In this note, we show that the proof of [EGA Théorème III.3.2.1] can be slightly modified to avoid spectral sequences. The statement of the theorem is as follows:

Let Y be a locally Noetherian scheme and $f : X \longrightarrow Y$ a proper morphism. For each coherent \mathcal{O}_X -module \mathcal{F} , the \mathcal{O}_Y -modules $R^q f_*(\mathcal{F})$ are coherent for $q \ge 0$.

The previous results [EGA Théorème III.3.1.2, Corollaire III.3.1.3] reduce the problem to show the following fact:

(1) For each irreducible closed subset Z of X, with generic point z, there exists a coherent \mathcal{O}_X -module \mathcal{F} such that $\mathcal{F}_z \neq 0$ and $R^q f_*(\mathcal{F})$ is coherent for $q \geq 0$.

To prove (1), we can suppose that Z = X is integral, i.e., it suffices to prove:

(2) If X is integral with generic point x, there exists a coherent \mathcal{O}_X -module \mathcal{F} such that $\mathcal{F}_x \neq 0$ and $R^q f_*(\mathcal{F})$ is coherent for $q \geq 0$.

To prove that $(2) \Rightarrow (1)$, we consider Z as reduced (and hence integral) closed subscheme of X and take the corresponding closed immersion $j: Z \longrightarrow X$. Since $f \circ j$ is a proper morphism, we know that there exists a coherent \mathcal{O}_Z -module \mathcal{G} such that $\mathcal{G}_z \neq 0$ and $R^q (f \circ j)_* (\mathcal{G})$ is coherent for $q \ge 0$. Now, the \mathcal{O}_X -module $\mathcal{F} = j_*(\mathcal{G})$ is coherent by [L, 5.1.14 d] and it satisfies (1). The fact that $R^q f_*(\mathcal{F})$ is coherent is a consequence of the equality $R^q (f \circ j)_* (\mathcal{G}) = R^q f_*(j_*(\mathcal{G}))$, which can be proved by using that j_* is an exact functor and the same argument we use for proving (3) below.

Now let us prove (2): By Chow's lemma, there exists a projective and surjective morphism $g: X' \longrightarrow X$ such that $f \circ g: X' \longrightarrow Y$ is also projective. Let $\mathcal{O}_{X'}(1)$ be a very ample sheaf on X' with respect to g. By [H, III.8.8] there exists an integer $n \geq 1$ such that $\mathcal{F} = g_*(\mathcal{O}_{X'}(n))$ is a coherent \mathcal{O}_X -module, the natural map $g^*g_*(\mathcal{O}_{X'}(n)) \longrightarrow \mathcal{O}_{X'}(n)$ is surjective and $R^qg_*(\mathcal{O}_{X'}(n)) = 0$ for $q \geq 1$.

The surjectivity of $g^* \mathcal{F} \longrightarrow \mathcal{F}$ implies that $\mathcal{F}_x \neq 0$. Now it suffices to prove that

(3)
$$R^q f_*(\mathcal{F}) = R^q (f \circ g)_*(\mathcal{O}_{X'}(n)),$$

since the \mathcal{O}_Y -modules on the right are coherent by [H, III.8.8]. (This is the only step of the proof where spectral sequences are used in [EGA].)

We start from an injective resolution of $\mathcal{O}_{X'}(n)$. By definition of derived functors, the fact that $R^q g_*(\mathcal{O}_{X'}(n)) = 0$ means that the sequence remains exact if we apply to it the functor g_* , and so, we get a resolution of \mathcal{F} , which is obviously flasque. Hence, it can be used to calculate the right hand side of (3). (See [H, III.8.3 and III.1.2A].) So, if we apply the functor f_* and take the cohomology groups, we are calculating both sides of (3), and this proves (2).

References

- [EGA] A. Grothendieck, J. Dieudonné, Élements de Géométrie Algébrique, Publ. Math. IHES, 4, 8, 11, 17, 20, 24, 28, 32, 1960–1967.
 - [H] R. Hartshorne, Algebraic Geometry, Grad. Texts Math., 52, Springer, New York–Heidelberg–Berlin, 1977.
 - [L] Q. Liu, Algebraic Geometry and Arithmetic Curves, Oxford Grad. Texts Mat., 6, Oxford University Press, Oxford, 2002.