model { # Likelihood for (i in 1:Nareas) { for (k in 1:Ndiseases) { Y[i, k] ~ dpois(mu[i, k]) log(mu[i, k]) <- log(E[i, k]) + alpha[k] + S[i,k] RR[i,k] <- exp(alpha[k] + S[i,k]) } } for (i in 1:Nareas){ for(k in 1:Ndiseases){ S[i,k]<-inprod(tDelta[1:k,i],CholDis[k,1:k]) } } for(j in 1:Ndiseases){tDelta[j,1:Nareas]~car.l1(adj[], weights[], num[],1)} #Between-diseases structure #Cholesky triangle of a general correlation matrix #diagonal CholDis[1,1]<-sigma[1] for(j in 2:Ndiseases){ diag[j]<-pow(sigma[j],2)-inprod(CholDis[j,1:(j-1)],CholDis[j,1:(j-1)]) CholDis[j,j]<-sqrt(abs(diag[j])) } #Lower triangle #First column for(i in 2:Ndiseases){CholDis[i,1]<-sigma[i]*roDis[i,1]} #Rest of columns for(j in 2:(Ndiseases-1)){ for(i in (j+1):Ndiseases){ CholDis[i,j]<-(roDis[i,j]*sigma[i]*sigma[j]-inprod(CholDis[i,1:(j-1)],CholDis[j,1:(j-1)]))/CholDis[j,j] } } for(j in 1:Ndiseases){roDis[1,j]<-0} for(i in 2:Ndiseases){ for(j in 1:(i-1)){roDis[i,j]~dunif(-1,1)} for(j in i:Ndiseases){roDis[i,j]<-0} } #Condition of being positive defined the covariance matrix uno<-1 uno~dbern(condition) condition<-step(sum(subcondition[2:Ndiseases])-(Ndiseases-1)) for(j in 2:Ndiseases){subcondition[j]<-step(diag[j])} # Other priors for (k in 1:Ndiseases) { alpha[k] ~ dflat() sigma[k] ~ dunif(0,10) } }