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Abstract

Multivariate disease mapping refers to the joint mapping of multiple diseases

from regionally aggregated data and continues to be the subject of considerable at-

tention for biostatisticians and spatial epidemiologists. The key issue is to map mul-

tiple diseases accounting for any correlations among themselves. Recently, Martinez-

Beneito (2013) provided a unifying framework for multivariate disease mapping.
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While attractive in that it colligates a variety of existing statistical models for

mapping multiple diseases, this and other existing approaches are computationally

burdensome and preclude the multivariate analysis of moderate to large numbers

of diseases. Here, we propose an alternative reformulation that accrues substantial

computational benefits enabling the joint mapping of tens of diseases. Furthermore,

the approach subsumes almost all existing classes of multivariate disease mapping

models and offers substantial insight into the properties of statistical disease map-

ping models.
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1 Introduction

Public health professionals, including researchers and administrators are often required to

map rates pertaining to disease mortality, morbidity, incidence etc. over areal units (e.g.

counties, census-tracts) to elicit geographical patterns of disease. When measurements for

multiple diseases are recorded at each areal unit, we need to consider multivariate areal

data models, in order to account for dependence among the multivariate components

as well as the spatial dependence between areal units. Multivariate disease mapping

continues to be the subject of considerable attention for biostatisticians and spatial epi-

demiologists and seeks to estimate the risk for a specific disease and location by utilizing

information from associated diseases as well as neighbouring areal units. This yields more

reliable estimates as compared to traditional univariate disease mapping.

Spatial analysts, therefore, are turning their attention to jointly mapping a large

number of diseases to effectively harness the additional information available from diseases

associated with each other. While Geographical Information Systems (GIS) and related

software can create layers of maps corresponding to each disease separately, technologies to

effectively model several diseases jointly, thereby borrowing information across them, are

difficult to find. One reason for this is that multivariate spatial disease mapping models

become computationally onerous as soon as we have more than two or three diseases.

In fact, most of the existing multivariate disease mapping literature restricts itself to

two or three diseases. One exception is that in Dobra and Lenkoski [1], who tackle 11

diseases but acknowledge that computations will become unmanageable when the number

of geographical units is large. Therefore, computationally feasible multivariate disease

mapping models for a large number of diseases and over a large number of geographical

units are desirable and can considerably enhance the current utility of mortality atlases.

Gaussian Markov random fields (GMRF) [2] underpin much of the statistical models

for disease mapping. Multivariate disease mapping using GMRF’s usually proceed from

one of the following two premises. The first is factor modelling [3, 4, 5, 6], which assumes

the existence of a set of underlying factors determining the spatial distributions of the
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diseases. This approach includes, as special cases, other models proposed in the literature

such as the shared component models [7] or SANOVA [8]. The second premise specifies

multivariate spatial distributions [9, 10, 11, 12, 13]. Here, a valid multivariate joint

distribution is defined for the multiple diseases. This multivariate distribution considers

both spatial dependence within diseases as well as association between diseases. Care

is taken so that the a legitimate (symmetric and positive definite) covariance matrix is

derived to model such dependences.

Recently, Martinez-Beneito [14] offered a general framework for multivariate disease

mapping that encompasses a diverse range of statistical models for mapping multiple

diseases. In particular, this general approach subsumes either of the two approaches

mentioned above. The framework is rich, includes both separable as well as non-separable

covariance structures, and can accommodate different spatial dependence structures with

different covariance matrices within diseases. However, the approach in Martinez-Beneito

[14] is computationally demanding and the number of floating point operations (flops)

rapidly increase with the number of diseases in the analysis. Our current work seeks to

extend the above work to multivariate disease mapping settings where we encounter a

large number of diseases. We do so by developing a simpler and computationally more

convenient form that can handle a considerably large number of diseases even within

conventional Bayesian simulation packages such as WinBUGS [15].

This article is organized as follows. Section 2 briefly discusses the framework in

Martinez-Beneito [14] and proposes a more convenient alternative reformulation. Sec-

tion 3 demonstrates the proposed methodology with some real examples. Here, we test

the numerical performance and compare several models implemented by the proposed

approach. We then describe the results of our proposal when applied to the study of a

large set of causes of mortality. Finally, Section 4 concludes the paper with some further

discussion of the results.
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2 A computationally convenient proposal for multi-

variate disease mapping

A general statistical framework for the multivariate disease mapping problem can be

described as follows. Let Oij and Eij denote, respectively, the number of observed and

expected cases for the i-th geographical unit of study and j-th health outcome, which,

from now on, will refer to a specific disease. The data likelihood assumes that

Oij ∼ Poisson(EijRRij) i = 1, ..., I, j = 1, ..., J

where RRij is the relative risk for the j-th disease in the i-th geographical unit and is

modeled as log(RRij) = µij + θij. The term µij = Xi·βj introduces covariates that could

be having an effect on the log-relative risks. On the other hand, θij’s are a collection

of random effects whose joint distribution specifies how dependence within and between-

diseases is defined. For the remainder of this article, we will consider this framework for

multivariate disease mapping, focusing on the modeling of the θij’s.

2.1 The QR-based multivariate disease mapping model

Let Φ be an I × J matrix of zero-mean Gaussian random effects, whose j-th column φj

has a marginal spatial covariance matrix Σj. Collecting the θij’s into an I × J matrix Θ,

Martinez-Beneito [14] assume that

Θ = Φ
(
Σ̃bP

)>
= ΦP>Σ̃

>
b (1)

where P is some orthogonal matrix and Σ̃b is the lower-triangular factor in the Cholesky

decomposition of the between-diseases covariance matrix Σb. The structure in (1), which

we refer to as the QR-model, is highly general as it includes almost any GMRF-based

multivariate disease mapping models in current use. For example, suppose that our map

comprises I regions and consider a simple I × I binary adjacency matrix W with zeroes

along the diagonal and whose (i, i′)-th off-diagonal entry is 1 if i and i′ are neighbors, and

0 if they are not neighbors. Let D be an I × I diagonal matrix, whose diagonal entries
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contain the the number of neighbors for each region. If each column of Φ has a proper

CAR distribution, i.e., φj
ind∼ N(0, (D − ρW)−1), where ρ is a smoothness parameter

constrained conveniently in (0, 1) to ensure positive definiteness of the covariance matrix,

then (1) can be shown to be equivalent to Case 3 of the so called “coregionalized MCAR”

model in Jin, Banerjee et al. [12]. Furthermore, unlike the coregionalized MCAR models,

(1) may also be implemented in the BUGS language [14] making it accessibile to a much

wider community of users.

In spite of its generality, (1) reveals some potentially unattractive features. First, the

orthogonal matrix P is constructed by a composition of Givens rotation matrices [16].

Each of these rotation matrices are parametrized by a set of angles, say {ψjj′ , 1 ≤ j <

j′ ≤ J}, and effects a rotation by ψjj′ about one of the main axes in the J-dimensional

space defined by the set of diseases in the study. A Uniform prior distribution is usually

assumed for each ψjj′ but this choice does not deliver a Uniform prior distribution on the

set of orthogonal matrices, which would seem to be a natural choice for P. Moreover, the

sensitivity of this specification to the prior distributions on the Givens angles is unclear.

Second, and very pertinent to our current application, the QR-based model suffers

from scalability issues that preclude its implementation for multivariate studies with a

modestly large number of diseases (say more than 5, although it will also depend on the

number of areal units in the application). To be precise, a valuable feature of (1) is that, by

construction, it ensures legitimate probability models but it entails sampling from a Uni-

form distribution on the cone of symmetric, positive-definite matrices. Martinez-Beneito

[14] achieved this by sampling correlations among diseases from a Uniform distribution

between -1 and 1 and subsequently checking for positive-definiteness of the corresponding

covariance matrix. The set of positive-definite matrices resides in a much smaller part of

the [−1, 1]J(J−1)/2 cube when J , the number of diseases considered, is higher [17]. There-

fore, the sampling of these matrices becomes inefficient for the study of a large number of

diseases. Moreover, in a Bayesian setting, a total of J(J−1)/2 Givens angles are drawn at

every step of the Markov chain Monte Carlo (MCMC) algorithm in order to sample from

the random matrix P. Thus, this quantity grows at a quadratic rate with the number of

6



diseases. Finally, the construction of P from the Givens angles also becomes much more

complex when the number of diseases is greater than three or four. Consequently, some

improvements should be made to (1) and its original implementation in order to make it

feasible for studying a large number of diseases.

2.2 The M-based modelling proposal

While the QR decomposition is widely used in statistical modeling and computation, we

provide a brief review in the context of the reformulation of (1) that we seek. Any n×m

real matrix M with n ≥ m can be decomposed as the product M = QR, where Q is

n×m with orthogonal columns and R is m×m upper triangular. If M has full column

rank and we require R to have positive diagonal entries, this QR decomposition of M is

unique [18]. Since M>M = (QR)>(QR) = R>Q>QR = R>R, we can deduce that R

coincides with the upper-triangular factor of the Cholesky decomposition of M>M.

The QR decomposition is relevant because the last two terms in the right hand side of

(1) have exactly the same form as the QR decomposition of a general matrix M, namely,

the product of an orthogonal and an upper triangular matrix. Hence, we refer to (1) as

the QR-based model and we rewrite (1) as

Θ = ΦM , (2)

where M is a nonsingular J × J matrix. We refer to (2) as the M-based model where M

will be understood to be a nonsingular but otherwise arbitrary matrix.

The QR-based and M-based models are equivalent except for differences arising in

their respective prior specifications. In (1), we require a prior distribution for the orthogo-

nal matrix P and Σb, while in (2) a prior distribution for M is sought. These specifications

have repercussions in computing and implementation. The former compels the user to

undertake specific inference for both components of the QR decomposition, i.e. P and

Σ̃
>
b in every iteration of an MCMC algorithm, while the latter enables inference on the

single entity M. Thus, the latter strategy does not require the repeated computation

of either the Cholesky decomposition of the between-diseases covariance matrix or the
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corresponding orthogonal transformation matrix. This has been replaced by finding a

suitable class of priors on M, to which we return shortly.

The j-th column of Θ, say θj, contains the spatially referenced log-risks for the j-th

disease. One can, therefore, interpret (2) as positing the vector of log-risks to be a linear

combination of underlying latent variables whose coefficients form the j-th column of M.

Thus,

θj = φ1m1j + · · ·+ φImIj , (3)

where mij is the (i, j)-th entry in M. Expression (3) suggests that the original QR-model

can also be viewed as a factor model with non-orthogonal loadings (the columns of the

non-orthogonal matrix M) on the different dimensions extracted in the analysis. As a

consequence, we can achieve the same degree of complexity in the modelling following

either a factor modelling approach or a multivariate-distribution-based approach. Put

differently, as just shown, we can regard these seemingly different approaches as two faces

of the same coin.

Expression (3) can also accommodate settings where the number of underlying patterns

is different from the number of diseases. Clearly, the number of patterns could be chosen

to be lower than the number of diseases being modeled. This model can possibly be more

restrictive but will benefit from the parsimony (and perhaps provide comparable or better

fit) if indeed a lower number of factors could fully explain the diseases in the study. On

the other hand, we could also consider a number of underlying factors higher than the

number of diseases. This setting corresponds to the convolution process of Besag, York

and Mollié [19] in univariate disease mapping problems. In our multivariate setting, the

use of more underlying factors than diseases could improve the fit when the family of

spatial distributions considered for the columns of Φ was not appropriate to describe the

spatial pattern of one (or some) of the diseases studied. In that case, several columns of Φ,

corresponding to spatial patterns of different features (such as proper CAR distributions

of different correlation parameters), could be used to model the spatial distribution of the

disease(s) providing a more flexible class of spatial distributions (a mixture model) than

the original prescription for modeling the columns of Φ.
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2.3 Some theoretical properties of the M-based model

As mentioned earlier, the QR-based and M-based models are equivalent, so their model

fitting properties are essentially the same. They are guaranteed to be well defined [14]

and they lead to the same covariance structure but with alternate parametrizations. Nev-

ertheless, a few remarks on the covariance structure are warranted. If different covariance

matrices, say {Σ1, ...,ΣJ} were used to define the spatial structure for the columns of Φ,

then the covariance matrix of vec(Θ) yields

(M> ⊗ II)diag(Σ1, . . . ,ΣJ)(M⊗ II)

= (R> ⊗ II)(Q
> ⊗ II)diag(Σ1, . . . ,ΣJ)(Q⊗ II)(R⊗ II)

= (R> ⊗ II)Block

( J∑
k=1

qikqjkΣk

)J

i,j=1

 (R⊗ II) , (4)

where Q and R denote the elements of the QR decomposition of M and qij denotes

the (i, j)-th element of Q. Note that in terms of the QR-based model Q = P> and

R = Σ̃
>
b . The resulting covariance structure coincides with the most general model in

Martinez-Beneito [14] and, if each of the columns of Φ follow independent proper CAR

distributions with different parameters, with the Case 3 coregionalized MCAR model in

Jin, Banerjee et al. [12].

Expression (4) reveals the effect of each of the constituent matrices on the general

covariance matrix. The matrix Q transforms the J original columns in Φ into J linear

combinations of those columns. Each column of the resulting matrix has a covariance

matrix with the same structure:
∑J

k=1 q
2
ikΣk, which is a convex linear combination of

the covariance matrices of the columns of Φ. On the other hand, the off-diagonal blocks

in that matrix,
∑J

k=1 qikqjkΣk (the spatial covariances) are just a linear combination of

the original covariance matrices whose coefficients add up to 0. For Σ1 = · · · = ΣJ

the orthogonality of Q makes those blocks exactly equal to 0. Instead, if these matrices

were different, all of the Σj’s would reproduce a spatial structure based on the same

geographical distribution, so these blocks would not be expected to be very different to

0. Therefore, Q broadens the spatial structure of the columns in Φ defining a set of
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weakly dependent patterns of richer spatial structures than the original columns in Φ.

Finally, the R matrix is in charge of inducing dependence between the weakly dependent

enhanced spatial patterns that we have just built using Q. The combined effect of Q and

R is executed through M.

We now turn to prior distributions for M. As already mentioned both the QR-based

and M-based models define identical multivariate spatial distributions. Therefore, the

only possible source of discrepancy between them may be the prior specifications for M

in the M-based model and for (P,Σb) in the QR-based model. Can we, then, establish a

correspondence between a prior distribution for M and some equivalent prior distributions

for (P,Σb)? We now explore this.

As alluded to earlier, the entries in M can be regarded as coefficients in the regression

of the log-relative risks on the (unknown) underlying patterns captured in Φ. Therefore, it

seems reasonable to put independent vague prior distributions on them, such as improper

Uniform or zero-centered Normal priors with a large variance. Let us assign N(0, σ2)

priors to the entries in M and consider the improper Uniform prior as a limiting case (σ2

tending to infinity) of this setting. Then,

Σb = R>R = R>Q>QR = M>M ∼ Wishart(J, σ2IJ) .

Moreover, since the elements of M are i.i.d. zero-centered Normal random variables,

Q will follow a Haar distribution, i.e. a Uniform distribution on the set of orthogonal

matrices (page 169 in Gentle [16]). Therefore, an M-based model with zero-centered

vague Normal prior distributions for every entry is equivalent to the QR-based model

with a Uniform (Haar) prior distribution on Q and a Wishart(J, σ2IJ) distribution for

the covariance between diseases.

An alternative specification treats the entries in M as independent Gaussian random

effects. Now σ is assigned a vague Uniform prior between 0 and a large number. This

is especially attractive for studying a large set of mortality causes so that M has a large

number of entries (typically hundreds). Modeling them as random effects allows borrow-

ing of strength (shrinkage) from a common distribution and delivers improved inference.
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Hence, we explore two different M-based models – one that treats the elements in M as

fixed effects and another that treats them as random effects.

Finally, we remark that the M-based model enables inference for some parameters in

the model but not for others. For example, while the log-relative risks in the model (Θ)

or the covariance matrix between diseases (Σb = M>M) can be identified, inference for

Φ or M is precluded because for any orthogonal matrix U we have

Θ = ΦM = ΦIM = (ΦU)(U>M) = Φ∗M∗ ,

where Φ∗ = ΦU is composed of a set of spatial effects and M∗ = U>M is also a general

J × J matrix. Hence, every orthogonal transformation of the columns of Φ and the

equivalent transformation of the rows of M yields an alternative decomposition of the

log-relative risks Θ, implying lack of identifiability. Therefore, we avoid specific inference

on Φ and M and treat them as data augmentation tools to induce dependence on the

log-relative risks. This would be similar to the label switching problem in Bayesian

mixture models [20], where the posterior distribution is multimodal with one mode for any

permutation of the components of the mixture. This estimation problem does not preclude

the estimation of the mixture model because the distribution arising from the mixture is

perfectly identifiable. Nevertheless, the identification of their components requires much

more care and may require the use of some specialized techniques [20]. Our case would

be similar, since the separate estimation of Φ and M would be problematic but inference

on ΦM is legitimate because its product is identifiable. Therefore, if no specific MCMC

post-processing procedure is used to identify both Φ and M, specific inference on these

two matrices should be avoided.

3 Analysis of Comunitat Valenciana’s mortality data

We now implement and assess the M-based model in studying the geographical distribu-

tion of mortality in Comunitat Valenciana, one of the seventeen regions that constitute

Spain, with around 5.1 million inhabitants in 2012. The administrative unit used for this
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study is the municipality, a division ranging from 21 to about 750.000 inhabitants per

unit. A total of 540 municipalities make up Comunitat Valenciana. The mortality data

used here correspond to the Spatio Temporal Mortality Atlas of Comunitat Valenciana

[21] comprising the period 1987-2006. In the said atlas, a total of 46 different causes of

mortality were independently studied (23 for men and 23 for women). We illustrate the

benefits of multivariate modelling for this dataset.

An added attraction of our M-based model is its easy MCMC implementation in

the BUGS language. All the models we consider here were run on WinBUGS [15] and the

available code is available from http://www.uv.es/~mamtnez/Mmodel.html. For each

model, we ran three chains up to 30, 000 iterations per chain. Of these, the first 5, 000

were discarded as burn-in and the resulting chains were thinned to retain one of every 75

iterations due to the large amount of variables to be saved (11,340 in our largest setting).

Therefore, 1, 002 (334 × 3) iterations were saved. The chains used for every model were

run in parallel to expedite computations. Instead of computing all three chains within a

single call to WinBUGS, we made three different parallel calls (one for each chain) using an

R [22] function developed for this purpose. Thus, each chain was run in a different core

of the processor(s) instead of running all three in a single core (as is the default WinBUGS

call), speeding up simulations in a factor close to the number of chains run. Convergence

was assessed by means of visual inspection of the history of the simulated chains, the

Brooks-Gelman-Rubin statistic and the effective sample size. Convergence was checked

for the Deviance, the vector µ and the elements of matrix Θ. The simulated chains

yielded virtually independent posterior draws with first-order autocorrelations very close

to 0 and effective sample sizes close to 1000, the number of iterations saved.

In the next subsection we analyze the Comunitat Valenciana’s mortality data using

the M-based model and assess its performance. We explore different sets of causes of

mortality in order to illustrate the modelling possibilities and the performance of several

models within our framework. Subsequently, in the second subsection, we illustrate the

performance of the model on the analysis of a relatively large dataset that considers the

joint study of 21 causes of mortality altogether for the whole Comunitat Valenciana (21
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causes · 540 municipalities=11,340 observations). We also explore the feasibility of the

random/fixed effects modeling of matrix M on datasets of this size.

3.1 Performance of the M-based model

We carried out an extensive analysis on Comunitat Valenciana’s mortality data in order

to explore some features of the M-based model. First, we have compared the computing

times for several QR and M-based models. We have carried out several studies with

different numbers of diseases for these two approaches. The diseases analyzed are not

listed since these are less relevant for this part of the study. The spatial structure used

for all these models was a proper CAR distribution with different spatial correlation

parameters.

[PUT TABLE 1 HERE]

We have run the QR-based model only for the study of 2 and 3 diseases since some

practical problems were found when implementing that model for more diseases. Even

for the model with just four causes of mortality, WinBUGS rejected the expression of the

Q orthogonal matrix as ‘too complex’ to be run. Thus, for 4 or more diseases, it would

be necessary to use an alternative software or an alternative implementation to carry out

the inference. Nevertheless, even for 2 and 3 diseases, Table 1 clearly reveals scalability

problems for the QR-based model in comparison to the M-based alternative. For the

QR-based model, analyzing 2 or 3 diseases increases computing times by 162% while

for the M-based model that increase is ‘just’ 97%. Computing times for the M-based

model seem to follow a quadratic trend. For these models, the number of elements to be

estimated in the M matrix is also a quadratic function of the number of diseases. Hence,

the sampling of these values could be consuming a substantial part of the computing time

for the MCMC algorithm. In any case, computing times seem affordable when the number

of diseases are in the twenties, thereby eliciting the importance and practical benefits of

the M-based model in problems of such dimensions.
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Besides, we have carried out a second analysis on Comunitat Valenciana’s mortality

data. We have randomly chosen 7 different causes of mortality for men. The studied

causes are listed as {Oral Cancer, Larynx Cancer, Cirrhosis, Bladder Cancer, Stomach

Cancer, Colon Cancer, Rectum Cancer}, although this selection should not have any large

effect on the final results. We have implemented several M-based models for these causes

of death in order to illustrate its modelling possibilities and to gain some insight on the

effect of those modifications. As already mentioned the M-based proposal can also be seen

as latent factor modelling and, therefore, different numbers of factors could be considered.

These models would arise from the modification of the number of rows in the M matrix

and the number of columns in Φ. For our analysis, we have explored model performance

of the M-based model for factors varying between 2 and 9. We have also implemented a

BYM spatial structure [19] of 7 underlying factors as an alternative spatial structure to

that used in the said proper CAR factor modelling. This model assumes the existence of

14 underlying patterns, 7 spatially heterogeneous and 7 spatially structured with Intrinsic

CAR distributions. In this case, the corresponding M matrix mixes these 14 patterns to

induce dependence between diseases. Finally, a set of 7 independent BYM models has

also been implemented in order to assess the improvement achieved by following the

multivariate approach. Table 2 shows the Deviance Information Criterion (DIC) model

selection criteria [23] corresponding to every one of these models.

[PUT TABLE 2 HERE]

Table 2 shows some interesting results. Factor models with a low number of underlying

spatial effects are clearly poorer than those with a number of factors close to the number

of diseases being studied. This suggests avoiding the use of low-dimensional factor models

for multivariate modelling, even for datasets with a moderate number of diseases. On the

other hand, the M-based model appears to be a convenient option as it enables the fitting

of spatial factor models with several factors, when these models have a lot of practical

problems to be fitted. Table 2 also suggests the use of as many proper CAR underlying

factors as diseases. Nevertheless, the BYM spatial structure (combining 14 underlying
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patterns) shows a better fit than the proper CAR model with 7 factors. This suggests

that the combination of several underlying factors, corresponding to different distribution

families, may improve the fit in general terms. As a consequence, the use of wider classes

of spatial processes yielding more general and flexible spatial distributions [24] seems a

promising way to improve the fit also in multivariate models.

Finally, the DIC of the disease-independent model is about 150 units higher than the

multivariate BYM model, which shows considerable improvement from sharing informa-

tion between diseases. In this regard, Figure 1 shows the geographical patterns fitted for

the BYM independent modelling (upper row) and the BYM multivariate M-based model

(lower row) for Cirrhosis, Bladder Cancer and Rectum Cancer, respectively. Correlations

between the effects for these diseases were 0.94, 0.87 and 0.70, respectively, the maximum,

median and minimum correlations attained for all 7 diseases in the study. These patterns

from the multivariate study are less smoothed and depict geographical risk variations in

a more precise way than those from the univariate models. For some diseases, such as

Rectum Cancer, the improvement attained from multivariate modelling is particularly

pronounced.

[PUT FIGURE 1 HERE]

3.2 Multivariate study of mortality in men

We turn to the feasibility of the M-based model for high-dimensional multivariate disease

mapping, the original motivation of this work. Multivariate disease mapping with more

than four or five diseases modelled jointly have rarely been explored due to the obvious

computational bottlenecks. Here we consider multivariate modelling of mortality along

Comunitat Valenciana, a large region comprising 540 municipalitites, for 21 different

causes of mortality. These correspond to all the male mortality causes studied in the

Spatio-temporal Mortality Atlas of Comunitat Valenciana [21], except for All Cancers

and Colorectal Cancer, which are simple combinations of other causes in the study. We

also carried out an alternative study of the 12 tumoural mortality causes of the 21 previous
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causes. This second study was intended to be an example including a more homogeneous

set of diseases than the 21 original ones, where the multivariate analysis could make

even more sense. Computing times for these models were already included in Table 1 to

illustrate the scalability of the M-based model.

Table 3 shows DICs for both studies and for both fixed and random effects modeling of

M, for comparative purposes. For the cancer-specific mortality analysis (12 diseases), the

random effects model clearly outperforms the one with fixed effects in terms of DIC.

However, for the general mortality analysis (21 diseases) one model does not clearly

outperform the other. These results point out that if the diseases being studied are

similar in some sense, it may be worth modelling the elements in matrix M as random

effects. That analysis could exploit the similarity among diseases and thus improve the fit

of the models. On the other hand, if the diseases in the study are more heterogeneous, the

benefit of considering the elements of M as random effects is not so evident. Nevertheless,

the main estimates (Θ and Σb) derived from both models are similar and no important

discrepancy can be detected on them, from a visual inspection (results not shown).

[PUT TABLE 3 HERE]

Figure 2 shows, in its lower-triangular side, the posterior mean of the correlations

between diseases for all types of cancer in the 12-disease study (right and left oriented

ellipses hold for positive and negative correlations respectively), derived from the posterior

draws of Σb = M>M. The upper-triangular portion shows the 80% posterior credible

intervals for all these correlations. We find a large proportion of significant correlations

whose credible intervals do not include 0. For all those pairs of variables, a common

underlying risk factor may exist that determines the geographical pattern of both diseases.

All the correlations show posterior means higher than 0, but with very different values.

Thus, if one of the municipalities of Comunitat Valenciana has a high mortality risk for

one of the tumours studied, it will tend to also have high risks for the remainder of

tumours. We can also notice that those pairs of diseases with a higher correlation in

Figure 2 are: Lung/Bladder, Lung/Oral, Larynx/Oral, Bladder/Oral, respectively, with
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correlations higher than 0.6. Most of the deaths for these diseases may be attributed to

tobacco consumption; therefore, these results seem to be very reasonable.

[PUT FIGURE 2 HERE]

Results for the 21-diseases study are not shown due to space limitations, although

they are reported as supplementary material to the paper. In the 21-diseases version

of Figure 2 it can be appreciated that correlations between cancers for that study are

similar to those in the 12-diseases study, standing out the same pairs of diseases for both

of them (Lung/Bladder, Lung/Oral, Larynx/Oral, Bladder/Oral and so on). Moreover,

COPD and Pneumonia, also show high correlations in general with all causes of mortality,

mainly with cancer causes. This fact reinforces the idea that the common geographical

pattern previously evidenced may be heavily determined by tobacco consumption. Finally

Atherosclerosis and Other Cardiovascular Causes are causes showing lower correlations

with the rest, which may not be surprising since these two diseases stand out as aetiolog-

ically different from the others in the study.

4 Conclusions

This paper proposes an efficient reparameterization of the multivariate modelling pro-

posal in Martinez-Beneito [14]. The modelling proposed can be implemented in WinBUGS

yielding an efficient implementation and a much simpler coding within this (and other)

software(s), avoiding the use of Givens angles or a specific modelling of orthogonal matri-

ces. Nevertheless, the benefits of this formulation go beyond these practical issues. The

M-based modelling with a Gaussian M matrix has been found to be equivalent to the

QR based proposal with a Uniform distribution on Q and a Wishart distribution for the

covariance matrix between diseases. Therefore, the prior distribution of Q, implicit in

this approach, seems to be much more reasonable than that arising from a composition

of Givens angles, which is difficult to model or to assess its influence on the final results.
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Moreover, the modeling framework is versatile enough to subsume a number of specific

multivariate disease mapping models that exist in the literature, as discussed in Section 2.

The primary contribution of this paper, we feel, is that it enables the analysis of

multivariate geographical datasets with a moderately large set of causes of mortality

(tens of causes altogether). Such multivariate analysis will accommodate two separate

goals. First, it will allow us to study diseases of low mortality for which univariate studies

would yield a poor depiction of the geographical distribution of the risk of that disease.

In these cases the multivariate dependence with a large set of supplementary diseases

will make the estimated spatial risk surfaces much more meaningful and rich. Second,

multivariate studies will allow us to determine relationships between diseases highlighting

the existence of common risk factors or unknown associations between some diseases. This

research is anticipated to make these goals possible for larger datasets, leading to richer

studies and richer epidemiological conclusions. We expect this proposal will enable a new

kind of mortality studies/atlases jointly considering a large set of causes of mortality as

a whole, instead of as unconnected patterns without any relationship.
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[24] Botella-Rocamora P, López-Qúılez A, Martinez-Beneito MA. Spatial moving average

risk smoothing. Statistics in Medicine 2012; doi:10.1002/sim.5704.

21



Model Computing time Computing time

QR-based model M-based model

2 44.8 8.1

3 117.4 16.0

4 - 26.5

5 - 34.4

7 - 73.5

10 - 145.1

12 - 217.5

21 - 823.0

Table 1: Computation times, in minutes, for the QR and M-based model for different

numbers of diseases.

Model DIC

Factor model with 2 factors (proper CAR) 13941.49

Factor model with 3 factors (proper CAR) 13883.61

Factor model with 4 factors (proper CAR) 13786.78

Factor model with 5 factors (proper CAR) 13781.26

Factor model with 6 factors (proper CAR) 13772.47

Factor model with 7 factors (proper CAR) 13766.58

Factor model with 8 factors (proper CAR) 13767.62

Factor model with 9 factors (proper CAR) 13767.71

Factor model with 7 factors (BYM) 13737.37

Independent modelling (BYM) 13890.08

Table 2: DIC model selection criteria for different M-based models.
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DIC (dataset with DIC (dataset with

Model 12 mortality causes) 21 mortality causes)

Fixed effects model 24090.0 48282.4

Random effects model 24071.5 48282.8

Table 3: DICs for fixed and random effects models, for the studies including 12 and 21

diseases.
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Figure 1: BYM independent modelling (upper row) and M-based BYM multivariate

modelling (lower row) for Cirrhosis, Bladder Cancer and Rectum Cancer. Maps depict

the posterior mean of relative risks for every municipality.
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Figure 2: Correlations between geographical mortality patterns for the study considering

just the cancer-related causes. Lower left-triangular side shows posterior means of those

correlations. Upper right-triangular side shows 80% Posterior Credibility Intervals for

that same correlations.
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