model{ for(k in 1:(nGroups[4])){#Sex for(j in 1:(nGroups[3])){#Disease for (p in 1:(nGroups[2])){#Period for(i in 1:(nGroups[1])){#Municipality Obs[i,p,j,k]~dpois(mu[i,p,j,k]) log(mu[i,p,j,k])<-log(Expect[i,p,j,k])+alpha[p,j,k]+S1234[i,p,j,k] RR[i,p,j,k]<-exp(alpha[p,j,k]+S1234[i,p,j,k]) S12[i,p,j,k]<-inprod2(tS1[k,,p,i],structure3[,j]) S123[i,p,j,k]<-inprod2(S12[i,,j,k],structure2[,p,j]) S1234[i,p,j,k]<-inprod2(S123[i,p,j,],structure4[,k]) }#Fin i alpha[p,j,k]~dflat() tS1[k,j,p,1:(nGroups[1])]~car.proper(ceros[],C[],adj[],num[],M[],1,gamma) }#Fin p }#Fin j }#Fin k for(l in 1:(nGroups[1])){ceros[l]<-0} gamma.inf<-min.bound(C[],adj[],num[],M[]) gamma.sup<-max.bound(C[],adj[],num[],M[]) gamma~dunif(gamma.inf,gamma.sup) #Dimension 2: Period (different by Disease) #Definition structure2 ->period (Cholesky Matrix for autoregressive process) #Traspuesta de la triangular inferior: triangular superior for (j in 1:(nGroups[3])){ for (pc in 1:(nGroups[2])){ #First Row structure2[1,pc,j]<-pow(ro[j],pc-1)*pow((1-ro[j]*ro[j]),-0.5) #Rest of columns for (pr in 2:(nGroups[2])){ structure2[pr,pc,j]<-step(pc-pr)*pow(ro[j],pc-pr) } } ro[j]~dunif(-1,1) } #Dimension 3 (Disease): for (i in 1:(nGroups[3])){ for (j in 1:(nGroups[3])){ structure3[i,j] ~ dnorm(0,prec) } } #Dimension 4 (Sex): for (i in 1:(nGroups[4])){ for (j in 1:(nGroups[4])){ structure4[i,j] ~ dnorm(0,prec) } } prec<-pow(sdstruct,-2) sdstruct~dunif(0,100) }