functions; for rigid molecules, \(\omega_{\gamma}(k) = \sin (kL_{\gamma}) / kL_{\gamma} \), where \(L_{\gamma} \) is the distance between sites \(\alpha \) and \(\gamma \); \(\hat{e} \) is the matrix of direct correlation functions and \(\hat{e}^* = \hat{e} - \hat{k}^2 \); \(\hat{k}^* \) is the matrix of solvent density; and \(\hat{U}_{\gamma}^{\text{short-range}} \) is a short-range potential which usually, but not necessarily, takes the Lennard-Jones 6-12 form. The symbol \(A \) is a numerical factor introduced to impose consistency between the calculated solvent correlation functions and a given value of the solvent dielectric constant, \(\varepsilon_0 \). It is given by \(^{(35-35)}\)

\[
A = \frac{1 + \varepsilon_0(3y - 1)}{3y(\varepsilon_0 - 1)} \quad \text{with} \quad y = \frac{4\beta_\rho_0(d^2)}{9}
\]

(A.4)

where \((d^2)\) is the average squared dipole moment of the solvent molecule.

By solving eqs. A.1-A.3 self-consistently one can obtain \(k_0^{(0)}(r) \) and \(c_0^{(0)}(r) \) from which the excess solvation free energy, \(\Delta G_{0} \), of introducing a solute into the solvent at infinite dilution can be calculated by using the expression. \(^{(35,37)}\)

\[
\Delta G_{0} = \frac{\rho_0}{\beta} \sum_{\alpha=\gamma} \sum_{j} \int d^3 |v_j(k_0^{(0)}(r))^2 - c_0^{(0)}(r) - \frac{1}{2} k_0^{(0)}(r) c_0^{(0)}(r)|
\]

(A.5)

where \(n_{\alpha} \) is the number of solute sites and \(n_{\gamma} \) is the number of solvent sites, equal to 3 in the present case.

The solvent model used in the XRISM method is the rigid three-site TIP3P \(^{(39)}\) water with minor modifications of the hydrogen Lennard-Jones interaction parameters to avoid a Coulombic singularity in the interaction potential due to the absence of repulsive cores on the hydrogen sites. \(^{(59)}\) The empirical potential is characterized by the experimental water geometry \((R_{OH} = 0.9572 \text{Å}, R_{H-O} = 104.52^\circ)\) and charges of -0.834 on the oxygen and 0.417 on the hydrogen. The Lennard-Jones parameters are \((\sigma, \epsilon) = (3.15 \text{ Å}, 0.152 \text{kcal/mol})\) for the oxygen site and \((0.40 \text{ Å}, 0.046 \text{kcal/mol})\) for the hydrogen site. For the Lennard-Jones interaction between oxygen and hydrogen sites the combination rules, \(\omega_{\gamma} = (\omega_{\alpha} \omega_{\gamma})^{1/2} \) and \(\omega_{\gamma} = (\omega_{\gamma} + \omega_{\gamma})/2 \), are used. At 25°C and \(\rho_{H_2O} = 0.997 \text{ g/cm}^3 \), the \(A \) of eq A.4 is 0.959 to match the experimental water dielectric constant of \(\varepsilon_0 = 78.4. \)

B. Results and Discussion. The XRISM results in Table XI show that the order of the solution \(p_K \) is \(p_K(MeNH_3^+) > p_K(MeH_3^+) > p_K(MeOH) > p_K(HCOOH) \) for parameter set QC; \(p_K(MeH_3^+) > p_K(MeNH_3^+) > p_K(MeOH) \) for parameter set CC; \(p_K(MeH_3^+) > p_K(MeNH_3^+) > p_K(HCOOH) \) for parameter set OO. Thus for all three parameter sets, XRISM fails to predict the order of the absolute and relative \(p_K \) values; this results from XRISM overestimating \(\Delta G_0 \) of anions by 16-36% and underestimating \(\Delta G_0 \) of cations by 27-51%. It also underestimates \(\Delta G_0 \) of neutral compounds and often yields positive \(\Delta G_0 \) values. These trends are also manifested in \(\Delta G_0 \) of water, \(C_2 \) and Na\(^+\) obtained by Yu and Karplus, \(^{(20)}\) though the errors are smaller (\(\approx 10\% \)).

A reason for the discrepancy between the calculated and experimental \(\Delta G_0 \) can be inferred from the work of Yu and Karplus. \(^{(20)}\) They have used XRISM to obtain the solute-solvent radial distribution functions for a cation \((g_+\)) an anion \((g_-)\), and a Lennard-Jones nonpolar particle \((g_0)\), with oxygen and hydrogen sites, respectively, at 300 K; the nonbonded parameters for cation, anion, and nonpolar particle are the same and correspond to those of a chloride ion. The nearest-neighbor peak in the pair distribution function of a cation with the oxygen site of water, \(g_{0+} \), is positioned 1.28 Å further than that of an anion with the hydrogen site of water, \(g_{0-} \). Thus XRISM would predict a more favorable solvation energy for an anion relative to a cation, which lacks favorable hydrogen-bonding interactions. The overestimation of anion \(\Delta G_0 \) and underestimating of cation \(\Delta G_0 \) may be mainly due to the inadequacy of the HNC closure. \(^{(11,20)}\) Furthermore, a comparison of the enthalpic and entropic contribution to \(\Delta G_0 \) of the model chloride neutral atom shows that both terms are unfavorable with the entropy term dominant. Since solvation free energies for neutral molecules are underestimated, and their experimental values are all negative, it appears that the magnitude of the entropy term is overestimated and/or there is a lack of stabilizing energetic interactions with the solvent which would make the enthalpy negative. The latter is supported by an integral equation calculation \(^{(26)}\) of the solvation free energy of methane using the Percus–Yevick closure where a large \(c(CH_4-O) \) of 0.412 was needed in order to obtain the correct experimental value.

Transport Phenomena and Asymmetry Effects In Membranes with Asymmetric Fixed Charge Distributions

José A. Manzanares, Salvador Mafé, and Julio Pellicer*
Departamento de Termodinámica, Facultad de Física, Universidad de Valencia, 46100 Burjassot, Spain
(Received: October 5, 1990)

Transport phenomena through membranes with asymmetric fixed charge distributions varying linearly with position inside the membrane are theoretically studied. The limits of applicability of previous models based on Henderson's assumption have been established, and the effects that the asymmetry exerts on the flux and the asymmetric potential have been found to be of minimal importance for the physical model employed. The theory is based on the Nernst–Planck equations, and the numerical solution derived does not show the doubtful results arising from the use of the approximated Henderson's assumption: the nonzero, steady-state values of the flux and the membrane potential for a situation in which two identical external solutions are separated by an asymmetric membrane, and the occurrence of steady-state reverse transport. Some comments on the temporary nature of the experimentally observed asymmetry effects are also included.

Introduction

The problem of ion transport through membranes with inhomogeneous charge distributions has received some attention recently. \(^{(1)}\) The description of the physical phenomena related to the existence of a structural or chemical inhomogeneity in a membrane requires the revision and extension of the classical

\(^{(1)}\) Mafé, S.; Manzanares, J. A.; Compá, V. An. Fis., in press.
models of transport in homogeneous membranes.\(^3\) A case of special importance is that of asymmetric membranes.\(^1\)–\(^3\) Some of the transport models proposed so far for asymmetric membranes have now been reviewed by Maëf and Mazzanares.\(^1\) One of the more relevant approaches to the problem seems to be that of Takagi and Nakagaki,\(^2\) who extended the classical Teorell–Meyer–Slepers theory\(^7\) to account for the asymmetry in fixed charge concentration and partition coefficients. They used the Nernst–Planck equation for the transport of uni-univalent ions, the local electroneutrality condition, and Henderson’s assumption\(^3\) for the concentration profiles inside the membrane. More recently, Higuchi and Nakagawa\(^4\) have proposed the inclusion of the standard chemical potential gradient in inhomogeneous membranes as a new force for ion transport. They also claimed that Henderson’s assumption leads to some doubtful results in Takagi and Nakagaki’s theory: the nonzero steady-state values of the flux and the membrane potential for a situation in which two identical external solutions are separated by the asymmetric membrane, and the occurrence of steady-state reverse transport (matter transport opposite to that expected from the concentration difference imposed between the two bulk solutions). Some theoretical conclusions violating the basic laws of thermodynamics.

The paper by Higuchi and Nakagawa has prompted us to go deeper into Takagi and Nakagaki’s model in order to study the limits of applicability of this theory. Some comments on the nature of the experimentally observed asymmetry effects are also included. Our analysis is based on the numerical solution of the original (simplified\(^9\)) form of the Nernst–Planck equations, and Henderson’s assumption for the concentration profiles is not included. Reiss and co-workers\(^6\) have recently paid attention to the effects of an inhomogeneous charge distribution on the membrane current efficiency on the basis of a model containing also the above mentioned Nernst–Planck equations.

Formulation of the Problem

The basic equations describing our problem are the steady-state Nernst–Planck equations for uni-univalent ions

\[
J_i = -D_i \left[\frac{d c_i}{dx} + (-1)^{i+1} c_i \frac{d \psi}{dx} \right] \quad i = 1, 2 \tag{1}
\]

the local electroneutrality assumption

\[
c_1 - c_2 + \theta = 0 \tag{2}
\]

and the conditions of zero electric current (eq 3a) and steady-state (constant) fluxes through the membrane (eq 3b)

\[
J_1 - J_2 = 0 \tag{3a}
\]

\[
J_i = J_i(\text{const}) \tag{3b}
\]

Equations 1–3 are the basis of many simplified treatments for one-dimensional transport phenomena in charged membranes, and their origin and limitations can be found elsewhere.\(^9\) Here \(J_i, D_i\), and \(c_i\) denote the flux, the diffusion coefficient, and the local molar concentration of the \(i\)th species, respectively. Subscript 1 refers to cations, and subscript 2 to anions. On the other hand, \(\psi\) stands for the local electric potential in \(RT/F\) units, \(\theta\) for the local fixed charge concentration, and \(x\) for the spatial coordinate inside the membrane (the membrane–solution interfaces are located at the points \(x = 0\) and \(x = d\); see Figure 1 for details). Constants \(F\), \(R\), and \(T\) have the usual meanings. According to previous models,\(^2\) we define the parameters \(r\) and \(r_p\) as \(r = c_L/c_R\) and \(r_p = \theta(x = 0)/\theta(x = d)\) where \(c_L\) and \(c_R\) are the left and right bulk solution concentrations, respectively.

Our study will be confined to the case of an asymmetric fixed charge distribution varying linearly with \(x\):

\[
\theta(x) = \theta(0) + (\Delta \theta/d)x \quad \Delta \theta = \theta(d) - \theta(0) \tag{4}
\]

The boundary conditions for the concentrations \(c_i\) can be obtained from a simplified form of the Donnan equilibrium relationship\(^9\) at the membrane–solution interfaces (partition coefficients are taken equal to unity)

\[
c_i(0) = -\theta(0)/2 + [(\theta(0)/2)^2 + c_i^2]^{1/2} \tag{5a}
\]

\[
c_i(0) = c_i(0) + \theta(0) = c_i^2/2 \tag{5b}
\]

\[
c_i(0) = -\theta(0)/2 + [(\theta(0)/2)^2 + c_i^2]^{1/2} \tag{5c}
\]

\[
c_i(0) = c_i(0) + \theta(0) = c_i^2/2 \tag{5d}
\]

In eqs 2 and 5 we have assumed, without loss of generality, that the membrane has a positive fixed charge. Note also that single bathing salts are considered at the two sides of the membrane so that anion and cation concentrations are both equal to \(c_i\) in the left compartment and to \(c_R\) in the right one.

The above equations have no analytical solution as they stand. To overcome this problem, Takagi and Nakagaki solve first for \(d\psi/dx\) and \(J_i\) (eqs 5 and 3 in their paper\(^2\)), and then assume the ion concentrations within the membrane to be given by the Henderson equation:

\[
c_i = c_i(0)[1 - \delta(x)] + c_i^2(\theta(x)) \quad i = 1, 2 \tag{6}
\]

where \(\delta(x)\) is the same for the two mobile ions and then for the fixed charge groups, and verifies \(\delta(0) = 0\) and \(\delta(d) = 1\). Substitution of eqs 6 into eqs 5 and 3 of ref 2 leads (after integration) to the membrane potential and the flux, respectively. However, these expressions show two rather surprising results: (i) the existence of nonzero, steady-state values of flux and membrane potential for a situation in which the two external bulk solution concentrations are identical \((r = 1)\) and (ii) the possibility of steady-state reverse transport for certain values of \(r\) and \(r_p\). It seems that these results violate the first\(^2\) and second laws of thermodynamics.

A transport theory should give the correct equilibrium limit,\(^10\) and this equilibrium limit seems to correspond to \(r = 1\) in our case. To check this point, consider eqs 1, 2, and 3. From eq 1 for \(i = 1, 2\), it is readily obtained that

\[
-\frac{d(c_i c_2)}{dx} = J_i(c_i/D_i + c_i/D_2) \tag{7}
\]

Integration of eq 7 from \(x = 0\) to \(x = d\) yields

\[
c_i(0)c_i(0) - c_i(d)c_i(d) = J \int_0^d (c_i/D_i + c_i/D_2) dx = J I \tag{8}
\]

where \(I\) is the final value of the integral. Note that \(I\) is a nonzero
positive number. Now, according to eqs 5b and 5d, the left side of eq 8 can be written as
\[c_1^2 - c_2^2 = J I \]
(9)

Thus, the case \(r = 1 \) (\(c_1 = c_2 \)) leads to \(J = 0 \), that is, to a strictly zero flux.

On the other hand, substitution of \(J = 0 \) in eq 1 would give the well-known Nernstian potential difference through the membrane
\[\psi(x) - \psi(0) = -\ln \frac{c_2(x)}{c_2(0)} \]
(10)

And the sum of the interfacial Donnan potentials is simply \[\psi(0) - \psi_L(x) + [\psi_R - \psi_d(x)] = \ln \frac{c_2(x)}{c_2(0)} + \ln \frac{c_R(x)}{c_L(x)} = \ln \frac{c_2(x)}{c_2(0)}(cR/cL) \]
(11)

Therefore, it is clear from eqs 10 and 11 that the total membrane potential \(\Delta \psi = \psi_R - \psi_L \) is also strictly zero for \(r = 1 \), and we conclude that the case \(r = 1 \) corresponds indeed to the equilibrium state. But eq 9 contains even more information: \(J \) and \((c_1 - c_2) \) will always have the same sign, and then steady-state reverse transport cannot occur in our model. (It is worth noting that all these conclusions do not depend on the particular fixed charge distribution assumed within the membrane.)

It becomes clear at this point that the above discussed results in Takagi and Nakagaki's theory come from the use of Henderson's assumption (eq 6) to calculate the flux and the membrane potential, as anticipated by Higuchi and Nakagawa. Indeed, eqs 6 have been imposed onto eqs 1–3 rather than derived from them.

However, taking into account the wide use of Henderson's assumption in membrane transport theory, it seems necessary to go a step further and try to show which are the sufficient conditions for the validity of eqs 6 in transport through membranes with an asymmetric fixed charge distribution. (Studies on the validity of Henderson's assumption are not very usual in the literature even for the case of homogeneous membranes.) Hereafter we will consider, for the sake of simplicity, a linear relationship for \(b(x), b(x) = x/d, \) for the approximate distribution of the mobile ions. From eqs 1 and 6, we have that
\[-c_1 = J_1/D_1 + dc_1/dx \]
\[c_1 = J_2/D_2 + dc_1/dx \]

Thus, the following relationship can be obtained
\[c_1(0)/c_1(0) = c_2(d)/c_2(d) \]
(13)

and eqs 5b and 5d lead then to
\[c_1(0)/c_2(d) = \frac{r}{r_0} \]
(14)

Finally, eqs 5a, 5c, and 14 give
\[r = r_0 \]
(15)

as the sufficient condition for the validity of Henderson's assumption. This condition is very restrictive since \(r \) and \(r_0 \) are two independent parameters for each experimental situation (\(r_0 \) has a characteristic value for a given asymmetric membrane, while \(r \) has to do with the concentration difference externally imposed between the two bulk solutions). Fortunately, the equality \(r = r_0 \) is not a necessary condition for the validity of eq 6. It can be expected that for \(\theta(0, \theta(d)) \gg c_{1,R} \) (fixed charge concentration within the membrane much greater than external bulk solution concentrations), the concentration profiles \(c_1 \) and \(c_2 \) would follow the linear relationship imposed to \(\theta \) (eq 4) because of the electroneutrality condition (eq 2). Thus, Henderson's assumption should also be valid for this limiting case.

Now, the next step is to solve numerically the "exact" eqs 1–3 according to the boundary conditions imposed on concentrations (eqs 5) and electric potential (\(\psi_L = 0 \)). This numerical solution is necessary in order to (i) overcome all the mentioned shortcomings arising from the use of Henderson's assumption, (ii) check the previously suggested applicability conditions for this assumption, and (iii) establish theoretically which are the actual effects that the asymmetric charge distribution exerts on the flux and the membrane potential in the particular model used.

Numerical Solution

Equations 1–3 can be solved numerically by applying previous finite-difference algorithms\(^{11,12} \) to the case of an inhomogeneous charge distribution within the membrane. This is probably a reasonable procedure to study multiionic systems\(^{11-13} \) where ions of different charge numbers can occur, as well as for treating problems involving space charge effects via the Poisson equation.\(^{12} \)

However, only two ions are considered here, and the space charge effects can be ignored since the membrane thickness is much greater than a typical Debye length.\(^{12} \) Moreover, according to previous work,\(^{1,5} \) a detailed treatment\(^{14} \) of the double layer at the membrane–solution interface is not included. Thus, we will show that the relative simplicity of our transport problem finally leads to a set of transcendental equations whose solution can be accomplished by means of trivial numerical procedures.

First, we solve for the electric potential gradient from eqs 1 and 2
\[\frac{dy}{dx} = \frac{1}{\theta} \left(\frac{d\psi_1}{dx} + \frac{d\psi_2}{dx} + \frac{J_1}{D_1} + \frac{J_2}{D_2} \right) \]
(16)

Equation 16 is introduced now in eq 1 for \(i = 1 \) and 2.

In order to simplify the resulting expression, we make use of the new variable \(y = c_1/\theta \). The final nonlinear differential equation for \(y \) is
\[2y^2 \frac{dy}{dx} + \left(\frac{2}{D_1} + \frac{J_1}{D_1} + \frac{J_2}{D_2} \right)y + \frac{J_1}{D_1} + \theta(1 + 2y) \frac{dy}{dx} = 0 \]
(17)

which can be rearranged in the form
\[\frac{1}{y^2} + \frac{1}{2} \frac{1}{y} \frac{dy}{dx} = -\frac{dy}{\theta} \]
(18)

where
\[y_1 = \frac{1 + \gamma_1 + \gamma_2 + [(1 + \gamma_1 + \gamma_2)^2 - 4\gamma_1]^{1/2}}{2} \]
(20a)

\[y_2 = \gamma_1/y_1 \]
(20b)

Equation 18 can now be rewritten as
\[\frac{1}{y^2} + \frac{1}{2} \frac{1}{y} \frac{dy}{dx} = -\frac{dy}{\theta} \]
(21)

whose integration is immediate
\[(y - y_1)^{y - y_2} = \frac{y_1 + 1/2}{y_1 - y_2} \]
(22)

In terms of concentrations \(c_1 \) and \(\theta \), eq 22 takes the form
\[(c_1 - \gamma_1\theta)^{\gamma_1(c_1 - \gamma_2\theta)} = \frac{y_1 + 1/2}{y_1 - y_2} \]
(23)

The flux \(J \) can now be obtained by imposing the appropriate boundary conditions (eqs 5) to eq 23
\[(c_1(d) - \gamma_1\theta(d))^{\gamma_1(c_1(d) - \gamma_2\theta(d))} = \frac{y_1(c_1(0) - \gamma_1\theta(0)))^{\gamma_1(c_1(0) - y_2\theta(0)} \]
(24)

and this equation can be used to compute the concentration profile \(c_I(x) \) for a set of points between \(x = 0 \) and \(x = d \). Once the value for \(c_I(x) \) is calculated, the constant appearing in Equation 24 is determined. In this case, they should be written in the form

\[
\Delta V = \frac{\theta(0) - \theta(d)}{D_1 D_2} \int_0^d \frac{dx}{2c_I(x) + \theta}
\]

Equation 25 is to be added to eq 11 for the Donnan potentials in order to calculate the total (dimensionless) membrane potential. It should be noted that eqs 24 and 23 are not valid for \(r_f = 1 \). In this case, they should be written in the form

\[
\frac{\Delta c_1}{\theta(d)} = \frac{h_2 - h_1}{2(h_1 + h_2)} \left[\frac{(h_1 + h_2) c_1(x)}{(h_1 + h_2) c_1(0) + h_1 \theta(d)} \right] + h_1 + h_2 = 0
\]

and

\[
\frac{c_1 - c_1(0)}{\theta(d)} = \frac{h_2 - h_1}{2(h_1 + h_2)} \left[\frac{(h_1 + h_2) c_1(x)}{(h_1 + h_2) c_1(0) + h_1 \theta(d)} \right] + \frac{(h_1 + h_2) x^2}{d} = 0
\]

respectively. In eqs 26 and 27, \(\theta(d) \) has been taken as the (constant) fixed charge concentration, and \(h_1 = j d / 2 D \theta(d) \).

The numerical procedure briefly outlined above was implemented on a HP-9000/330 computer under the latest FORTRAN version. When the initial values for the bisection method are properly chosen, the solution procedure lasts less than one minute.

Results

Transport of an ideal electrolyte with charge numbers \(z_1 = +1 \) and \(z_2 = -1 \) and diffusion coefficients \(D_1 = 10^{-5} \text{cm}^2/\text{s} \) and \(D_2 = 2 \times 10^{-3} \text{cm}^2/\text{s} \) is considered throughout this section. Results have also been obtained for other diffusion coefficient values, but no significant qualitative changes were found. Two groups of results are presented. The first one corresponds to the values of \(J \) and \(\Delta \psi \) derived from the “exact” eqs 1–4; the second one is that of the values obtained by using Henderson’s assumption for the concentration profiles in the equations of \(J \) and \(\Delta \psi \) (see ref 2 for details).

Figure 2 shows the concentration profiles inside the membrane for the case \(r = 10 \) and \(r_f = 0.1 \). The exact profiles show some curvature, and the observed deviations from Henderson’s profiles are important. Note that if the profiles were to vary linearly with \(x \), eq 12 could never be fulfilled since \(c_2 \) increases and \(c_1 \) decreases with \(x \) in Figure 2. The numerical solution for other values of parameters \(r \) and \(r_f \) showed that the smaller the difference between \(r \) and \(r_f \), the more linear the exact concentration profiles, as was anticipated in the previous section.

Figures 3 and 4 are plots of the membrane potential and flux vs log \(r_f \) for different values of \(r \), respectively. It is important to note that Henderson’s assumption leads to steady-state nonzero values for the membrane potential and the flux for \(r = 1 \). In addition, the cases \(r = 10 \) and \(r_f \ll r \) show reverse transport (this reverse transport cannot be obtained for a sufficiently high value of \(r \); we obtained that this value was \(r = 20 \) in our case). The exact results show neither nonzero steady-state values for membrane potential and flux in the case \(r = 1 \) nor permanent...

steady-state reverse transport, according to our previous analysis.

In addition, the values obtained by means of Henderson’s as-
sumption agree with our exact computed results when r_1 is of
the order of or greater than r_1, i.e., when the sufficient condition
$r_1 = r_2$ is fulfilled or the fixed charge concentration is high compared
to bulk solution concentrations. (The computations carried out
with smaller fixed charge concentrations showed that agreement
between the exact results and those obtained by using Henderson’s
assumption was only possible for $r_1 = r_2$)

The exact membrane potential is nearly constant, irrespective
of the fixed charge asymmetry. Henderson’s assumption leads
to values of membrane potential lower than the exact ones for
$r_2 < r_1$. The exact fluxes and those obtained via Henderson’s
assumption are also quite different. On the other hand, we see
for the case $r_1 = 10$ that the exact fluxes in the range $r_2 \ll 1$ are
almost twice those corresponding to a homogeneous membrane
with $\theta(x) = \theta(d)$. This is not an asymmetry effect, since the mean
fixed charge concentration in this range is approximately \(\theta(d)/2 \).

Discussion

We have considered a simple model for ion transport through
inhomogeneous membranes whose asymmetric fixed charge distri-
bution varies linearly with position inside the membrane. The
numerical solution worked out here does not show the doubtful
results arising from the use of the popular Henderson assumption
in Takagi and Nakagaki’s model and establishes some restrictive
conditions for this assumption to be valid. However, the effects
that the asymmetry exerts on the flux and membrane potential
have been found to be very small in our case, and more elaborate
theories incorporating other asymmetry effects are now under
development.

When we compare our results to experiment, a case of particular
importance is that of $r_1 = 1$. Experimental results\(^{16}\) have shown
nonzero values for the flux and membrane potential under this
condition. According to our computations, these results should
be regarded as of transient (not permanent) nature, as previously
pointed out by Higuchi and Nakagawa.\(^{3}\) This question deserves
more attention. A necessary experimental condition for a nonzero
asymmetric membrane potential when $r_1 = 1$ is\(^{16}\) “no permeation
of ions across the membrane”. (Under this condition the mem-
brane potential is simply the sum of the two interfacial Donnan
potentials, and this sum is not zero for $r_1 = 1$ because of the fixed
charge distribution asymmetry; see eqs 11 and 5.) This is an ideal
limiting condition that can be approximated in practice with
asymmetric membranes of high compactness. Just two examples:
in ref 16, the membrane was so compact that “the membrane
resistance was high and hardly depended on the salt concentration”,
and in ref 2, inspection of Figure 6B leads to the estimation

$$D_s \approx 10^{-9} \text{ cm}^2/\text{s}$$

for the membrane salt diffusion coefficient (this value is to be compared to the typical one, $D_s \approx 10^{-8} \text{ cm}^2/\text{s}$, for diffusion in a free electrolyte solution). Therefore,
given an initial thermodynamic state of the membrane system,
it would take a typical relaxation time $\tau_s = d^2 / D_s \approx 10^5 \text{ s}$ (one
day, approximately) for the diffusion through a membrane of
thickness $d = 10^{-2} \text{ cm}$ to reach the steady state (this state would
be that of equilibrium for $r_1 = 1$).

The above facts may suggest that the asymmetry effects ob-
served for J and $\Delta \psi$ when $r_1 = 1$ are not permanent, steady-state
properties of the membrane system but depend on the initial
thermodynamic state of this system. Thus, these effects will
eventually vanish after some (long) relaxation time has passed,
even if the external bulk solution concentration (the same at both
sides of the membrane) is kept constant. (However, a complete
theory for this transient behavior is clearly beyond the scope of
the simple model considered here, and calls for a careful experi-
mental analysis to guide it. Therefore, we prefer not to insist
on these tentative comments at this stage.)

Acknowledgment. This work has been partially supported by
the DGICYT (Ministry of Education and Science of Spain) under
Project No. PB89-0420.

Estimation of Minimal Heat Consumption for Heat-Driven Separation Processes via
Methods of Finite-Time Thermodynamics

Vladimir N. Orlov* and R. Stephen Berry

Department of Chemistry and the James Franck Institute, The University of Chicago,
5735 South Ellis Avenue, Chicago, Illinois 60637 (Received: November 26, 1990)

An analytical expression is obtained for a minimal average heat consumption of a separation process driven by heat from
constant-temperature reservoirs. The classical equilibrium expression for heat consumption is obtained in the limit of an
average feed flow of zero. A numerical method is proposed for computing the minimal heat consumption for reservoirs with
variable temperatures. The analysis is based on energy, entropy, and material balances and on analogy with finite-time
thermodynamics analysis of a heat engine with a nonuniform working fluid.

Introduction

Among all the categories of physical and chemical procedures,
separation processes are probably the most wasteful of energy,
when they are evaluated by free energy change from feed to
products, per unit of energy used to drive the process, i.e., by the
natural generalization of efficiency. The purpose of this paper
is to lay the groundwork for analyzing the performance of separa-
tion processes and then to optimize that performance, especially
when the process must operate at a nonzero rate.

Many heat-driven separation processes can be analyzed as heat
ingines, working between two reservoirs at different temperatures
T_H and T_L and producing enthalpy and energy flows out of the
system (instead of power output of conventional heat engines).
In finite-time thermodynamics it is well-known that the average
power output of a heat engine is bounded.\(^ {1,2}\) The analogue of
this result for a separation process is the existence of an upper
limit on the average enthalpy flow through the system when the
average entropy flow through the system is fixed or a lower limit
on the average entropy flow if the average enthalpy flow is fixed.
With some additional assumptions on inputs and outputs this is
equivalent to the existence of an upper limit for the average feed
