model { # Likelihood for (i in 1:Nareas) { for (k in 1:Ndiseases) { Y[i, k] ~ dpois(mu[i, k]) log(mu[i, k]) <- log(E[i, k]) + alpha[k] + tDelta[k,i] RR[i,k] <- exp(alpha[k] + tDelta[k,i]) } } for(j in 1:Ndiseases){ tDelta[j, 1:Nareas]~car.proper(ceros[],C[],adj[],num[],M[],sigma[j],gamma[j]) gamma[j]~dunif(gamma.inf,gamma.sup) } for(i in 1:Nareas){ceros[i]<-0} gamma.inf<-min.bound(C[],adj[],num[],M[]) gamma.sup<-max.bound(C[],adj[],num[],M[]) # Other priors for (k in 1:Ndiseases) { alpha[k] ~ dflat() sigma[k] ~ dunif(0,10) } }