model { # Likelihood for (i in 1:Nareas) { for (k in 1:Ndiseases) { Y[i, k] ~ dpois(mu[i, k]) log(mu[i, k]) <- log(E[i, k]) + alpha[k] + S[i,k] RR[i,k] <- exp(alpha[k] + S[i,k]) } } for (i in 1:Nareas){ for(k in 1:Ndiseases){ S[i,k]<-inprod(tDelta[1:nAxes,i],MatDis[1:nAxes,k]) } } for(j in 1:nAxes){ tDelta[j,1:Nareas]~car.proper(ceros[],C[],adj[],num[],M[],1,gamma[j]) gamma[j]~dunif(gamma.inf,gamma.sup) } for(i in 1:Nareas){ceros[i]<-0} gamma.inf<-min.bound(C[],adj[],num[],M[]) gamma.sup<-max.bound(C[],adj[],num[],M[]) #Between-diseases structure #factor (one-factor) structure matrix for between-disease covariance #diagonal MatDis[1,1]~dunif(0,10);MatDis[1,2]~dunif(-10,10);MatDis[1,3]~dunif(-10,10) MatDis[2,1]~dunif(0,10);MatDis[3,2]~dunif(0,10);MatDis[4,3]~dunif(0,10) MatDis[2,2]<-0;MatDis[2,3]<-0;MatDis[3,1]<-0;MatDis[3,3]<-0;MatDis[4,1]<-0;MatDis[4,2]<-0 # Other priors for (k in 1:Ndiseases) { alpha[k] ~ dflat() } }