Þ

where sincðxÞ≡ sinðxπÞ=ðxπÞ is the Fourier transform
of the rectangle function. This equation can be re-
written as

~MðuÞ ¼
X
n

~Mn · δ
�
u −

n
p

�
; ð5Þ

where ~Mn are the Jones matrices characterizing the
PDG action on the nth diffracted order. These ma-
trices are given by

~Mn ¼ 1
2
sinc

�
n
2

�
ðMa þMb expð−iπnÞÞ

¼ anðMa þMb expð−iπnÞÞ: ð6Þ

Note that the amplitude factors an ¼ ð1=2Þ ·
sincðn=2Þ are exactly the amplitude of the diffraction
orders generated by a standard binary amplitude
grating, with transmission levels 1 and 0 [20]. Equa-
tions (5) and (6) reveal that the polarization grating
generates a set of diffraction orders located at spatial
frequencies un ¼ n=p (like scalar amplitude or phase
gratings), but each order has a vector field that is de-
fined by the Jones matrix ~Mn. Like in the case of a
binary amplitude or phase grating with a 50% fill fac-
tor, all even diffraction orders are cancelled because
the sinc function in Eq. (6) becomes null. The zero
order (n ¼ 0, DC term) is characterized by a Jones
matrix resulting from adding the two matrices of
the grating together, i.e.,

~Mn¼0 ¼ Ma þMb

2
: ð7Þ

On the contrary, the odd diffraction orders are
characterized by a Jones matrix defined in terms
of the difference between the two Jones matrices of
the grating; i.e.,

~Moddn ¼ �Ma −Mb

nπ : ð8Þ

If the polarization grating is illuminated with a po-
larization state described by a Jones vector V in, the
two states emerging from the display areVa ¼ MaV in
and Vb ¼ MbV in, while the Jones vectors at the dif-
fraction orders are given by ~Vn ¼ ~MnV in. We note
that results equivalent to those in Eqs. (7) and (8)
were already derived in [6], using a different formal-
ism based on the Poincaré sphere, which was applied
there to analyze binary as well as continuous polar-
ization gratings.

4. Half-Wave Plate Polarization Diffraction Grating

We start by considering the simplest case, where the
two levels in the PDG correspond to an HWP with
two different axes orientations with a relative angle
of Δθ ¼ 45°. This type of grating can be addressed
directly onto our LCoS display when we illuminate
it with wavelength λ ¼ 568nm, since the phase shift
is practically 180°. For simplicity, and although our
device is a reflective display, we do not consider
the polarization transformation that happens due to
the reflection (we consider the equivalent transmis-
sive display). Before discussing the experimental re-
sults, we summarize the theoretical analysis of such
an HWP PDG.

A. Theoretical Analysis

The details on the application of the results in Sec-
tion 3 to this type of polarization grating are pre-
sented in Appendix A, where we analyze the more
general case for a binary PDG with arbitrary phase
shift ϕ and arbitrary tilt angleΔθ. The main result is
that the action of such a general PDG and the sub-
sequent propagation to the Fourier diffraction plane
is equivalent, for the odd diffracted orders, to the ac-
tion of an HWP oriented atΔθ=2–45°, independent of
the phase shift introduced by the FLC. Furthermore,
for the specific case considered here, with ϕ ¼ 180°
and Δθ ¼ 45°, the PDG action is equivalent to that
a of an HWP oriented at −22:5 for the odd diffraction
orders, and to that of an HWP oriented at þ22:5° for
the DC order.

We consider, for simplicity, input linear polariza-
tion with arbitrary orientation α (the input Jones
vector is V in ¼ ðcosðαÞ sinðαÞÞt, where the superindex
t denotes the transposed matrix). As is demonstrated
Appendix A, the Jones vectors characterizing the dif-
fracted orders generated by this binary HWP PDG
are given by

~Vn¼0 ¼ 1ffiffiffi
2

p
�
cosð45° − αÞ
sinð45° − αÞ

�
; ð9aÞ

~Voddn ¼ �
ffiffiffi
2

p

nπ

�
cosð−45° − αÞ
sinð−45° − αÞ

�
: ð9bÞ
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Therefore, the polarization states of the DC and
diffracted orders are linear and orthogonal (oriented
at 45° − α and −45° − α, respectively). Moreover, this
property is independent of the input polarization an-
gle (α). The intensity of the diffracted orders is also
independent of the input state of polarization and it
is given by

in ¼
8<
:

1=2 for n ¼ 0
2

ðnπÞ2 for oddn
0 for evenn ≠ 0

: ð10Þ

It is interesting to note that these intensity values
exactly double those corresponding to an equivalent
binary amplitude grating [20]. Particularly relevant
is the intensity of the first (n ¼ 1) diffraction order,
since it defines the modulation diffraction efficiency
(η). It describes the diffraction efficiency of a diffrac-
tive optical element addressed to the display [21]. For
this particular case, a value η ¼ 20:3% is obtained.
Figure 4 shows the polarization states involved in
these situations, including the input polarization,
the two polarizations emerging from the display
(Va and Vb), and the two polarizations corresponding
to the DC and the diffracted orders (~V0 and ~Vn).
Figures 4(a) and 4(b) show, respectively, the states
corresponding to illuminating the PDG with linear
polarization oriented at α ¼ 0 (the standard
configuration for display application) and with an ar-
bitrary α.
The fact that the two emerging states are linear

and orthogonal allows operating the display as a bin-
ary amplitude or as a binary phase grating by simply
using an analyzer. This is indicated in Fig. 4(c),
where the analyzer’s orientation is drawn as a dis-
continuous arrow. In this figure we represent the

two emerging states in the vertical and the horizon-
tal direction. When the analyzer is parallel to one of
the two emerging states (and is therefore crossed to
the other emerging state) this state is fully trans-
mitted, while the other one is fully absorbed. The re-
sult is a binary amplitude grating, with amplitude
transmissions of 100% and zero in each region. On
the contrary, binary π phase modulation is achieved
by orienting the analyzer perpendicular to the line
that bisects the two emerging states [22]. This π
phase is generated by the opposite projection sense
of the two linear states onto the analyzer orientation.
Note that in this situation the analyzer is perpendi-
cular to the linear polarization state in the DC order,
which is therefore cancelled (as it corresponds for a
binary phase grating with π phase shift). On the con-
trary, when the analyzer bisects the two states emer-
ging from the PDG, the projection of these states onto
the analyzer occurs with the same sign, and no phase
modulation is produced. In this case, the analyzer or-
ientation is crossed to the orientation of all diffracted
orders, which therefore vanish, in agreement with
the absence of modulation.

To compare the different configurations described
above, it is useful to calculate the diffraction effi-
ciency of the gratings, η. This can be evaluated within
the Jones formalism, by multiplying the Jones ma-
trix of the analyzer (with orientation θP2) by the
Jones vector of Eq. (9b), and calculating the intensity
for the n ¼ 1 order. The diffraction efficiency of the
four gratings shown in Fig. 4 is more easily calcu-
lated if we consider an incident linear polarization
state (α ¼ 0°) and hence take θP2 ¼ 0°, 45°, 90°,
and 135°. The resulting modulation efficiencies
are, respectively, η ¼ 10:1%, 0%, 10.1%, and 20.3%.
For the amplitude modulation configurations
(θP2 ¼ 0° and 90°), the efficiency is equal to that of
an amplitude grating, while for the phase modula-
tion configuration (θP2 ¼ 135°) it is half of that of a
perfect phase-only grating, since the analyzer ab-
sorbs half of the total intensity (that in the DC order).
These values, however, represent the absolute dif-
fraction efficiency. To better evaluate the PDG perfor-
mance as amplitude or phase gratings, we define a
relative diffraction efficiency (ηrel) as the ratio of
the first diffraction order intensity with respect to
the total intensity behind the analyzer. The values
of ηrel corresponding to θP2 ¼ 0°, 45°, 90°, and 135°
are, respectively, ηrel ¼ 20:3%, 0%, 20.3%, and
40.6%, where the latter shows the perfect binary
π-phase modulation regime. This discussion illus-
trates how binary amplitude and phase gratings
can be regarded as specific cases of the more general
binary PDG.

B. Experimental Realization and Configurations for Scalar
Gratings

The experimental realization of such an ideal HWP
PDG can be done in our FLCoS display by illuminat-
ing it with wavelength λ ¼ 568nm, which provides a
phase shift of almost ϕ ¼ 180°. We modified the

Fig. 4. (Color online) Polarization states involved in the ideal
half-wave plate PDG. V in is the incident polarization. Va and Vb

are the two states emerging from the PDG. ~V0 and ~Vn are the
states at the DC and at the odd diffracted orders. (a) α ¼ 0°. (b) α
is arbitrary. (c) Analyzer orientation (discontinuous blue arrow),
relative to the two states emerging from the PDG, to obtain am-
plitude modulation, phase modulation, or absence of modulation.
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experimental setup in Fig. 1(a) by inserting a spatial
filter and a converging lens to illuminate the display
with a collimated beam. A second converging lens is
included in the reflected beam, so the Fourier diffrac-
tion can be captured by placing a CCD camera in its
back focal plane. A binary grating with gray levels
255 (white) and 0 (black), a period of 16 pixels,
and a 50% fill factor (8 pixels black and 8 pixels
white) is addressed to the display. Figure 5(a) shows
the diffraction pattern when no analyzer is placed on
the reflected beam. The input polarizer is oriented at
θ1 ¼ 0°, i.e., parallel to the first LC position (thus re-
producing the scheme represented in Fig. 4(a)]. The
diffraction pattern shows the diffraction orders char-
acteristic of a binary grating: the central (DC) order
is the strongest, and the even diffraction orders are
absent. However, the polarization state of the DC or-
der is orthogonal to that of the odd diffracted orders,
as it can be shown by placing an analyzer on the re-
flected beam.
Figures 5(b)–5(e) show the diffraction pattern

when the analyzer is included, with the same orien-
tations as we used in Fig. 3 (i.e, the analyzer is or-
iented at θP2 ¼ 0°, 45°, 90°, and 135°, respectively).
In Figs. 5(b) and 5(d) the analyzer is oriented parallel
to one of the two states emerging from the grating,
thus bisecting the polarizations state on the diffrac-
tion orders. These two orientations reproduce the
binary amplitude diffraction grating, and the pattern
looks like that without analyzer. However, when the
analyzer is oriented at 45° [Fig. 5(c)], it bisects the

two states emerging from the grating, and it coin-
cides with the polarization orientation at the DC or-
der. This orientation is orthogonal to the polarization
of the diffracted orders, which are cancelled, and no
diffraction grating effect appears in this case. Finally,
Fig. 5(e) shows the pattern when the analyzer is or-
iented at 135°. Now the DC order disappears, and the
diffracted orders are enhanced. This case corre-
sponds to a binary π phase grating. Let us note that
we can thus easily identify the phase modulation
configuration in the experiment shown in Fig. 3,
when the intensity shows narrow peaks pointing
down [Fig. 3(d)].

C. Simplified Configuration with a Single Polarizer

The result in Eqs. (9) can be used to simplify the set-
up, by using one single polarizer acting both on the
input and the reflected beams. For that purpose, the
polarizer is placed close to the FLCoS display. Now
the analyzer is fixed to be at the same orientation
as the input polarization. However, this is not a lim-
itation to obtain configurations for amplitude and
phase binary gratings, although the suitable angles
change and they must be properly selected. Table 1
summarizes the orientation of the linear states for
the input beam, of the two states (a and b) emerging
from the display, and of the DC and diffracted odd
orders. θP represents the angle of the input linear po-
larization (and therefore also the orientation trans-
mitted by the analyzer). Now, for θP ¼ 0° and for
θP ¼ 45° the analyzer coincides with one of the states
emerging from the grating (a and b), and therefore
amplitude modulation is obtained. On the contrary,
for θP ¼ 22:5°, the configuration corresponds to the
absence of modulation (only the DC order is trans-
mitted), while the π-phase modulation configuration
is obtained for θP ¼ 67:5°, where only the diffracted
odd orders are transmitted by the analyzer.

The corresponding experimental diffraction pat-
terns, captured as the polarizer was rotated in steps
of 22:5°, are presented in Fig. 6. Figures 6(a) and 6(c)
show the patterns when the polarizer is oriented at
θP ¼ 0° and 45°, respectively, and presents the char-
acteristics of the amplitude gratings (the DC order is
stronger than the diffracted orders). For θP ¼ 22:5°
only the DC order is present, thus providing the si-
tuation without modulation. Finally, for θP ¼ 67:5°
the DC order is cancelled and only the odd diffracted
orders are present, denoting the π-phase grating.
These results prove that binary amplitude and
binary phase regimes can be accomplished with a

Fig. 5. (Color online) Experimental diffraction pattern of the bin-
ary HWP–PDG obtained for λ ¼ 568nm. Input polarizer is or-
iented at θP1 ¼ 0°. (a) Case without analyzer. (b)–(e) Cases with
the analyzer oriented at (b) θP2 ¼ 0°, (c) θP2 ¼ 45°, (d) θP2 ¼ 90°,
and (e) θP2 ¼ 135°. PDG, AmDG, and PhDG indicate the configura-
tions for polarization, amplitude, and phase diffraction grating. No
DG indicates the configuration for the absence of grating.

Table 1. Angular Orientation of the Linear Polarization States
Involved in the HWP PDG

Input State a State b DC Order Odd Orders

θP −θP 90 − θP 45 − θP −45 − θP
0 0 90 45 −45

22.5 −22:5 67.5 22.5 −67:5
45 −45 45 0 −90
67.5 −67:5 22.5 −22:5 67.5
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single polarizer, thus simplifying the experimental
configuration.

5. Arbitrary Phase-Shift Polarization Diffraction
Grating

This final section deals with PDGwhen phase shift ϕ,
introduced by the LC layer, differs from the ideal
value of 180°. As was demonstrated in Section 2, this
occurs when the operating wavelength is different
from the design one [23]. In this situation, the states
emerging from the display are, in general, elliptically
polarized and not orthogonal. We recently analyzed
this situation and how it leads to a reduction in the
contrast ratio in display applications. We proposed a
method to compensate this effect by introducing a
QWP before the modulator to illuminate the display
with the proper polarization that yields, at the out-
put, two states with the maximum degree of ortho-
gonality [12,13].
In the application for diffraction gratings, the ef-

fect of the phase mismatch is a reduction in the dif-
fraction efficiency. Here we make a further step in
the technique proposed in [12] to compensate for this
PDG diffraction efficiency loss. The diffraction effi-
ciency can be evaluated from the discussion in Ap-
pendix A [Eqs. (A8)–(A11)]. We evaluate efficiency
loss with a parameter r defined as the ratio between
the total diffracted intensity (i.e., the parameter ηD
defined in Eq. (A10) of the Appendix, equal to the
sum of the intensity of all the odd diffracted orders)
generated with the nonideal PDG (Δθ ¼ 45° and ar-
bitrary ϕ) and the corresponding value for the ideal
case (Δθ ¼ 45° and ϕ ¼ 180°). From Eq. (A10) it is
direct to obtain that

r ¼ sin2

�ϕ
2

�
: ð11Þ

For instance, let us analyze the standard config-
uration, where the display is illuminated with
linearly polarized light oriented at θP1 ¼ 0°, and
the phase shift is ϕ ¼ 105° (which corresponds to

illumination with the red laser line, λ ¼ 647nm).
The odd diffracted orders always remain linearly po-
larized at −45°, independent of the value of ϕ, but
their intensity has been reduced by a factor r ¼
0:63 for ϕ ¼ 105° in comparison with the intensity
obtained in the ideal case (ϕ ¼ 180°). This means
that, without analyzer, the modulation diffraction ef-
ficiency is now reduced to 12.8% (the value in the
ideal case was 20.3%). For the amplitude and phase
configurations, the efficiency is now reduced to η ¼
6:4% and 12.8%, respectively (the values in the ideal
configuration were 10.1% and 20.3%, respectively).
On the contrary, the DC zero order is elliptically po-
larized, being the ellipse dependent on ϕ. Figure 7(a)
shows the specific polarization ellipses for ϕ ¼ 105°,
and Table 2 give the corresponding azimuth and el-
lipticity angles following the sign convention in [13].
While one of the two states emerging from the PDG
remains linearly polarized (Va), the second state (Vb)
becomes elliptically polarized. Figure 7(a) also indi-
cates the polarization states corresponding to the DC
and diffracted orders (~V0 and ~Vn, respectively),
which show that the DC order is now elliptically
polarized. This means that the intensity of the DC
order cannot be cancelled with the analyzer, or
equivalently, binary phase-only modulation cannot
be accomplished. Figures 7(b)–7(e) present the

Fig. 6. (Color online) Experimental diffraction pattern of the bin-
ary grating obtained for the wavelength λ ¼ 568nm. Configuration
with a single polarizer oriented at (a) θP ¼ 0°, (b) θP ¼ 22:5°,
(c) θP ¼ 45°, and (d) θP ¼ 67:5°.

Fig. 7. (Color online) (a) Polarization states involved in a noni-
deal PDG (ϕ ≠ 180°, Δθ ¼ 45°). The input polarizer is oriented
at θP1 ¼ 0°. (b)–(e) Experimental diffraction patterns obtained
for λ ¼ 647nm with different orientations of the analyzer
(θP2 ¼ 0°, 45°, 90°, and 135°), which is indicated on the right.

Table 2. Elliptical States Involved in the Standard Configuration
Corresponding to Fig. 7 (ϕ ¼ 105°)

Input State a State b DC Order Odd Orders

Azimuth (α) 0° 0° 90° 20:1° 135°
Ellipticity (ϵ) 0° 0° 37:5° 22:4° 0°
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experimental diffraction patterns captured in the
same configurations as those in Figs. 5(b)–5(e).
The results for the amplitude configurations
[Figs. 7(b) and 7(d)] look similar to those in the ideal
case [Figs. 5(b) and 5(d)], although the diffraction ef-
ficiency has been reduced. The case without modula-
tion [Fig. 7(c)] is also equivalent to the ideal case
[Fig. 5(c)]: all diffracted orders are cancelled in this
configuration since the analyzer is crossed to their
linear polarization. The diffraction efficiency reduc-
tion is clearly visible in the phase modulation config-
uration [Fig. 7(e)], which notably differs from the
ideal case [Fig. 5(e)] in the presence of a strong
DC peak. This is also clear in the evaluation of the
relative efficiency, which now is reduced to a value
ηrel ¼ 25:5% (for the ideal case it was ηrel ¼ 40:6%).
The situation is equivalent to having a binary phase
modulation, but with a phase shift different from the
ideal value of 180° [24].
This drawback can be overcome by following the

procedure we introduced in [12] and analyzed exten-
sively in [13], where a QWP is inserted between the
input polarizer and the FLC display to generate the
proper incident elliptical polarization that provides

two states as close as possible that are linear and
orthogonal. The difference in our approach here is
that we apply this procedure to make the two polar-
ization states of the DC and odd diffraction orders
linear and orthogonal (whereas in our previous pa-
pers the goal was to have these characteristics for
the two emerging states of the FLC to enhance the
contrast ratio). The fact that the polarization states
on the diffracted orders become linear and orthogo-
nal makes it possible to obtain amplitude or phase
modulation configurations by simply rotating the
analyzer, in the same manner as was discussed pre-
viously in the ideal case.

Following the procedure described in [12,13], we
have calculated the orientations of the input polari-
zer and the QWP. They depend on phase shift ϕ. For
the value ϕ ¼ 105°, the best results are obtained
when the first polarizer is oriented at θP1 ¼ 0° and
the QWP is oriented at 10:6°. Figure 8(a) shows
the polarization ellipses involved in this configura-
tion, and Table 3 gives the corresponding azimuth
and ellipticity angles. Now the input beam and the
two states emerging from the display are all ellipti-
cally polarized. However, in the diffraction pattern,
the states corresponding to the DC and the odd dif-
fracted orders show low and opposite signed ellipti-
city and nearly orthogonal azimuths, oriented at 33°
and 124°, respectively. Figures 8(b)–8(e) show the ex-
perimental diffraction patterns for λ ¼ 647nm and
for this optimized configuration as we rotate the ana-
lyzer (now θP2 is oriented at angles −12°, 33°, 78°, and
123°, respectively). The absolute diffraction effi-
ciency at these configurations are, respectively, η ¼
6:7%, 0.4%, 6.1%, and 12.3%. These values do not
show an improvement with respect to those in the
previous configuration. However, the relative effi-
ciency is clearly improved for the phase modulation
configuration, reaching a value ηrel ¼ 37:0%. This re-
sult is comparable to that obtained in the ideal case
(Fig. 5), becoming especially clear in the almost per-
fect absence of the DC order [Fig. 8(e)]. Therefore the
device phase-shift mismatch has been compensated
and the ideal modulation response is almost

Fig. 8. (Color online) (a) Polarization states involved in a compen-
sated nonideal PDG (ϕ ≠ 180°,Δθ ¼ 45°). (b)–(e) Experimental dif-
fraction patterns obtained for λ ¼ 647nm with different
orientations of the analyzer (θP2 ¼ −12°, 33°, 78°, and 123°), which
is indicated on the right.

Table 3. Elliptical States Involved in the Optimized Configuration
Corresponding to Fig. 8

Input State a State b DC Order Odd Orders

Azimuth (α) 10:6° 8:4° 74:8° 33:1° 124:4°
Ellipticity (ϵ) 10:6° −12:4° 24:1° 11:9° −10:6°

Table 4. Absolute (η) and Relative (ηrel) Diffraction Efficiencies for the Considered Binary PDG Configurationsa

Grating Configuration Ideal HWP PDG (Fig. 5) (%) Nonideal PDG (Fig. 7) (%) Compensated Nonideal PDG (Fig. 8) (%)

No Analyzer η ¼ 20:3 η ¼ 12:8 η ¼ 12:8
AmDG1 η ¼ 10:1 ηrel ¼ 20:3 η ¼ 6:4 ηrel ¼ 9:3 η ¼ 6:7 ηrel ¼ 13:2
NoDG η ¼ 0:0 ηrel ¼ 0:0 η ¼ 0:0 ηrel ¼ 0:0 η ¼ 0:4 ηrel ¼ 0:7
AmDG2 η ¼ 10:1 ηrel ¼ 20:3 η ¼ 6:4 ηrel ¼ 20:2 η ¼ 6:1 ηrel ¼ 12:3
PhDG η ¼ 20:3 η ¼ 40:6 η ¼ 12:8 ηrel ¼ 25:5 η ¼ 12:3 ηrel ¼ 37:0

aAmDG, NoDG, and PhDG denote the configurations for amplitude, absence, and phase grating, respectively.
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perfectly recovered. The values of the calculated ab-
solute and relative diffraction efficiencies of this and
previous configurations are summarized in Table 4.

6. Conclusions

In summary, we have presented a complete study on
binary PDG displayed on a FLCoS display. We first
applied a reverse engineering technique to character-
ize the physical parameters of our display. Then we
applied the Jones–Fourier formalism to analyze a
binary PDG with switching angle Δθ ¼ 45° and arbi-
trary phase shift ϕ and revealed that the action of
such PDG can be regarded as that of an HWP or-
iented at −22:5° for the odd diffracted orders, regard-
less of the value of ϕ. In addition, when the phase
shift is ϕ ¼ 180°, the action on the DC order is
equivalent to that of an HWP oriented at þ22:5°.
Based on this polarization analysis, we showed how
this PDG can be converted onto amplitude or phase
gratings by properly projecting the polarization
states onto an analyzer. As a result of this analysis,
we presented two improvements. The first one is a
simplification of the system using a single polarizer
for both the input and reflected beams, which pro-
vides equivalent results for amplitude or phase
modulation as the operational mode involving two
polarizers. Secondly, we analyzed the PDG perfor-
mance when the phase shift differs from the ideal va-
lue (typically because of wavelength dispersion). We

showed that the ideal performance can be almost per-
fectly recovered by illuminating the display with the
proper elliptical polarization. For instance an almost
perfect π phase shift, phase-only diffraction grating
has been demonstrated with a wavelength providing
a phase shift far from the ideal value ϕ ¼ 180°, sim-
ply with a reduction in diffraction efficiency.
All the theoretical results have been experimen-

tally demonstrated by employing two laser lines with
different wavelengths: one (568nm) giving almost
perfect HWP behavior, while the second one (647nm)
shows an important phase-shift mismatch. This
study is, therefore, a useful guide to correctly operate
a FLCoS display for polarization, amplitude, or
phase modulation regimes, which is interesting for
programmable diffractive optics applications.

Appendix

Here we include the derivations of the expressions of
the Jones vectors and matrices related to the diffrac-
tion orders generated by the binary polarization
gratings discussed in this paper. We consider a
generic case with an arbitrary phase shift ϕ and ar-

bitrary switching angle Δθ. For simplicity, we as-
sume the two LC stable angular orientations (a
and b) are located at 0° and θ, respectively (i.e.,
Δθ ¼ θ). The Jones matrices describing these two
states are, respectively, [25]

Ma ¼ MWPðϕ; θ ¼ 0°Þ ¼
�
1 0
0 eiϕ

�
; ðA1Þ

Mb ¼ MWPðϕ; θÞ ¼ Rð−θÞMWPðϕ°; θ ¼ 0°ÞRðθÞ

¼
�

cos2ðθÞ þ sin2ðθÞeiϕ sinðθÞ cosðθÞð1 − eiϕÞ
sinðθÞ cosðθÞð1 − eiϕÞ sin2ðθÞ þ cos2ðθÞeiϕ

�
;

ðA2Þ

whereMWPðϕ; θÞ denotes the Jones matrix for a wave
plate with phase shift ϕ and orientation θ, and where
RðθÞ is the rotation 2 × 2 matrix:

RðθÞ ¼
�

cosðθÞ sinðθÞ
− sinðθÞ cosðθÞ

�
: ðA3Þ

Thus, the Jones–Fourier matrices corresponding to
the DC and odd diffracted orders are given by Eqs. (7)
and (8), and they can be written as

~Mn¼0 ¼ 1
2

�
1þ cos2ðθÞ þ sin2ðθÞeiϕ sinðθÞ cosðθÞð1 − eiϕÞ
sinðθÞ cosðθÞð1 − eiϕÞ sin2ðθÞ þ ½1þ cos2ðθÞ�eiϕ

�
; ðA4Þ

~Moddn ¼ � sinðθÞð1 − eiϕÞ
nπ

�
sinðθÞ − cos θÞ
− cosðθÞ − sinðθÞ

�
:

ðA5Þ

Let us note that the Jones matrix corresponding to
an HWP rotated by an angle θ0 is equal to

MWPðϕ ¼ 180°; θ0Þ ¼ Rð−θ0ÞMWPðϕ ¼ 180°; θ0 ¼ 0°ÞRðθ0Þ

¼
�
cosð2θ0Þ sinð2θ0Þ
sinð2θ0Þ − cosð2θ0Þ

�
: ðA6Þ

Therefore, Eq. (A5) can be rewritten as

~Moddn ¼ � sinðθÞð1 − eiϕÞ
nπ

×MWP

�
ϕ ¼ 180°; θ0 ¼ θ

2
− 45°

�
: ðA7Þ

This is a relevant result since it reveals that the
action of the PDG and the subsequent propagation
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to the Fourier diffraction plane is equivalent, for the
odd diffraction orders, to the action of an HWP or-
iented at θ0 ¼ θ=2 − 45°, independent of phase shift
ϕ introduced by the FLCD. Therefore, if the polariza-
tion of the beam incident on the PDG is linear with
orientation α, the typical action of the HWP will pro-
vide, at the odd diffraction orders, linear polarization
with orientation θ − α − 90°, independent of the value
of ϕ. On the contrary, according to Eq. (A4), the DC
term will present in general elliptical polarization.
Since the matrixMWP in Eqs. (A7) does not change

the light power, the intensity (in) of the odd diffracted
orders is directly given by the square modulus of the
amplitude term in front of the matrix, i.e.,

ioddn ¼ 4

n2π2 sin
2ðθÞ sin2

�ϕ
2

�
; ðA8Þ

while the intensity of all even orders is always zero.
In particular, the modulation diffraction efficiency (η)
is the intensity of the n ¼ 1 order, i.e.,

η ¼ in¼1 ¼ 4

π2 sin
2ðθÞsin2

�ϕ
2

�
: ðA9Þ

The total diffracted intensity ηD (the addition of
the intensities of all diffracted orders except the zero
order) can be calculated by

ηD ¼
X
n≠0

in ¼ 8

π2 sin
2ðθÞ sin2

�ϕ
2

�

X
n¼1;3;5:::

1

n2 ¼ sin2ðθÞ sin2

�ϕ
2

�
; ðA10Þ

where we assumed that orders �n have equal inten-
sities, and that the summation in this equation
equals π2=8. Therefore, the intensity of the undif-
fracted zero order (DC term) is given by

i0 ¼ 1 − ηD ¼ 1 − sin2ðθÞsin2

�ϕ
2

�

¼ cos2ðθÞ þ 1
2
sin2ðθÞð1þ cosϕÞ: ðA11Þ

Therefore, Eqs. (A8) and (A11) provide the intensi-
ties of the diffracted orders in terms of phase shift ϕ
and switching angle θ. It is important to remark that
these intensities are independent of the input beam
polarization state. We also want to remark that these
expressions for the intensities of the diffracted orders
can be directly derived in a different manner using
the formulation in [7].
Finally, we apply the above expressions to the spe-

cific values of phase shift and switching angle of our
device. If θ ¼ 45°, the equivalent Jonesmatrix for odd
diffracted orders becomes an HWP oriented at
−22:5°. If, in addition, the phase shift is ϕ ¼ 180°,
the Jones matrices describing the DC and diffracted
orders [Eqs. (A4) and (A5)] become

~Mn¼0 ¼ 1
2

�þ1 þ1
þ1 −1

�

¼ 1ffiffiffi
2

p MWPðϕ ¼ 180°; θ ¼ þ22:5°Þ; ðA12Þ

~Moddn ¼ � 1
nπ

�þ1 −1
−1 −1

�

¼ �
ffiffiffi
2

p

nπ MWPðϕ ¼ 180°; θ ¼ −22:5°Þ: ðA13Þ

In this case the Jones matrix corresponding to the
DC order also represents an HWP but is oriented at
þ22:5°. If we consider an arbitrary input linear po-
larization, with orientation α, the input Jones vector
is V in ¼ ðcosðαÞ sinðαÞÞt (with superindex t meaning
the transposed matrix), and by means of Eqs. (A1)
and (A2) the two polarizations emerging from the
PDG are given by

Va ¼ Ma ·
�
cosðαÞ
sinðαÞ

�
¼

�
cosð−αÞ
sinð−αÞ

�
; ð14Þ

Vb ¼ Mb ·
�
cosðαÞ
sinðαÞ

�
¼

�
cosð90 − αÞ
sinð90 − αÞ

�
; ðA15Þ

i.e., they are two linear and orthogonal states or-
iented at −α and 90° − α, respectively. The Jones vec-
tors characterizing the diffracted orders generated
with this binary PDG can be calculated using
Eqs. (A12) and (A13), yielding

~Vn¼0 ¼ ~Mn¼0 ·
�
cosðαÞ
sinðαÞ

�
¼ 1ffiffiffi

2
p

�
cosð45° − αÞ
sinð45° − αÞ

�
;

ðA16Þ

~Voddn ¼ ~Moddn ·
�
cosðαÞ
sinðαÞ

�
¼ �

ffiffiffi
2

p

nπ

�
cosð−45° − αÞ
sinð−45° − αÞ

�
:

ðA17Þ
This result proves Eqs. (9) in this paper. The inten-

sities in Eq. (10) are directly obtained from Eqs. (A8)
and (A11) for θ ¼ 45° and ϕ ¼ 180°.
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