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Abstract
We analyse two-mirror resonators in terms of their fractional Fourier
transform (FRFT) properties. We use the basic ABCD ray transfer matrix
method to show how the resonator can be regarded as the cascade of
two propagation–lens–propagation FRFT systems. Then, we present a
connection between the geometric properties of the resonator (the g parameters)
and those of the equivalent FRFT systems (the FRFT order and scaling
parameters). Expressions connecting Gaussian beam q-transformation with
FRFT parameters are derived. In particular, we show that the beam waist of the
resonator’s mode is located at the plane leading to two FRFT subsystems with
equal scaling parameter which, moreover, coincides with the mode Rayleigh
range. Finally we analyse the resonator’s stability diagram in terms of the
fractional orders of each FRFT subsystem, and the round trip propagation. The
presented analysis represents an interesting link between two topics (optical
resonators and Fourier optics) usually covered in optics and photonics courses
at university level, which can be useful to teach and connect the principles of
these subjects.

1. Introduction

Laser resonators are key optical components, included in all modern optics and photonics
courses for Physics or Engineering degrees. After the initial works in the 1960s [1], it became
a subject actually included in all textbooks in the field of optics [2, 3]. Typically two types of
analyses are employed for its study. A first one is based on geometrical optics considerations,
where the stability of the ray trajectories inside the cavity is analysed. A second and more
complete analysis is based on wave optics theory and permits the derivation of the propagation
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modes of the resonators. In spite of being a widely studied subject, there is still interest in the
comprehension of their physical insights [4].

Another field of interest since its introduction in optics in 1993 by Mendlovic and Ozatkas
[5] is the fractional Fourier transform (FRFT). This operation is the generalization to fractional
orders of the Fourier transform, and much research has been conducted to use the FRFT for
the analysis of optical systems. In particular, pretty soon the FRFT was recognized as a
powerful tool to analyse optical resonators since they share Hermite–Gaussian functions as
eigenfunctions [6, 7]. The general relationships between ray optics, Gaussian beams and FRFT
systems were further explored in [8]. Both mirror resonators and FRFT systems are paraxial
first-order systems, and therefore can be analysed in a very elegant and compact way through
the ABCD ray transfer matrix method [9]. In mirror resonators, this formalism is typically
employed to analyse ray confinement and develop the stability diagram [3]. The properties
of the ABCD matrix of FRFT systems have been studied for instance in [10, 11], and it has
been shown to be especially useful to establish connections with geometrical optics aspects
of FRFT optical systems [12, 13]. The simplicity of ray matrices as compared to diffraction
integrals permits teaching in a simple manner several topics of Fourier optics theory, including
the FRFT systems [11].

In this paper, we follow that line and take a step further, where we apply the ABCD
ray matrix to analyse stable resonators in terms of FRFT properties. The existing close
connection between the FRFT operation and optical resonators has been established in the
previous advanced references [6, 14–16]. In [6], the FRFT property of the resonator round trip
propagation was identified, and symmetrical resonators were analysed. In [14], general multi-
element resonators were analysed by considering two single pass (forward and backward)
propagations. In [15, 16], the FRFT relation between the light amplitude distributions at
spherical surfaces was established on the basis of scalar diffraction, and the conclusions were
applied to spherical resonators. In these previous related works, the FRFT property has been
established either for the round trip propagation or for the mirror to mirror propagation. The
novelty of our approach is that we identify the round trip propagation as the cascade of two
equivalent FRFT propagation–lens–propagation subsystems like those proposed by Lohmann
in [17]. The plane containing the waist of the resonator’s Gaussian mode is selected as the
initial propagation plane. This permits applying the general waist-to-waist propagation FRFT
properties [18]. As a result, we show in a very simple manner that spherical resonators
can be viewed as the cascade of two FRFT subsystems with matched scaling parameters,
which in addition coincide with the Rayleigh range of the corresponding Gaussian mode. The
whole derivation is presented in terms of the ABCD ray transfer matrix, thus reducing the
complexity of derivations involving diffraction integral calculations. Therefore, this approach
can be especially appropriate to teach the subject to undergraduate students who have been
trained in ABCD matrices and in Fourier optics.

The paper is organized as follows. In section 2, we briefly review some of the
relevant properties of Gaussian beams and FRFT optical systems in terms of ABCD matrix
representation. In section 3, we connect these two elements to extract the FRFT properties of
the mirror resonators, including a new perspective of the resonator’s stability diagram in terms
of the basic FRFT orders. Some particularly relevant cases are analysed in section 4. Finally,
section 5 presents the conclusion of the work.

2. Ray matrices, Gaussian beams and FRFT systems

We consider regular centred rotationally symmetric geometrical optical systems working under
the paraxial approximation. In this approximation, optical systems can be described by an
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ABCD ray matrix:

M =
(

A B

C D

)
, (1)

which relates the height and angle coordinates of the rays at the input and output planes
[9, 11]. In the usual situation with air at both extremes, the determinant of the ray matrix is
det(M) = AD − CB = 1. The ray matrix formalism is a very powerful tool to analyse optical
systems, and its mathematical simplicity makes it very useful also for educational purposes.
For instance, the analysis of the ray matrix permits direct derivation of geometrical properties
of the optical systems: the C parameter directly gives the optical power of the system, while the
imaging condition (input and output planes are conjugated) is directly obtained by imposing
the condition B = 0 [9].

We recently proposed the use of the ray matrix formalism also to analyse Fourier optics
systems [11]. Optical systems providing an exact Fourier transform relation between the
wavefront’s amplitude at the input and output planes can be very easily identified since the ray
matrix A and D parameters become null. An exact FRFT optical system can also be very easily
identified through the condition A = D, the fractional order p being directly related to these
two parameters as cos(pπ/2) = A = D. In [11], we showed various examples that expressed
the simplicity of this ray matrix analysis. Here we extend our previous work and employ this
formalism to revisit stable optical resonators through their FRFT properties, which can be a
very interesting and valuable educational tool since the involved calculations are very simple
compared to the standard diffraction integrals.

2.1. Gaussian beams and waist-to-waist propagation

Gaussian beams are introduced in many optics and photonics basic texts since they are the
fundamental modes of optical resonators [1–3]. They are described mathematically by the
wavefront:

a(r) = A

q(z)
exp

(
−ik

ρ2

2q(z)

)
, (2)

where r = (x, y, z) (the beam is assumed to propagate along the z axis) and k = 2π/λ. The
q-parameter is defined as

1

q(z)
= 1

z + izR

= 1

R(z)
− i

λ

πw2(z)
, (3)

zR being the Rayleigh range. R(z) and w(z) are respectively the radius of curvature and beam
width (spot size) at the plane z, and they are given by

R(z) = z

(
1 +

(
zR

z

)2
)

, (4)

w(z) = w0

√
1 +

(
z

zR

)2

. (5)

The beam waist is located at z = 0, where the spot size is given by

w0 =
√

λzR

π
. (6)
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Figure 1. Optical system performing a Gaussian beam waist-to-waist transformation.

When a Gaussian beam propagates through such a system described with an ABCD ray matrix
(equation (1)), the output q-parameter (qout) is related to the input q-parameter (qin) by

qout = Aqin + B

Cqin + D
. (7)

At the beam waist the q-parameter is purely imaginary:

1

q
= 1

izR

= −i
λ

πw2
0

. (8)

Here, we consider an optical system producing a waist-to-waist propagation between its input
and output planes (figure 1), where the input and output planes are characterized by qin =
izRin and qout = izRout respectively (zRin and zRout denote the corresponding Rayleigh ranges).
Imposing the waist-to-waist propagation on equation (7) directly leads to the conclusion that
such transformation is produced provided the optical system fulfils the following matching
condition:

BD

AC
= −z2

Rin. (9)

Then, the Rayleigh ranges of the input and output beams are related as

zRout = zRin
A

D
. (10)

2.2. FRFT properties of the waist-to-waist Gaussian beam propagation

The ABCD ray matrix of an optical system performing an exact FRFT between the input and
output planes is given by [10, 11]

MFRFT(p, s) =
⎛
⎝ cos(φ) s sin(φ)

−1

s
sin(φ) cos(φ)

⎞
⎠ , (11)

where p denotes the FRFT order, given by φ = pπ/2 and s is a scaling factor. Therefore, an
optical system with ray matrix parameters A = D in the range (−1, +1) performs a real valued
exact FRFT relationship between input and output field amplitudes [11], the fractional order
p ranging from 0 to 4 (the FRFT operation shows periodicity of 4).

If a Gaussian beam propagates through a FRFT system, equation (7) indicates that the
transformation for its q-parameter is

qout = cos φ · qin + s sin φ

− 1
s

sin φ · qin + cos φ
. (12)
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Figure 2. Evolution of the normalized scaling factor s/f and the ratio d/f as a function of the
FRFT order (p) in a Lohmann propagation–lens–propagation system.

If, in addition, the FRFT system performs a waist-to-waist propagation, equations (9)–(11)
lead to the following condition (up to a sign):

zRout = zRin = s. (13)

This equation shows a very interesting conclusion: if an exact FRFT system performs a waist-
to-waist transformation on a Gaussian beam, then the Rayleigh range is conserved and it must
be equal to the FRFT scaling factor. In the next section we will use this property to analyse
stable two-mirror resonators.

One of the basic FRFT bulk lens systems was proposed by Lohmann in [17], consisting
in a propagation–lens–propagation system, where the propagations on either side of the lens
are of equal distance d. If f denotes the lens focal length, the ray matrix for such a system is
given by [11]

MFRFT(p, s) =

⎛
⎜⎜⎝

1 − d

f
d

(
2 − d

f

)

− 1

f
1 − d

f

⎞
⎟⎟⎠ . (14)

The comparison with equation (11) reveals that this system provides a real valued FRFT when
the distance d is between 0 and 2f , the fractional order p being given by the relation

cos
(
p

π

2

)
= 1 − d

f
. (15)

Moreover, the FRFT scaling factor is given by the relation

s2 = d(2f − d). (16)

Figure 2 shows the evolution of the scaling factor normalized to the lens focal length (s/f),
as well as the required propagation distance to focal length ratio (d/f) as a function of the
required FRFT order (p). The scaling parameter becomes null at the extreme values (p = 0
and p = 2), while it reaches a maximum value for the Fourier transform system (p = 1). The
ratio d/f increases nonlinearly but monotonically as the FRFT order increases.
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Figure 3. (a) Scheme of the optical resonator and its Gaussian mode. (b) Equivalent system
composed of two Lohmann FRFT systems.

3. FRFT properties of optical resonators

We next exploit all these results for the analysis of optical stable resonators. While some
FRFT properties of resonators have been investigated in previous works [6, 7, 14–16], here
we adopt a different point of view related to the previous Lohmann FRFT lens system [17].
Figure 3(a) shows a scheme of the two-mirror resonator, where the corresponding Gaussian
mode is drawn. There are two parameters of interest to characterize the resonator mode:
(1) the location of the beam waist and (2) the value of the Rayleigh range (zR). From
figure 3(a), the waist plane is described by either distance z1 or z2. Other beam parameters—the
spot size at the waist plane (w0) and at the two mirrors (w1 and w2), and the radii of curvature
at the mirrors (R(z1) and R(z2))—can be calculated from the Rayleigh range zR through
equations (3)–(5). A usual derivation of such parameters is obtained by imposing a matching
condition among the wavefronts and mirror curvatures [2, 3].

In this work we propose an alternative derivation, where we focus on the waist-to-waist
propagation (through a mirror reflection). To avoid the use of uncomfortable sign change
conventions for the mirror reflections, and to directly compare with the FRFT lens system
proposed by Lohmann, we consider the two-mirror resonator as an equivalent lens system
drawn in figure 1(b), where the mirrors have been replaced by two lenses with focal lengths
f 1 = R1/2 and f 2 = R2/2, R1 and R2 being the radii of curvature of the mirrors. This figure
clearly shows that the round trip propagation in the resonator can be viewed as the propagation
along two Lohmann type FRFT systems, both with the origin at the beam waist. We next derive
the relation between the geometrical and FRFT parameters of such Lohmann type subsystems.
For that purpose we consider the two following conditions.

(1) The total length between the lenses must be equal to the resonator length: z1 + z2 = L.

(2) The beam width at the three beam waists shown in figure 1(b) must be the same (w0)

since they all correspond to the same Gaussian mode and because of that there is only a
single beam waist propagating in the resonator.
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Imposing the conservation of w0 at the three waists drawn in figure 3(b), and taking into
account equation (13), it is direct to conclude that the two FRFT subsystems must share the
same scaling factor, which in addition must be equal to the Rayleigh range of the Gaussian
mode, i.e.

s1 = s2 = zR. (17)

Therefore, we can highlight the following interesting result: a two-mirror resonator can be
regarded as the cascade of two FRFT systems with identical scaling factor, and the Gaussian
beam mode matching the resonator is defined by a Rayleigh range equal to this FRFT scaling
factor.

Therefore, the ABCD ray matrix of the two FRFT subsystems composing the optical
resonator can be written as

MFRFT(pi, zR) =
⎛
⎝ cos(φi) zR sin(φi)

− 1

zR

sin(φi) cos(φi)

⎞
⎠ , (18)

where i = 1, 2 denote each of the two FRFT subsystems, and where pi denote the corresponding
FRFT orders, which are related to the resonator geometrical parameters through equation (15)
as

cos(φi) = cos
(
pi

π

2

)
= 1 − zi

fi

. (19)

The Rayleigh range of the Gaussian beam can be directly derived from equation (16), being

z2
R = z1 (2f1 − z1) = z2 (2f2 − z2) . (20)

The above equation gives another important connection between the Gaussian beam
propagation and FRFT analysis. The location of the beam waist can be easily derived from the
FRFT analysis by combining this previous scaling matching condition (equation (20)) with
the condition z1 + z2 = L, leading to

z1 = L

2
· 2f2 − L

f1 + f2 − L
; z2 = L

2
· 2f1 − L

f1 + f2 − L
. (21)

These relations provide the location of the beam waist of the Gaussian beam mode of the
resonator in terms of its geometrical parameters (L, f 1 and f 2), and they are usually derived
otherwise by imposing the beam curvature matching condition [2, 3].

The ray matrix (MRT) corresponding to a round trip (RT) propagation in the resonator is
obtained by multiplying those corresponding to the two FRFT subsystems, i.e.

MRT = MFRFT(p2, zR) · MFRFT(p1, zR)

=
⎛
⎝ cos(φ2) cos(φ1) − sin(φ2) sin(φ1) zR[cos(φ2) sin(φ1) + sin(φ2) cos(φ1)]

− 1

zR

[cos(φ2) sin(φ1) + sin(φ2) cos(φ1)] cos(φ2) cos(φ1) − sin(φ2) sin(φ1)

⎞
⎠

=
⎛
⎝ cos(φ) zR sin(φ)

− 1

zR

sin(φ) cos(φ)

⎞
⎠ = MFRFT(p1 + p2, zR), (22)

where φ = φ1 + φ2 = (p1 + p2)π/2. This equation reveals an expected result: the round
trip propagation is another FRFT system, with the same scaling parameter as of each FRFT
subsystem, equal to the Rayleigh range of the corresponding Gaussian beam. The FRFT order
of the round trip is the addition of the orders of each subsystem (p = p1 + p2). But we find it
important to note that this property is obtained since MRT in equation (22) can be written as a
FRFT ray matrix because both FRFT subsystems share the same scaled variables.
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The explicit calculation of the matrix MRT in terms of f 1, f 2 and L reveals that the A

element of the matrix in equation (22) is given by [3]

cos(φ) = 1 − L

(
1

f1
+

1

f2

)
+

L2

2f1f2
. (23)

Real values for the FRFT order after a round trip are obtained if −1 � cos(φ) � +1. This
condition (as was already derived in previous works [6, 16]) is equivalent to the resonators’
stability condition. This is usually analysed in terms of the resonators’ g-parameters, defined
as

gi = 1 − L

2fi

. (24)

Equation (23) can be rewritten as

cos2

(
φ

2

)
= g1g2, (25)

where φ = pπ/2, p being the FRFT order of the round trip propagation. This equation
shows the equivalence among real valued FRFT orders and the resonators’ stability condition
(0 � g1g2 � 1). As pointed out in [16], complex order FRFT correspond to unstable optical
resonators, where propagation fades out due to diffraction losses.

Furthermore, the round trip FRFT order (p) defines some interesting graphic lines in the
stability diagram. Figure 4 shows this diagram, where we have indicated some examples. The
extreme cases g1g2 = 1 correspond to FRFT orders p = 0 or p = 4. These are two special
cases where the field after the round trip is a direct (non-inverted) output image of the input
field. The axes of the diagram, g1 = 0 and g2 = 0, correspond to a FRFT order p = 2, i.e. after
a round trip an inverted output image of the input field is obtained.

Figure 4(a) also shows two (red) curves, which correspond to Fourier transforming systems
(p = ±1), obtained after the condition g1g2 = 1/2. Each round trip in a resonator lying in
these lines provides a Fourier transform between the input and output beams. The condition
g1g2 = 1/2 corresponds to a direct Fourier transformation when the g-parameters are positive,
while it provides an inverse Fourier transform when the g-parameters are negative. Two other
straight lines have been drawn in figure 4(a), corresponding respectively to the symmetric
resonators (diagonal line g1 = g2), and to the half-symmetric resonators (g1 = 1 or g2 = 1),
which are analysed in detail in the next section.

In general, each FRFT subsystem contributes differently to the round trip FRFT order. In
order to calculate this contribution, it is useful to first write the distances z1 and z2 in terms of
the g-parameters as [2]

z1 = L · g2(1 − g1)

g1 + g2 − 2g1g2
; z2 = L · g1(1 − g2)

g1 + g2 − 2g1g2
. (26)

Then, their combination with equation (19) leads to the following expressions of the orders of
each FRFT subsystem (p1 and p2) in terms of the geometrical parameters (g1 and g2):

cos
(
p1

π

2

)
= 1 − 2g2(1 − g1)

2

g1 + g2 − 2g1g2
; cos

(
p2

π

2

)
= 1 − 2g1(1 − g2)

2

g1 + g2 − 2g1g2
. (27)

Figures 4(b) and (c) represent respectively p1 and p2 in the stability diagram, where we draw
them in the range [−2, +2] for the sake of clarity by providing a continuity of the curves. The
FRFT orders in the round trip propagation shown in figure 4(a) are obtained as the pointwise
addition of the FRFT orders in figures 4(b) and (c). These two figures are symmetrical to each
other around the diagonal line corresponding to the symmetrical resonators (g1 = g2).
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Figure 4. (a) Resonator’s stability diagram and identification of FRFT curves. Some well-known
resonators are indicated: P: planar; CF; confocal; SP: spherical; HC: hemi-confocal; HS: hemi-
spherical; SFT: symmetrical direct Fourier transform resonator; SIFT: symmetrical inverse Fourier
transform resonator. The FRFT orders of each subsystem are represented in the diagram in (b) p1
and (c) p2.

Finally, it is interesting to rewrite the Gaussian beam parameters (w0, w1 and w2) in terms
of the g-parameters as [2]

w2
0 = λzR

π
= Lλ

π

√
g1g2(1 − g1g2)

(g1 + g2 − 2g1g2)2
, (28)

w2
1 = Lλ

π

√
g2

g1(1 − g1g2)
, w2

2 = Lλ

π

√
g1

g2(1 − g1g2)
. (29)

These parameters are connected to each FRFT order through equations (27).

4. FRFT analysis of some particular resonators

4.1. Symmetric resonators

We consider next the simplest case: symmetric resonators, i.e. f 1 = f 2. They can be described
by a single geometrical parameter g1 = g2 ≡ g, the beam waist is located at the centre of the
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resonator (z1 = z2 = L/2) and the two FRFT subsystems are identical p1 = p2 = p/2. They
lie on the diagonal line in the stability diagram. Equation (25) reveals the following simple
connection between g and p:

cos2
(
p

π

4

)
= g2. (30)

As g2 continuously varies from 1 to 0, p continuously varies from 0 to 2 (in the positive g
quadrant) and from 4 to 2 (in the negative g quadrant). The well-known planar (P), confocal
(CF) and spherical (SP) resonators correspond to p = 0, 2 and 4, respectively. Two other
symmetrical resonators are marked in figure 4, the symmetrical direct (SDFT) and symmetrical
inverse (SIFT) Fourier transform resonators. They correspond to g = ±1/

√
2, and to orders

p = 1 and p = 3, respectively. In the first case (p = 1), each FRFT subsystem performs
transformations of order p1 = p2 = 1/2, while in the second case (p = 3), they perform FRFT
of orders p1 = p2 = 3/2.

For the symmetrical resonators, equations (28)–(30) provide the following connection
between the Gaussian beam parameters and the round trip FRFT order (expressed in terms of
the phase φ = pπ/2):

w2
0 = Lλ

π
· 1

2 tan(φ/4)
(31)

w2
1 = w2

2 = Lλ

π
· 1

sin(φ/2)
. (32)

Figure 5 shows the evolution of the spot size at the waist (w0) and at the two mirrors (w1 and w2)

as a function of the FRFT order p. The transition from p = 0 to p = 4 corresponds to transit
along the diagonal line drawn in figure 4(a). Figure 5 shows that the w0 monotonically
decreases as p increases, while w1 = w2 has the minimum value for p = 2, and diverges at the
limits p = 0 and p = 4.

4.2. Half-symmetric resonators

Half-symmetric resonators are defined by using one planar mirror. The waist is located on the
planar mirror, and all the FRFT transformation is achieved by the waist-to-waist propagation



Teaching stable two-mirror resonators through the fractional Fourier transform 283

0

1

2

3

4

5

0 0.25 0.5 0.75 1 1.25 1.5 1.75 2

FRFT order (p )

Sp
ot

 s
iz

e

0 = 1

2

Figure 6. Evolution of the beam spot size at the beam waist (w0) and at the two mirrors (w1 and
w2) as a function of the round trip FRFT order in a half-symmetric resonator. The spot size is
represented in units of

√
Lλ/π .

through the other curved mirror. The lines in the stability diagram corresponding to these
resonators (g1 = 1 or g2 = 1) present a null contribution on the order of the FRFT subsystem
with the planar mirror (p1 in figure 4(b) and p2 in figure 4(c)). The round trip propagation can
be regarded as a single Lohmann FRFT system. The resonator stability is described with the
g-parameter corresponding to the curved mirror, which is related to p through equation (25)
which now adopts the form

cos2
(
p

π

4

)
= g. (33)

Finally, the Gaussian beam spot size is now related to p through equations (28) and (29) as

w2
0 = w2

1 = Lλ

π
· 1

tan(φ/2)
, (34)

w2
2 = Lλ

π
· 2

sin(φ)
, (35)

where again φ = pπ/2. Figure 6 shows the evolution of the spot size as a function of the FRFT
order. Now we plot the graph in the range p ∈ [0–2], which corresponds to a transit along
the vertical line g1 = 1 in the stability diagram in figure 4(a). Now, w0 = w1 monotonically
increases with p, while w2 has the minimum value for p = 1, and diverges for p = 0 and
p = 2.

5. Conclusions

In summary, we have provided an analysis of stable two-mirror resonators based on their
analogy as two cascaded propagation–lens–propagation FRFT systems. The complete
derivation is based on the use of a simple ABCD ray matrix formalism, and provides relevant
equations connecting Gaussian resonator mode q-parameter with the FRFT parameters. Two
main conclusions that we identified are (1) the two propagation–lens–propagation FRFT
subsystems composing the resonator must share the same scaling parameter; (2) the Rayleigh
range of the Gaussian beam mode of the resonator also equals this FRFT scaling factor.
Moreover, using the simple mathematics of ray matrices, we reach the same conclusions
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as other previous FRFT studies in which the application to optical resonators may be more
tedious, as we referred to in the text.

Based on this point of view, we analysed the resonators’ stability diagram, and we have
identified different lines defining the different FRFT orders. We derived the equations relating
the spot size of the resonators Gaussian modes to the FRFT orders, which adopt a particular
form depending on the particular configuration. Some very well known particular cases
(symmetrical and half-symmetrical resonators) have been analysed in more detail, providing
analytical relations between the geometrical parameters (g) and the FRFT order (p).

The presented analysis represents a FRFT-based point of view for studying mirror
resonators that complements and relates the usual treatments based either on pure geometrical
optics analysis (stability of the ray trajectories) or on the wave optics analysis (that provides
the modes of the resonators). Thus, this point of view can be very interesting for optics and
photonics courses since it is suitable for teaching and linking optical FRFT systems, Gaussian
beams and resonators. The equations and systems shown in the last two sections can be used
for an excellent theoretical training for learning two-mirror resonators.
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