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Abstract

This paper introduces SMARS as a new way of carrying out disease mapping.

This proposal applies the moving average ideas of time series theory to the spatial

domain, indeed, it makes use of a spatial moving-average process of unknown order

to define dependence on the risk of ocurrence of a disease. Correlation of the risks

for different locations will be a function of m values (m being unknown) providing

a rich class of correlation functions that may be reproduced by SMARS. Moreover,

the distance (in terms of neighborhoods) that two units should be located to make

the correlation of their risks 0 is a quantity to be fitted by the model, therefore

reproducing patterns which range from spatially-independent to long-range spatially

dependent.

A theoretical study of the correlation structure induced by SMARS will also be

shown, illustrating the wide variety of correlation functions that this proposal is

able to reproduce. Two applications of SMARS to both simulated and real datasets

will also be presented. This application will show SMARS to be a competitive dis-

ease mapping model when compared with alternative proposals which have already
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appeared in the literature. Finally, the application of SMARS to the study of mor-

tality for 21 causes of death in Comunitat Valenciana will allow us to identify some

qualitative differences in the patterns of those diseases.

1 Introduction

Disease mapping has undergone rapid development in recent years. Original disease map-

ping models have been extended to account for the temporal variability of risks in every

region [1, 2], to include possible dependence among the risks of different diseases [3, 4]

and to smooth other health indicators which are not necessarily risks of the presence of

a disease [5, 6]. Among these extensions, and for most of the disease mapping literature

in general, Gaussian Markov Random Fields [7] (GMRF) have been the most successful

tools for defining dependence relations among regions. Nevertheless, a wide collection of

models have been proposed with the purpose of defining new dependence structures which

obtain, if possible, better smoothing properties than those of GMRF. These alternative

proposals have been based on different modelling tools like, for example, tessellations

of the region under study [8, 9], zero-inflated processes [10], hidden Markov models [11],

mixtures of constant-risk components [12], parametric kernel smoothing [13], geostatistics

[14, 15], Wombling [16, 17], Dirichlet processes [18], among others. That is, the number

of tools used to describe spatial dependence in disease mapping studies is quite large

but, for some reason, the use of GMRF continues to be the main way of achieving this

goal. The capability of GMRF to be easily integrated into more complex models and its

availability in standard Bayesian simulation software must surely be the main reason why

these models have been the default tool in risk smoothing studies. Nevertheless, we are

not sure if this is reason enough to justify the situation.

Disease mapping studies usually consider observed counts of a disease aggregated into

a set of geographical locations. This set usually has an irregular structure, in contrast to

time series studies where data are arranged in a sequential order in a unique dimension.

In any case, we can consider any grid (either regular or irregular) in disease mapping
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studies as a bidimensional generalization of the temporal structure in time series studies.

Conversely, we can consider any time series of counts as a particular case of a disease

mapping problem on a linear unidimensional grid. Therefore, the methods used in any

one of these fields could be adapted to the other, providing new tools to model dependence

between observations. This parallelism is going to be the starting point of this paper,

where we will propose a moving average-based spatial process of unknown order for disease

mapping studies.

This paper is organized as follows. Section 2 introduces some issues regarding the de-

pendence structures induced by GMRF, motivating the ideas that we are now introducing

in this paper. Section 3 contains the theoretical formulation of the Spatial Moving Av-

erage Risk Smoothing model (SMARS from now on). Section 4 makes an analysis of the

dependence structure defined by SMARS and compares it with other smoothing proposals

appearing in the literature. Section 5 gives the results of the application of the model to

various datasets and finally Section 6 concludes with a brief discussion, including lines of

future work.

2 Motivation

To illustrate the performance of the dependence structure defined by some GMRF we are

going to consider several linear lattices of different lengths, as would be the case with any

time series. For these regions, we will consider that any unit in the lattice has just two

neighbours (the previous and posterior units), excepting the first and last observations

which have just one neighbour (the second and penultimate observations, respectively).

Intrinsic Conditional AutoRegressive distributions (ICAR) are certainly the most com-

mon GMRF in disease mapping applications. These distributions, when all neighbours

are equally weighted (a rather usual assumption), can be formulated as:

xi|x−i ∼ N

n−1i

∑
{j:j∼i}

xj, n
−1
i σ2

 i = 1, ..., n

where x−i denotes the set {x1, ..., xi−1, xi+1, ..., xn}, n denotes the number of units in the
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lattice of study, the set {j : j ∼ i} contains all the neighbouring locations j of unit i,

and ni denotes the number of neighbours for the i-th unit on the lattice. Therefore, the

expected value at every location is just the mean of the observations for its neighbouring

regions on the lattice. If the lattice of study were linear, the ICAR distribution could

be shown to be equivalent to a first order Random Walk [19] or, following the ARIMA

terminology from time series, a First Order Integrated Process. Therefore, we can find a

strong relationship between these two tools, the Integrated Processes of time series studies

and the ICAR distributions of disease mapping modelling.

If we consider an ICAR distribution on a linear lattice, the correlation of the observa-

tion at the most central location with any other place follows the relationship appearing

in the upper part of Figure 1. In the upper-left part of that figure we can see how that

correlation varies for a linear lattice with 51 observations, and in the upper-right side we

can see that same relation for a lattice with 501 observations. As can be appreciated,

both plots show the same pattern as the length of the lattice increases. Indeed, when that

length increases the number of neighbourhoods that we have to move across to make the

correlation between observations 0 also increases by a similar ratio, and the shape of the

correlation function does not change. Moreover, this correlation function does not change

if we modify the unique parameter of the ICAR distributions, the precision parameter.

Therefore, the number of neighbours that we have to move across to get rid of correlation

between two locations is not a modifiable parameter in ICAR distributions; however, it

comes fully determined, at least on linear lattices, by the length of the region of study.

As a consequence, the dependence structure induced by this distribution will depend only

on the shape and length of the lattice under study. Moreover, smoothed risks on large

lattices could be oversmoothed as risks will necessarily be dependent up to quite long

distances. Moreover, these plots also suggest that correlations between the most distant

units for ICAR distributions are negative, that is, this distribution imposes opposing risk

behaviours for distant places instead of being independent, which would look much more

reasonable. All these features of ICAR distributions do not look particularly attractive

and they may have unknown effects on the smoothed risk estimates, mainly when the
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disease studied is rarer, as in that case the information provided by data is scarcer.

[PUT FIGURE 1 JUST HERE]

However, ICAR distributions are usually accompanied by a heterogeneous random

effect in disease mapping studies, as proposed by Besag et al. [20], in order to account

for risk factors or features exclusively affecting individual geographical units, whose scope

does not reach neighboring geographical locations. Nevertheless, the inclusion of this

random effect does not alleviate most of the features outlined in the previous paragraph.

As can be appreciated in the lower-left part of Figure 1, the correlation function (for the

lattice of length 51) when adding the spatially independent term changes, flattening the

correlation decrease as a function of distance. Moreover, that decrease gets flatter when

the independent random effect has larger variability. Therefore, although the correlation

function is more flexible with this change, it continues to be somewhat rigid in some

aspects that could be interesting to modify in order to describe different collections of

geographical patterns better.

Proper Conditional AutoRegressive distributions (CAR-proper) are the second GMRF

of widespread use in disease mapping studies. These spatial modelling tools can be defined

as a set of conditional distributions in the following way:

xi|x−i ∼ N

ρ ·
n−1i

∑
{j:j∼i}

xj

 , n−1i σ2

 i = 1, ..., n

therefore, the expected value of every observation in a CAR-proper distribution is given

by a regression on the mean value of the distribution in their surrounding regions. This

idea is closely related to that followed by First Order Auto-regressive time series; there-

fore, a clear parallelism can be established between these two modelling tools. In contrast

to ICAR, CAR-proper distributions have a parameter (ρ) to fit the correlation structure

to the pattern followed by the data. As can be appreciated in the lower-right part of

Figure 1, this parameter allows us to control the speed of decrease in the correlation

between observations as a function of the distance between them. Therefore, this distri-

bution allows us to model patterns with very different ranges of dependence, that is, this
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distribution is adaptive in this sense. Moreover, for the CAR-proper distribution, the

correlation tends to zero as distance increases; therefore, the CAR-proper distribution

solves the most controversial issues in the ICAR distribution.

Despite all these appealing features of the CAR-proper distribution, this is not as pop-

ular as could be hoped. Indeed, several authors have already pointed out some drawbacks

to this distribution [21, 22, 23]. To those drawbacks we would like to add the following:

the decrease in correlation as a function of the distance in the lower-right part of Figure

1 is a parametric function of ρ, very close to an exponential decrease depending on the

value of ρ. Although this is a significant improvement compared with the rigid correlation

function of the ICAR distribution, this may not be enough as any pattern not responding

to this correlation structure will not be appropriately described with this distribution:

that is, the parametric shape of the correlation could continue to be too rigid to explain

some geographical patterns.

As already pointed out, a parallelism can be formulated for integrated processes in

time and its equivalent in space (ICAR). In a similar way, auto-regressive time series can

be viewed as the temporal version of the CAR-proper distribution. Nevertheless, moving

average processes of time series do not have a clear equivalent in the disease mapping

literature. Best et al. [24] perform a kernel-weighted smoothing that in some way makes

a local mean for estimating the risk at every location. Nevertheless, they use a parametric

(Gaussian) kernel to weight the information about surrounding locations, and this is not a

common practice in moving average time series modelling; therefore, that work cannot be

understood as the spatial moving average process that we are seeking. Finally, although

some work has been done towards a spatial moving average model (and even spatial

ARMA models) [25], this has always been always done assuming that the original data is

Gaussian, an assumption rarely appropriate in the disease mapping context. Therefore,

an effort should be made to make this methodology useful in this field.

The goal of this paper is to make a new proposal for disease mapping following the

ideas of the moving average modelling of time series. In this proposal, we would like to

avoid any parametric relation for determining the weights of neighbouring units in order
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to be able to draw a wide collection of spatial patterns. Moreover, we will consider the

range of dependence of the spatial pattern as a quantity to be fitted by the model, in order

to describe patterns as either dependent for only quite close regions or patterns whose

distant regions will also be dependent. This way we will try to solve the aforementioned

problems of the spatial patterns arising from the ICAR and CAR-proper distributions.

3 The SMARS model

Before to formulate the SMARS model it is convenient to introduce some notation criteria

and define the neighbourhood relationships that we will use in the rest of the paper.

Regarding neighbourhood criteria, we will consider 0-th order neighbour of region i as its

own region i; its 1-st order neighbours will be all those regions adjacent to region i (or if

preferred, any other criteria based, for example, on the distance between regions) and its

0-th order neighbours; the 2-nd order neighbours will be all those regions adjacent to the

1-st order neighbours and its own 1-st order neighbours, etcetera. This way, if any region

is n-th order neighbour of region i it will also be n′-th order neighbour for any n′ > n,

and for any n the set of n-th order neighbours will form a disk centred on region i and

radius defined by n. This neighbourhood relationship is not the frequently-used criteria

forming rings around any unit in the region of study, but we will see later that it has

several advantages that justify its use in our proposal.

If regions i and j are k-th order regions, we will denote that relationship as i ∼k j.

We will denote the number of units in the region of study as n, the number of observed

cases in unit i as Oi and the number of expected cases on that same unit as Ei.

As usual in most disease mapping models, we will consider the number of observed

cases for every unit to follow a Poisson distribution:

Oi ∼ Po(Ei · exp(φi)) i = 1, ..., n

where φ stands for the vector of log-relative risks. We will model those log-relative risks

in the second layer of the hierarchical structure. To carry this out, we will consider a
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Gaussian latent risk process {θi : i =, ..., n} for every one of the units in the region of

study. We will define the log-relative risks as the sum of an intercept term (µ), modeling

the mean value of the log-risks in the region of study, plus a second term for every region

proportional to a weighted sum of the latent effects in those same regions and their

neighbours. This latter term incorporates the moving average structure into the relative

risks. To be more precise, we will assume that the risk in every region depends on its own

latent effect, plus the latent effects of the first order neighbours, plus the latent effects of

the second order neighbours, etcetera, up to the neighbours of order m. We will call this

parameter the order of the moving average process and we will assume it to be unknown.

We will weight the latent effects of the neighbours of differing orders by means of the

vector of positive weights ω = (ω0, ..., ωm), also to be estimated by the model, which

weights the contribution of the furthest regions compared to those closest. In summary,

our proposal to model the log-relative risks in region i can be expressed as:

φi = µ+ λ−1i ·

(
ω0 · θi + ω1 · (

∑
j∼1i

θj) + ...+ ωm · (
∑
j∼mi

θj)

)
. (1)

In the previous expression, if we had m = 0, the risks at every unit would only depend

on the latent value of that precise unit; therefore, the SMARS model would reproduce a

fully heterogeneous pattern. On the contrary, for m = 1, the risks would also depend on

the latent effects of neighbouring regions, and for higher values of m latent values of farther

places would also influence the risk at any location. Therefore, depending on the value of

m, SMARS may describe either independent or spatially dependent processes (either of

long or short range). In the former section, we saw that ICAR-based models were not able

to do this as in that case the range of the spatial patterns was fully determined by the

length or shape of the lattice considered. Moreover, the values of the vector ω determine

the influence of farther neighbours (of an order lower than m) compared with the influence

of closer neighbours. Furthermore, as we will mention below, the values of ω do not follow

any parametric relationship as a function of distance; therefore, the dependence structures

defined by SMARS will be more flexible than those based on the CAR-proper distribution,

as the latter cannot balance the importance of farther neighbours compared with those
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being closer.

As the moving average process in (1) already induces spatial dependence, we will

consider θ to have independent values. That is; we will assume:

θ ∼ Nn(0, σ2 · In),

therefore, θ defines the values of the underlying risk at every location that ω, by means

of the moving average process, propagates to the surrounding regions. That is, a high

(respectively low) value of θi will induce an increase (decrease) in the risk for region i

and for its neighbouring regions, depending on the values of the vector ω. Therefore, we

can consider θ as an unblurred distribution of risk factors which have a local influence on

the distribution of the disease in nearby units and not only at the exact location of risk

sources.

The spatial dependence structure defined by (1) entails some secondary effects like,

for example, an edge effect, which it would be convenient to control. This is where the

λi term in (1) plays a role. In the SMARS model, the variance of the log-relative risk for

the i-th unit of study can be derived as follows:

V ar(φi|µ,ω) =

= V ar

(
λ−1i ·

(
ω0 · θi + ω1 · (

∑
j∼1i

θj) + ...+ ωm · (
∑
j∼mi

θj)

))
=

= λ−2i ·

(
ω2
0V ar(θi) + ω2

1 · (
∑
s∼1i

V ar(θj)) + ...+ ω2
m · (

∑
s∼mi

V ar(θj))

)
=

= λ−2i ·
(
σ2 · (ω2

0 + ω2
1n1(i) + ...+ ω2

mnm(i))
)
,

where n1(i), ..., nm(i) are, respectively, the number of neighbours of first, second, ..., m-

th order of region i. Therefore, the variance of the log-relative risk in every region is a

function of the number of neighbours, favouring the occurrence of edge effects. To correct

this behaviour we propose to define:

λi =
(
ω2
0 + ω2

1n1(i) + ...+ ω2
mnm(i)

)1/2
, (2)

and this way all the components of φ (also the latent effects) will have exactly the same

variance (σ2) regardless of their locations in the region of study.
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For the rest of this section, we are going to propose and justify the prior distributions

for all the parameters in the SMARS model. Our intention is to restrict the weights ω

so that they take positive values as, in that case, the contribution of closer units in the

moving average process will be necessarily higher than that of farther locations, which

seems reasonable. This is a consequence of the way in which we have defined neighbour

relationships forming disks instead of rings. In any case, we will provide more details

about this issue in the next section. A side effect of the inclusion of the normalizing terms

λi in (1) is that the scale of ω cannot be identified as a consequence of the dependence of

λi on ω. That is, the weights of the moving average process for the i-th unit λ−1i (ω) · ω

(in this case we include λ−1i (ω) to emphasize its dependence on ω) are equal for ω = w

and ω = αw. In more detail, for any vector w and positive scalar α we have:

λ−1i (αw) · (αw) =
(
(αw0)

2 + (αw1)
2n1(i) + ...+ (αwm)2nm(i)

)−1/2 · (αw) =

=
(
w2

0 + w2
1n1(i) + ...+ w2

mnm(i)
)−1/2 · α−1 · (αw) = λ−1i (w) ·w

As a consequence, if no further restriction is imposed, the scale of ω may not be identified.

Therefore, we have considered ω to follow a Dirichlet prior distribution of parameter 1n+1,

that is a uniform distribution on the range of values of ω. The Dirichlet distribution

implicitly imposes
∑m

i=0 ωi = 1 and this way we avoid the aforementioned identifiability

issues on the scale of ω. In summary, we consider as a prior distribution of ω:

(ω0, ω1, ..., ωm)|m ∼ Dir(1m+1).

This choice has an additional advantage of considerable importance for the final results

of the model. Indeed, SMARS is one of those models where ’the number of things that you

do not know is one of the things that you do not know ’ [26] as the length of ω depends

on the parameter m, which is also unknown. Therefore, we can view SMARS as an

encompassing model containing a collection of models with a fixed number of parameters

and we will be interested in selecting one of them or quantifying their probabilities.

This is clearly a model selection problem. A clear distinction has been established in

the literature between common and non-common parameters for the models considered
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[27]. It has been described that, for model selection purposes, it is possible to propose

arbitrarily vague (or even improper) distributions for the common parameters without

conditioning the posterior probability of the models considered. On the contrary, for the

non-common parameters (ω in our case) the choice of arbitrarily vague prior distributions

has a significant effect on the posterior distribution of the models, making them depend

on the degree of vagueness of the priors used [28]. Therefore, the choice of the prior

distribution for ω is a tricky issue for the final performance of the model. The choice

of a Dirichlet prior distribution for ω means that the probability space for this vector is

finite; indeed, it is a simplex on an m + 1-dimensional space, where the uniform prior

distribution is an obvious and reasonable choice for avoiding the use of arbitrarily vague

proposals.

The order of the spatial moving average process m may take any value on the set

{0, 1, ...}, although for practical reasons we will assume an upper bound (M) for this

variable. This bound is motivated by the fact that for any m bigger than any specific m′

all units will be m-order neighbours; therefore, due to the finite nature of the lattice of

study, it makes no sense to consider neighbours of indefinitely large orders. A uniform

prior on the range of admissible values for m could seem in principle to be a reasonable

proposal, although that choice would not enable the value of m to be identified. To

illustrate this, let us assume that the real value for (m,ω) is (1, (0.5, 0.5)). The prior

probability of that value is:

p(m,ω) = p(ω|m) · p(m) =
Γ(2)

Γ(1) · Γ(1)
· 1

M + 1
=

1

1 · 1
· 1

M + 1
=

1

M + 1
,

while the prior probability of, for example, (m,ω) = (4, (0.5, 0.5, 0, 0, 0)) would be:

p(m,ω) = p(ω|m) · p(m) =
Γ(4)

Γ(1)5
· 1

M + 1
=

4!

15
· 1

M + 1
=

4!

M + 1
.

The likelihood function will yield identical values for both pairs (m,ω) considered (as

they yield identical values for φ). Therefore, if the prior distribution does not penalize

large values of m, the model will tend to fit large values for this variable regardless of its

true value, making it unidentifiable. As a consequence, we propose the prior distribution
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of m to be:

p(m) ∝ 1

m!
, m = 0, ...,M.

as this way, the prior distributions of m and ω compensate for one another and all the

values of the pair (m,ω) will have exactly the same prior probability.

For the rest of the common parameters included in the model we have proposed vague

prior distributions. Thus, we have proposed an improper flat prior distribution on the

whole real line for the mean value of the log-relative risks (µ). We have also proposed an

improper flat prior distribution on the positive real line for the standard deviation of the

latent effect (σ) as suggested, for example, in Gelman (2005) [29].

4 An insight into the dependence structure

Having introduced our proposal in the previous section, we are now going to explore the

dependence structure just defined in some detail. We will also compare the previous

model and its dependence structure with other proposals in the literature, pointing out

their similarities and differences.

First, we are going to express the previous model in matricial notation which will be

helpful for the rest of this section. We will denote the k-th order neighbourhood matrix

as Hk, that is, for this matrix the cell (i, j) will be 1 if and only if locations i and j are

k-th order neighbourhood, otherwise that cell will be 0. We will define H0 as the n× n

identity matrix because, as previously defined, each unit is the only 0-th order neighbour

of itself. In that case, we can put expression (1) as:

φ = µ1n + diag(λ−1) (ω0H0θ + ω1H1θ + ...+ ωmHmθ) =

= µ1n + diag(λ−1) (ω0H0+ω1H1 + ...+ ωmHm)θ ,

and if we denote (ω0H0+ω1H1 + ...+ ωmHm) as Λ we can express:

φ = µ1n + diag(λ−1)Λθ ,

12



where, if the distance between units i and j is d(<= m), Λij =
∑m

k=d ωk, and if d > m

then Λij = 0. Therefore, we can consider the log-relative risks as a scaled version (to

avoid edge effects) of the transformed latent factor Λθ.

In the preceding expression, λ is a vector with components given by (2). These values

have a direct relation with Λ as (it is straightforward to show that) λi is just the Euclidean

norm of the i-th row of Λ. Therefore, we may state this last expression as:

φ = µ1n + (diag(ΛΛ′)−1/2Λ)θ

In summary, we can express:

φ = µ1n + Λ̂θ (3)

where:

Λ̂ = (diag(ΛΛ′)−1/2Λ)

and

Λ = (ω0H0+ω1H1 + ...+ ωmHm) .

Note that both Λ and Λ̂ are a function of m and ω, so they are stochastic matrices, both

in their sparse structure and the values of the non-zero cells. Moreover, the matrix Λ̂

inducing the correlation structure on φ is row-standardized in the sense that each one of

their rows has 1 as Euclidean norm.

We are now in a position to have a deeper insight into the dependence structure defined

by SMARS.

4.1 The dependence structure of the SMARS proposal

Taking into account that θ is distributed as Nn(0, σ2In) and expression (3), the prior

distribution of φ can be derived as:

φ|µ, Λ̂ ∼ Nn(µ1n, σ
2Λ̂Λ̂

′
) = Nn(µ1n, σ

2diag(ΛΛ′)−1/2ΛΛ′diag(ΛΛ′)−1/2) .

Therefore, the covariance of any two log-relative risks in SMARS can be expressed as:

Cov(φi, φj|µ, Λ̂) = σ2
Λi· · (Λ′)·j√

Λi· · (Λ′)·i

√
Λj· · (Λ′)·j

= σ2 Λi· ·Λj·√
Λi· ·Λi·

√
Λj· ·Λj·

,
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where in the preceding expression Λi· and Λ·j stand for the i-th row and j-th column of

Λ, respectively. As Λi· =
∑m

k=0 ωk(Hk)i·, it results that:

Λi· ·Λj· =

=

(
m∑
k=0

ωk(Hk)i·

)(
m∑
l=0

ωl(H l)j·

)
=

m∑
k=0

m∑
l=0

ωkωl ((Hk)i· · (H l)j·) .

In the previous expression, ((Hk)i· · (H l)j·) is exactly the number of units in the region

of study which are k-order neighbours of unit i and l-order neighbours of unit j. We will

denote that quantity as n[k,l](i, j). As with our neighbourhood definition, for any l > k,

any k-order neighbour is also a l-order neighbour; we have that n[k,l](i, i) will be exactly

nmin(k,l)(i) for any k and l, that is the number of min(k, l)-order neighbours in unit i.

Therefore, the former expression of the covariance can be expressed as:

Cov(φi, φj|µ,ω) = (4)

= σ2

∑m
k=0

∑m
l=0 ωkωln[k,ll](i, j)√∑m

k=0

∑m
l=0 ωkωlnmin(k,l)(i)

√∑m
k=0

∑m
l=0 ωkωlnmin(k,l)(j)

.

Moreover, it can also be deduced that:

V ar(φi|µ,ω) = Cov(φi, φi|µ,ω) = σ2

∑m
k=0

∑m
l=0 ωkωln[k,l](i, i)∑m

k=0

∑m
l=0 ωkωlnmin(k,l)(i)

= σ2 .

Therefore, the correlation between any two log-relative risks i and j coincides with expres-

sion (4) without the σ2 term. Therefore, those correlations will depend on two factors,

the lattice’s own structure and the weights of the different orders of neighbourhood. On

the one hand, the correlations will be larger for those regions with more paths connecting

them, although units with more neighbours will lead in general to lower correlations with

surrounding units. On the other hand, in contrast to ICAR or CAR-proper distributions,

we will have several parameters available (as many as considered necessary by the model)

in order to adapt correlation values to the features of any dataset considered. Moreover,

every correlation value between the log-relative risks fitted by SMARS will never be neg-

ative, as each one of the terms either in the numerator or the denominator of expression

(4) is non-negative. That expression also shows that, for any two regions whose distance

14



is larger than 2m neighbours, their correlation will be 0, as in that case all the terms in

the numerator of (4) will be 0.

As an example of the correlation structure of SMARS, we have considered the same

linear lattice (n = 51) as in Section 2, and we have plotted the correlation of the central

location of the lattice with the rest of the locations for different values of the pair (m,ω).

These correlation functions are shown in Figure 2. On the left-hand side of that figure, we

can see the effect of changing the value of m for vectors ω with equal values for all their

components. It can be appreciated how farther regions with positive correlations can be

found when the value of m is increased. Conversely, on the right-hand side of Figure 2,

we can see the effect of changing the vector ω, keeping the value of m constant. In this

case, the shape of the decrease is modified by the values of ω, illustrating the flexibility of

SMARS for describing a wide range of relationships between distances and correlations.

[PUT FIGURE 2 JUST HERE]

4.2 SMARS modelling and kernel smoothing

Another proposal also used in several disease mapping applications is the Kernel Convo-

lution approach [13]. This approach, in order to define spatially dependent log-relative

risks, considers an underlying spatially independent process θ convolved with a paramet-

ric kernel function k . If the underlying risk is defined on a continuous domain D it

yields:

φi = µ+

∫
D
k(si, u)θ(u)du ,

on the other hand, if θ is defined in a discrete domain it yields:

φi = µ+
n∑

j=1

k(si, sj)θj ⇒ φ = µ1n + ∆ · θ , (5)

where si and sj are the locations of units i and j respectively. Row i of matrix ∆

contains the distance-based weights needed to combine the values of the random effects

θ to define φi. The kernel function k is usually assumed to be a non-negative, symmetric

and integrating one; therefore, the values of ∆ will also be non-negative, an isotropic

15



function of distance and in some way row-standardized. Moreover, the definition and

properties of the kernel function will determine the covariance structure of the smoothed

process [30].

The right-hand side of (5) coincides with the matricial expression of the SMARS

structure of the log-relative risks in (3) for ∆ = Λ̂, where the rows of Λ̂ are proportional

(in order to normalize those rows) to:

Λij =

 (
∑m

l=d ωl) if d := distance(si, sj) < m

0 if d := distance(si, sj) > m

It is obvious that the values of Λ̂ are non-negative by construction, being a direct isotropic

function of the distance between regions and its rows are standardized (as previously

noted ‖Λ̂i·‖2 = 1). Therefore, we can consider the SMARS model as a kernel smoothing

proposal on a discrete domain, with a kernel function (weighting the contribution of the

geographical units as a function of their distance) given by the vector (
∑m

l=d ωl)
m
d=0. We

will call this vector the kernel function of the model.

As a direct consequence of the disk-shaped neighbourhood relationship used for the

SMARS model formulation, the vector Λi· puts more weight in the smoothing process of

φi on those regions that are closer to region i. That is, if d is the distance between regions

i and j, the latent factor θj will be multiplied by a value proportional to (
∑m

l=d ωl). There-

fore, closer regions will be weighted more (and as a consequence will be more influential)

in the calculation of φi. The vector

(
m∑
l=0

ωl,

m∑
l=1

ωl, ...,

m∑
l=m

ωl) = (1,
m∑
l=1

ωl, ..., ωm) (6)

defines the unscaled transformation of the latent factor θ as a function of the distance

between regions; therefore, their components draw the shape of the (unscaled) kernel

function weighting the values of the latent factor. As just pointed out, this kernel will be

a decreasing function of the distance between regions, which seems reasonable. Moreover,

it is also interesting that the kernel function defined by SMARS does not follow any

parametric decrease (Gaussian, exponencial, triangular, ...) as is usual in kernel smoothing
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methods. Therefore, in this sense, SMARS is a more flexible approach to kernel smoothing

than other kernel smoothing proposals with parametric kernel functions.

The (unscaled) kernel function (6) fully controls the correlation structure of the log-

relative risks. Therefore, the study and comparison of these functions for different ge-

ographical patterns, corresponding to different diseases, is another interesting tool that

SMARS makes available to quantify differences between those patterns studied. There-

fore, taking into account to that function we can distinguish between fully heterogenous

patterns ((m,ω) = (0, (1))), patterns weighting equally all those regions up to a fixed

distance (for example (m,ω) = (3, (0, 0, 0, 1))), patterns with a short-range spatial de-

pendence (for example (m,ω) = (1, (0.3, 0.7))), or long-range dependence (for example

(m,ω) = (7, (0.3, 0.1, 0.1, 0.1, 0.1, 0.1, 0.1, 0.1))). Figure 3 shows some examples of kernels

defining remarkably different spatial patterns. These could be labelled as heterogenous

(m = 0), short range (m = 2) and large range patterns (m = 4). For the m = 2 scenario

two different kernels are shown, one of them weighting their neighbours more than the

other and, therefore, providing qualitatively distinct patterns. In our opinion, that figure

yields a useful epidemiological tool to explore the dependence structure of the patterns

studied and, on occasions, to determine significant differences between patterns in terms

of that structure. In the applications section we will give further details on this tool.

[PUT FIGURE 3 JUST HERE]

4.3 SMARS modelling and the SAR distribution

SAR Gaussian distributions are another tool for inducing spatial dependence in disease

mapping studies [31]. These distributions correspond to a vector of variables following:

x ∼ N(µ, (I −B)−1D((I −B)−1)′),

where B is a matrix containing the neighbourhood structure of the region under study

and D is a diagonal matrix. From (3) it is straightforward to show that we can express

φ as:

φ ∼ Nn(µ1n, Λ̂(σ2In)Λ̂
′
).
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Therefore, we can consider SMARS as defining a distribution from the SAR family, for

D = σ2In and B = In− Λ̂
−1

. Therefore, in contrast to SAR models, the matrix (I-B) is

not sparse but is its inverse. That is, with SMARS we are directly modelling the variance-

covariance matrix of the patterns instead of its precision matrix, as is usually done for

Gaussian Markov Random Fields. This has already been pointed out as an attractive

modelling property for the development of new disease mapping proposals [22, 23].

A second difference between SMARS and SAR distributions is that for the first, the

neighbourhood matrix is not fixed but dependent on the pair (m,ω). Nor is the sparse

structure of that matrix fixed as it depends on the value of m, which is also stochastic

for the model. Thus, that matrix is expected to be flexible enough to fit the dependence

structure of data.

5 SMARS performance assessment

To make inferences on this model for the datasets below, an MCMC algorithm has been

developed. The corresponding MCMC procedure has been coded in R [32], making use of

the package spam [33] for storage and computation with sparse matrices. R routines to run

the model are available at the url http://maphysco.ceuuch.es/∼pbotella/SMARS.pdf.

The parameters sampled in the MCMC process are: (µ, σ,θ,ω,m). µ has been sam-

pled by Gibbs sampling. Analytical integration of µ on the posterior distribution of σ

is possible, therefore, once integrated, µ slice sampling has been used to generate new

values for σ in the MCMC. The whole vector θ has been sampled in a single movement of

the MCMC instead of sampling their components one by one in a sequential order. The

Langevin-Hastings method has been used to sample from this vector, making smarter

proposals for new values of θ. Vector ω has been sampled with the Metropolis-Hastings

algorithm. Finally, m has been sampled by means of a split-merge type Reversible Jump

algorithm, as any change in this value entails modification of the length of vector ω.

This step proposes either splitting the last component of ω into two separate components

(decomposing ωm into new values ω∗m and ω∗m+1) or merging these two components into
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a unique value making ω∗m = ωm + ωm+1 and ω∗m+1 = 0. Sampling from both ω and

θ requires fixing a band-width parameter for the respective Random Walk Metropolis-

Hastings algorithms. An adaptative tuning of these parameters has been implemented

during the burn-in phase of the algorithm in order to carry out a semi-automatic choice

of them, improving the convergence of both vectors.

For every dataset, three independent chains were run with 5.000 burn-in iterations

and 20.000 additional draws, and of these 1 in every 20 values was recorded, yielding a

final posterior sample of 3.000 iterations for every parameter. More details on the whole

code and the MCMC algorithms can be found in Botella-Rocamora (2010) [34].

5.1 Comparison with other Bayesian spatial methods

Several Bayesian methods have been developed in recent years proposing different ways

to carry out spatial risk smoothing. To put all these proposals in order, Best et al. (2005)

[35] perform a comparison of all them, taking into account several different aspects. As

a first step, in order to assess the hypothetical benefits of our proposal, we have run

SMARS on the same dataset used to carry out the above-mentioned model comparison

(the dataset was provided by the authors of the paper). This artificial dataset consists of 5

independent draws (replicates) of a common underlying spatial process. The comparison

between models for these replicates was performed based on the Deviance Information

Criterion (DIC) [36]. The models to be compared in this study are the following:

• EXP: Multivariate normal distribution for log-risks with covariance between units

being an exponencial function of their distance [37].

• BYM: Convolution of spatially structured and heterogenous random effects [20].

• MIX: Mixture model for risks with a spatially dependent allocation of units to

components of the mixture by means of a Potts model [11].

• KHR: Modelling based on the partition of the region under study by means of

tesellations [8].
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• GMA: Parametric kernel smoothing of a Gamma underlying process [13].

• SMARS: The proposal introduced in this paper.

Table 1 shows the results obtained by SMARS in the former comparison (results

partially appearing in Best et al. (2005) [35]). As can be appreciated, SMARS yields the

lowest DIC in 2 out of 5 datasets. Moreover, its performance may be qualified as quite

robust as when it does not yield the lowest DIC the difference with the best model is

usually rather moderate (in DIC terms). In contrast, the mixture model (MIX) gets the

lowest on 3 out of 5 occasions, but its performance is not as robust as SMARS. These

results seem to suggest that SMARS is, at least, a competitive proposal for carrying out

spatial risk smoothing and that going beyond the usual convolution process in Besag et

al. (1991) [20] can bring considerable advantages from a goodness-of-fit point of view.

It is also interesting to note the coherence of the parameter estimates in SMARS for

all five datasets considered. The posterior mode of m has been 1 for one of the datasets,

2 in three occasions and 3 for the last dataset. The posterior mean of this parameter for

all five datasets varies from 1.6 to 2.4 (8 being the maximum value that m can take in

these datasets), therefore suggesting a common value of this parameter around 2. Figure

4 shows the estimation of the kernel function for all five datasets. As can be noticed, all

five kernel functions are quite similar with hardly any contribution of the underlying effect

of those regions located four or more units away. Taking into account that all five datasets

were realizations of a common underlying process, these results seem quite coherent.

[PUT FIGURE 4 JUST HERE]

5.2 The Mortality Atlas of Valencia Community

We have also run SMARS in a real context, on the data from the ’Mortality Atlas of Va-

lencia Community, 1991-2000’ [38] previously published following the convolution model

of Besag et al. (1991) [20]. In that Atlas 22 causes of death were studied for men and 21

for women, although for simplicity we will only present our results for men (the results
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for women were not substantially different). Mortality was aggregated by municipality,

an administrative division consisting of 540 units for the Valencia Community (one of the

17 regions making up Spain, with around 4 million inhabitants in the period of study).

We find it particularly interesting to explore the estimates of the kernel function for all

these causes of mortality. Figure 5 shows those kernels classified as a function of the pos-

terior mode of m. Those causes in the upper-left plot (Arteriosclerosis, Colorectal Cancer,

Cirrhosis, Hipertension, Other Heart Diseases, Prostate Cancer and Rectum Cancer) have

0 as the posterior mode for m, therefore the geographical patterns for these diseases have

almost no spatial dependence. The upper-right plot contains those causes with the pos-

terior mode of m being 1 (Colon Cancer, Leukemia, Lymphatic Cancer, Bladder Cancer),

these patterns do have spatial dependence but of a very short range, with only quite close

units showing dependent estimates of risks. The lower-left plot contains those causes with

the posterior mode of m being 2 (Mouth Cancer, Diabetes, Liver Cancer, Ischaemic Heart

Disease, Larynx Cancer and Pancreatic Cancer), these diseases having a moderate range

of dependence. Finally, the lower-right plot contains those diseases with a long range of

dependence, m = 3 or 4 (Cerebrovascular Disease, Respiratory Infections, Lung Cancer,

All Cancers, Chronic Obstructive Pulmonary Disease).

[PUT FIGURE 5 JUST HERE]

It is interesting to note that diseases related to the respiratory system (or maybe

tobacco-related diseases), in general, have geographical patterns which are qualitatively

distinct to the other causes of mortality. Indeed, those diseases usually have long-range

dependence patterns, reflecting a geographically smooth distribution of those risk factors

related with those diseases; in contrast, for example, with those diseases related to the

digestive system as Colon or Rectum Cancer whose risk factors, according to our results,

are distributed heterogenously throughout the region of study. These kinds of conclusions

cannot be drawn, for example, from the convolution model, as in that case results may

only indicate a more substantial contribution of the heterogeneous or the spatial effect.

No specific inference about the range of dependence can be made in that case, and in our
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opinion this is an interesting result from an epidemiological point of view.

Correlations between risk estimates from the convolution and SMARS models for

the different causes of mortality range from 0.76 to 0.99. Nevertheless, the values of

those correlations depend on the estimated value of m. Indeed, the mean correlation

for both models for those causes in the upper-left plot of Figure (5) is 0.90, for those

diseases in the upper-right plot 0.85, for those in the lower-left plot 0.91 and those in

the lower-right plot 0.97. Therefore, when SMARS reproduces long-range dependence,

its results closely reproduce those derived from the BYM model. This is evidence of

the ability of the Intrinsic CAR distribution to reproduce these kinds of patterns, as

already pointed out in Section 2. This correlation decreases as m gets lower values,

except for the first plot (m = 0), as that reproduces independence between geographical

units and the convolution model includes a specific random effect to model that particular

situation. Nonetheless, this result shows the difficulties of the convolution model when

trying to reproduce patterns with short-range spatial dependence. In that case, SMARS

is a preferable option as its flexibility also makes it possible to model dependence in that

setting.

6 Conclusions

This paper has introduced SMARS as a new proposal for carrying out disease mapping.

SMARS applies the moving average ideas of time series theory to the spatial domain.

The ability of SMARS to estimate the order of the spatial moving average process leads

to a flexible class of models able to fit a wide collection of patterns that may respond to

very different correlation structures. Moreover, spatial dependency will depend on m+ 1

parameters (for m unknown and only determined by the data) providing a flexible tool

able to fit quite different correlation structures. In this sense SMARS can fit patterns of

either heterogeneous, short or long range of dependence and, as outlined in this paper,

this is not such a trivial task for many other proposals. Finally, the dependence structure

defined by means of SMARS does not depend on the size of the region of study.
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The results suggest that SMARS is a competitive alternative to most of the disease

mapping models already proposed in the literature. Moreover, SMARS-based inference

has several added-value products from an epidemiological point of view. For example, the

ability to quantify the range of dependence (m) of the patterns of study is important as it

sheds light on the geographical distribution of risk factors and the geographical distance

of their effect. On the other hand, kernel functions could be an interesting summary of

the degree of similarity between diseases. For example, quite different kernel functions for

two diseases could suggest the existence of different risk factors (of different geographical

diffusion) determining these diseases.
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Dataset EXP BYM MIX KHR GMA SMARS

1 +31.2 +12.4 +14.7 +9.3 +16.9 193.1

2 +18.7 +1.2 205.5 +8.5 +18.1 +5.5

3 +33.7 +3.1 192.9 +1.8 +40.0 +2.2

4 +39.4 +14.7 +18.7 +5.5 +38.8 168.2

5 +22.4 +12.1 168.8 +17.8 +22.2 +12.0

Table 1: DIC for the models considered in the study. The lowest DIC for every dataset ap-

pears in bold and the remaining values are the DIC differences between the corresponding

model and the one with lowest DIC for that dataset. Results partially appear in [35].
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Figure 1: Correlation between the central observation and any other position on a linear

lattice. Upper-left plot: correlation for an ICAR distribution on a linear grid of 51 units.

Upper-right plot: correlation for an ICAR distribution on a linear grid of 501 units.

Lower-left plot: correlation for a convolution model with different contributions of the

heterogeneous random effect. Lower-right plot: correlation for CAR-proper distributions

with different values of their parameters.
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Figure 2: Correlation between the central observation and any other position for the

SMARS model in a linear lattice. Left plot: Correlations for different values of m and

components of ω taking the same value. Right plot: Correlations for m = 3 and different

values of the vector ω.

Figure 3: Effect of the parameters m and ω on the kernel function of the SMARS model.
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Figure 4: Effect of the parameters m and ω on the kernel function of the SMARS model

for all five datasets in Best et al. (2005)
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Figure 5: Estimated kernel functions for the diseases in the Mortality Atlas. Plots corre-

spond to those diseases with posterior mode for m being 0, 1, 2 and more, respectively.
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