model { # Likelihood for (i in 1:Nareas) { for (k in 1:Ndiseases) { Y[i, k] ~ dpois(mu[i, k]) log(mu[i, k]) <- log(E[i, k]) + alpha[k] + S[i,k] RR[i,k] <- exp(alpha[k] + S[i,k]) } } for (i in 1:Nareas){ for(k in 1:Ndiseases){ S[i,k]<-sigma[k]*inprod(tDelta[1:k,i],MatDis[1:k,k]) } } for(j in 1:Ndiseases){ tDelta[j, 1:Nareas]~car.proper(ceros[],C[],adj[],num[],M[],1,gamma[j]) gamma[j]~dunif(gamma.inf,gamma.sup) } for(i in 1:Nareas){ceros[i]<-0} gamma.inf<-min.bound(C[],adj[],num[],M[]) gamma.sup<-max.bound(C[],adj[],num[],M[]) #Between-diseases structure MatDis[1,1]<-1/sqrt(3); MatDis[2,1]<-1/sqrt(3); MatDis[3,1]<-1/sqrt(3) MatDis[1,2]<-1/sqrt(2); MatDis[2,2]<- -1/sqrt(2); MatDis[3,2]<-0 MatDis[1,3]<--1/sqrt(6); MatDis[2,3]<- -1/sqrt(6); MatDis[3,3]<-2/sqrt(6) #Other priors for (k in 1:Ndiseases) { alpha[k] ~ dflat() sigma[k] ~ dunif(0,10) } }