model { # Likelihood for (i in 1:Nareas) { for (k in 1:Ndiseases) { Y[i, k] ~ dpois(mu[i, k]) log(mu[i, k]) <- log(E[i, k]) + alpha[k] + S[i,k] RR[i,k] <- exp(alpha[k] + S[i,k]) } } for (i in 1:Nareas){ S[i,1]<-Het[1,i]*CholDis1[1,1]+Spatial[1,i]*CholDis2[1,1] for(k in 2:Ndiseases){ S[i,k]<-inprod(Het[1:k,i],CholDis1[k,1:k])+inprod(Spatial[1:k,i],CholDis2[k,1:k]) } } for(j in 1:Ndiseases){ Spatial[j,1:Nareas]~car.normal(adj[], weights[], num[],1) for(i in 1:Nareas){Het[j,i]~dnorm(0,1)} } #Between-diseases structure #Cholesky triangle of a general correlation matrix #diagonal CholDis1[1,1]<-sdHet[1] CholDis2[1,1]<-sdSpatial[1] for(j in 2:Ndiseases){ diag1[j]<-pow(sdHet[j],2)-inprod(CholDis1[j,1:(j-1)],CholDis1[j,1:(j-1)]) CholDis1[j,j]<-sqrt(abs(diag1[j])) diag2[j]<-pow(sdSpatial[j],2)-inprod(CholDis2[j,1:(j-1)],CholDis2[j,1:(j-1)]) CholDis2[j,j]<-sqrt(abs(diag2[j])) } #Lower triangle #First column for(i in 2:Ndiseases){ CholDis1[i,1]<-sdHet[i]*roDis[i,1] CholDis2[i,1]<-sdSpatial[i]*roDis[i,1] } #Rest of columns for(j in 2:(Ndiseases-1)){ for(i in (j+1):Ndiseases){ CholDis1[i,j]<-(sdHet[i]*sdHet[j]*roDis[i,j]-inprod(CholDis1[i,1:(j-1)],CholDis1[j,1:(j-1)]))/CholDis1[j,j] CholDis2[i,j]<-(sdSpatial[i]*sdSpatial[j]*roDis[i,j]-inprod(CholDis2[i,1:(j-1)],CholDis2[j,1:(j-1)]))/CholDis2[j,j] } } for(j in 1:Ndiseases){roDis[1,j]<-0} for(i in 2:Ndiseases){for(j in 1:(i-1)){roDis[i,j]~dunif(-1,1)} for(j in i:Ndiseases){roDis[i,j]<-0}} #Condition of being positive defined the covariance matrix uno<-1 uno~dbern(condition) condition<-step(sum(subcondition[2:Ndiseases])-(Ndiseases-1)) for(j in 2:Ndiseases){subcondition[j]<-step(diag1[j])} # Other priors for (k in 1:Ndiseases) { alpha[k] ~ dflat() sdSpatial[k] ~ dunif(0,10) sdHet[k] ~ dunif(0,10) } }