model{ for(i in 1:nmuni){ for(j in 1:nperiods){ Obs[j,i]~dpois(mu[j,i]) #Modelling of the mean for every municipality and period log(mu[j,i])<-log(Exp[j,i])+mediainter+inter[j]+theta.ST[j,i] #SMR for every municipality and period SMR[i,j]<-100*exp(mediainter+inter[j]+theta.ST[j,i]) #Contribution of the i-th municipality in the j-th period to the deviance D.ij[j,i]<-Obs[j,i]*log(mu[j,i])-mu[j,i]-(Obs[j,i]*log(Obs[j,i])-Obs[j,i]) } #Contribution of the i-th municipality to the deviance D.i[i]<-sum(D.ij[,i]) } #Deviance D<- -2*sum(D.i[]) #Spatio-temporal effect for the first period theta.S[1,1:nmuni]~car.normal(map[],w[],nvec[],prec.spat[1]) for(i in 1:nmuni){ theta.ST[1,i]~dnorm(theta.S[1,i],prec.het[1]) } #Spatio-temporal effect for the subsequent periods for(j in 2:nperiods){ for(i in 1:nmuni){ theta.ST[j,i]~dnorm(theta.S[j,i],prec.het[j]) } theta.S[j,1:nmuni]~car.normal(map[],w[],nvec[],prec.spat[j]) } #Prior distribution for the mean risk for every municipality and period mediainter~dnorm(0,0.01) #Prior distribution for the global time trend inter[1:nperiods]~car.normal(mapT[],wT[],nvecT[],prec.inter) #Prior distribution for the precision parameters in the model prec.inter~dgamma(0.5,0.005) for(j in 1:nperiods){ prec.het[j]~dgamma(0.5,0.005) prec.spat[j]~dgamma(0.5,0.005) } }