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Abstract

Recently, the optimal sex allocation in monogonont rotifers is studied in [1],
and, as a closely related question, the relative frequencies of the relevant types
of mictic females. The authors focus on the evolution of the age at which young
mictic females lose their fertilization susceptibility and they address the threshold
age of fertilization that maximizes resting egg production. Assuming that a
stationary population is achieved, with stable age distribution, they obtain their
results, without knowing the stationary population. Our aim is to study this
problem in the framework of the theory of nonlinear age-dependent population
dynamics developed by G. F. Webb in [13], which is more appropriate from
the mathematical point of view and permits to us to obtain analytically the
stationary population and consequently it is analytically shown that a threshold
age of fertilization equal to the age of maturation is not an ESS, despite the fact
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that then the production of resting eggs is maximum, which has been obtained
by simulation in [1].

1 Introduction

The theory of sex ratio evolution is one of the main topics of the modern evolution-
ary biology whose foundations were established by R. A. Fisher ([5]), who predicted
that an equal allocation of resources of the parents in the production of both sexes
should evolve (Charnov, [4]). This implies that they would produce on average an
equal number of females and male if the cost of producing a male equals the cost of
producing a female. Most of the work developed on sex allocation theory after this
principle was stated, addressed its application to special cases, e.g., special life cicles.
However, only recently the theory has been extended to monogonont rotifers ([1]).
These animals are haplodiploid cyclical parthenogens who often inhabit temporal wa-
ters. Their life-history traits are critical in order to apply sex ratio theory, as important
difficulties arise.

Cyclic parthenogenesis includes life cycles in which reproduction is accomplished
by both sexual an asexual means. In rotifer life cycle (see, e.g., [2]), amictic (asexual)
reproduction is the usual way in which the population grows by means of a repeated
number of parthenogenetic generations of new amictic females producing subitaneous
diploid eggs that develop into new amictic females. Beside this mode of reproduction,
there are also periods of sexual reproduction or mixis of varying duration. After mixis
is induced by factors such as population density ([7], [3]), the amictic females partheno-
genetically produce both amictic and mictic (sexual) daugthers. If the parthenogenetic
population growth is constrained by intraspecific competition and the growth season
is long, optimality arguments predict that mictic daugthers would be produced at a
constant rate for most of the growth season ([10]).

At the beginning of the mictic phase, no males are yet present in the population,
newborn sexual females are not fertilized, and they produce only haploid males. But,
when males occur, the sexual females can be fertilized, and they produce resting eggs,
a kind of cyst that stays dormant for some time before hatching. These eggs are
responsible for the reinitiation of rotifer population after periods of adverse conditions,
as well as a means of dispersal. As a result, the contribution of the resting eggs
produced a year to the current recruitment of females is consider to be negligible (e.g.
[10]). Note also that an effect of the number of resting eggs produced during a growth
season on the recruitment of mictic females in the next growth season is unlikely under
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conditions of intraspecific competition and long growth season, since most of the mictic
daugthers will be produced when population size is at an equilibrium controlled by the
competition, but not by the number of hatched resting eggs. Only if the number of
resting eggs produced a year is very low, the number of females recruited from the
resting egg would be very low in the next year, and so the density of mictic females
might be affected.

According to the finding reported for a genus (Brachionus), rotifer mictic female
fertilization is only possible for a few hours after birth, and a single copulation is
enough to fertilize all the eggs a mictic female will produce ([9]). As a result, there is a
threshold age of fertilization for the young mictic females. If a female is not fertilized
while young, she will only produce males once maturity is reached. Note that there is a
negative feedback loop on male density, since, if males are rare, fertilization will also be
rare and male-producing mictic females will become more frequent. This complex life
cycle includes three different kinds of mature females (amictic females, male-producing
mictic females, and resting-egg producing mictic females) and males, which makes the
extension of the sex allocation theory to monogonont rotifers elusive as it is not really
clear what can be considered masculine and femenine function in theses organisms
(e.g., [12], [11]).

In [1], Aparici et al. focused their attention on the study of the sexual phase of
the cycle and on the evolution of the threshold age of fertilization of mictic female,
since the latter is an intrinsic trait affecting sex allocation that can undergo selection
if we presume, as expected, that there is genetic variation for this trait. These authors
found that the evolutionarily stable strategy (ESS) for the threshold age of fertilization
determines that half of the mictic females should be fertilized, and half not. In other
words, half of them will produce only male, and the other half only resting eggs, which
hatch in the future producing only females. Given that both types of sexual females are
assumed to have the same cost, this means that half of the sexual resources are going to
be invested in masculine function through male-producing mictic females, accounting
indirectly for male allocation, and the other half in femenine function through resting-
egg producing mictic females, accounting by themselves for female allocation.

Unfortunately, the theoretical work by Aparici et al. [1] is based on simulation, and
so it lacks of the generality required to draw clear conclusions. This shortcoming might
be important as the authors assumed in their simulations parameter values for a single
rotifer species, given the scare of empirical data in the literature, and no sensitivity
analysis was performed in order to asses the robustness of their conclusions. However,
they provided a echeme model that can be used in developing a more formal model in
order to study it analitically.

Aparici et al. [1] used the concept of Evolutionary Stable Strategy (ESS) to predict
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the evolutionary output. Using the concept of ESS as a fitness criterion is critical if we
are dealing with frequency-dependent selection, since under such a kind of selection,
standard fitness measurements (e.g., intrinsic rate of natural increase) might not work.
It has long been known that selection on sex allocation is frequency-dependent, and
that its evolution does not necessarily, if ever, maximize population growth rate. Thus,
rotifer sex allocation provides an excellent opportunity to apply the ESS concept to a
frequency-dependent selection problem, with the additional complication of non-linear
effects on male density through a demographic feedback. Again, a more general and
rigorous approach than that used in [1] is needed.

In Section 2 we are going to model the dynamics of the mictic phase using the
general theory of nonlinear age-dependent population dynamics developed by G. F.
Webb in [13], to address the evolution of the age for the loss of fertilization susceptibility
(T ), and its effect on the proportion of the two types of mictic females (i.e., male-
producing and resting egg-producing). We show in Section 3 that T maximizing
the production of resting eggs is the age at maturity (M), but this value of T does
not correspond in general to an evolutionarily stable strategy. Section 4 is devoted to
the computation of the evolutionarily stable threshold age of fertilization. As this trait
has no competition effects, the frequency of mutants in each mictic females recruitment
period is equal to that of the precedent lay of resting eggs. So the criterion of invasibility
reduces to computing the frequency of mutants in the new resting eggs production after
a sexual period and comparing it to the former. Section 5 contains a concrete example
and some plots of equilibrium distributions for different values of the parameters T
and M .

2 Formulation of the model

The model parameters are assumed to be time-independent and the recruitment
rate of mictic female (B) is a parameter in our model (see the Introduction). The
parameters are the following:

µ the per capita mortality rate for females,
µh the per capita mortality rate for males,
e the male-female encounter rate,
m the fecundity of male-producing mictic females,
M the age at maturity for females,
T the threshold age of fertilization (T ≤ M).

For the densities of the population, which is divided in three population subclasses,
we use the following notations:
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Fv(x, t) virgin mictic females, x-aged, at time t,
Fm(x, t) mated mictic females, x-aged, at time t,
H(x, t) males, x-aged, at time t.

Let l(x, t) be the density with respect to age x of the population at time t, i.e.,

l(x, t) = (Fv(x, t), Fm(x, t), H(x, t)).

Then, the total population at time t of members of the population between ages a1

and a2 is
∫ a2

a1

l(x, t) dx =
∫ a2

a1

Fv(x, t) dx +
∫ a2

a1

Fm(x, t) dx +
∫ a2

a1

H(x, t) dx

and the total population at time t is

P (t) =
∫ ∞

0
l(x, t) dx.

In order to formulate the model we now introduce some notation. Let L1 :=
L1(0,∞;R3) be the Banach space of equivalence classes of Lebesgue integrable func-
tions from [0,∞[ to R3 which agree almost everywhere on ]0,∞[, with norm

‖φ‖1 :=
∫ ∞

0
|φ(x)| dx.

Let R3
+ denote the positive cone in R3, i.e.,

R3
+ = {(x1, x2, x3) ∈ R3 : xi ≥ 0 for i = 1, 2, 3}.

Let L1
+ denote the positive cone in L1, i.e.,

L1
+ = {φ ∈ L1 : φ(x) ∈ R3

+ for almost all x > 0}.

Let S > 0 and let LS := C([0, S]; L1) be the Banach space of continuous L1-valued
functions on [0, S] with the supremun norm

‖l‖∞ := sup
0≤t≤S

‖l(t)‖1.

In a natural way we identify each element of LS with an element of the space
L1(]0,∞[×]0, S[;R3). We will use the symbol l to denote both of these elements
in that

l(t)(x) = l(x, t) 0 ≤ t ≤ S, a.e. x > 0.
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The formulation of age-dependent population dynamics is motivated in the following
way. The average rate of change in the total population size in the time interval ]t, t+h[
is

P (t + h)− P (t)

h
=

1

h

∫ h

0
l(x, t + h) dx +

∫ ∞

0

1

h
[l(x + h, t + h)− l(x, t)] dx. (2.1)

As h → 0 in (2.1), the term on the left-hand side converges to the instantaneous
rate of change of the total population size at time t, the first term on the right-hand
side converges to the instantaneous birth rate at time t, and the second term on the
right-hand side converges to the instantaneous rate of change of total population at
time t due to causes other than births.

We are thus led to the following formulation of age-dependent population dynamics:
Let S > 0, let l ∈ LS, let F be a mapping from L1 to R3, let G be a mapping
from L1 into L1, and let φ ∈ L1. The balance law of the population is given by

lim
h→0+

∫ ∞

0

∣∣∣∣
1

h
[l(x + h, t + h)− l(x, t)]−G(l(·, t))(x)

∣∣∣∣ dx = 0 0 ≤ t ≤ S. (2.2)

The birth law of the population is given by

lim
h→0+

1

h

∫ h

0
|l(x, t + h)− F (l(·, t))| dx = 0 0 ≤ t ≤ S. (2.3)

The initial age distribution of the population is given by

l(·, 0) = φ. (2.4)

From (2.1), (2.2), (2.3) we see that the instantaneous rate of change of the total pop-
ulation satisfies

d

dt
P (t) = F (l(·, t)) +

∫ ∞

0
G(l(·, t)) dx,

where F (l(·, t)) represents the birth rate at time t and
∫∞
0 G(l(·, t))(x) dx represents

the rate of change of total population at time t due to causes other than births. The
function F is called the birth function and G the aging function. We will refer to the
equations (2.2), (2.3) and (2.4) as the problem (ADP). In [13] the following definition
is given.
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Definition 2.1 Let S > 0 and let l ∈ LS. We say that l is a solution of (ADP) on
[0, S] provided that l satisfies (2.2), (2.3) and (2.4).

In the case of a population of monogonont rotifers and assuming that the parameters
are time-independent, if we define

H(t) =
∫ ∞

0
H(x, t) dx,

we have

Fv(x + h, t + h)− Fv(x, t) ≈
{
−µFv(x, t)h− eFv(x, t)H(t)h if x < T
−µFv(x, t)h if x ≥ T

Fm(x + h, t + h)− Fm(x, t) ≈
{
−µFm(x, t)h + eFv(x, t)H(t)h if x < T
−µFm(x, t)h if x ≥ T

H(x + h, t + h)−H(x, t) ≈ −µhH(x, t)h.

Consequently, in this case the aging function is the function G : L1 → L1 defined on
φ = (φ1, φ2, φ3) as

G(φ)1(x) :=

{
−µφ1(x)− eφ1(x)

∫∞
0 φ3(y) dy if x < T

−µφ1(x) if x ≥ T

G(φ)2(x) :=

{
−µφ2(x) + eφ1(x)

∫∞
0 φ3(y) dy if x < T

−µφ2(x) if x ≥ T

G(φ)3(x) := −µhφ3(x).

On the other hand, we have:

Fv(0, t) = B, Fm(0, t) = 0 ∀ t > 0

H(0, t) = m
∫ ∞

M
Fv(x, t) dx ∀ t ≥ M.

Therefore, in this case the birth function is the function F : L1 → R3 defined by

F (φ1, φ2, φ3) :=
(
B, 0,m

∫ ∞

M
φ1(x) dx

)
.
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We have the following existence and uniqueness result.

Theorem 2.2 Given φ ∈ L1
+, there exists a unique global solution l of (ADP) (i.e.,

a solution of (ADP) on [0, S] for all S > 0) such that l(·, t) ∈ L1
+ for t ≥ 0.

3 The stationary population

In this section we are going to calculate the stationary population of the monogonont
rotifers involved in the sexual phase given by our model.

As a consequence of [13, Theorem 3.2], if we define S(t)φ := l(·, t), being l the
unique solution of problem (ADP) with initial datum φ ∈ L1

+ given by Theorem 2.2,
then (S(t))t≥0 is a strongly continuous nonlinear semigroup in L1

+ with infinitesimal
generator −A, being A the operator from L1

+ into L1 defined by

Aφ := φ′ −G(φ) for φ ∈ D(A),

where

D(A) := {φ ∈ L1
+ : φ absolutely continuous on [0,∞[, φ′ ∈ L1 and φ(0) = F (φ)}.

Let φ ∈ L1
+, and let l be the solution of (ADP) with initial datum φ, i.e.,

l(t) = S(t)φ. Then, l is an equilibrium solution of (ADP) if and only if l(·, t) = φ for all
t ≥ 0, that is, if φ is a fixed point of the semigroup (S(t))t≥0. Now, by [13, Proposition
4.1], l is an equilibrium solution of (ADP) if and only if Aφ = 0. Consequently, to
obtain the equilibrium solution of (ADP) we have to find the absolutely continuous
functions φT ∈ L1

+, with (φT )′ ∈ L1, safisfying:

(φT )′ = G(φT ) and φT (0) =
(
B, 0, m

∫ ∞

M
φT

1 (x) dx
)
.

Therefore, we need to solve the following ODE initial value-problem:

(φT )′1(x) =

{
−µφT

1 (x)− eφT
1 (x)

∫∞
0 φT

3 (y) dy if x < T
−µφT

1 (x) if x ≥ T
(3.1)

(φT )′2(x) =

{
−µφT

2 (x) + eφT
1 (x)

∫∞
0 φT

3 (y) dy if x < T
−µφT

2 (x) if x ≥ T
(3.2)
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(φT )′3(x) = −µhφ
T
3 (x) if x ≥ 0 (3.3)

φT
1 (0) = B, φT

2 (0) = 0, φT
3 (0) = m

∫ ∞

M
φT

1 (y) dy. (3.4)

From (3.3) we obtain that

φT
3 (x) = m

( ∫ ∞

M
φT

1 (y) dy
)

exp(−µhx).

Now, since φT
1 (x) = φT

1 (T ) exp(µ(T − x)) for all x ≥ T , and T ≤ M , it follows that

∫ ∞

M
φT

1 (y) dy =
φT

1 (T )

µ
exp(µ(T −M)).

Hence,

φT
3 (x) =

mφT
1 (T )

µ
exp(µ(T −M)) exp(−µhx). (3.5)

Then, ∫ ∞

0
φT

3 (y) dy =
mφT

1 (T )

µµh

exp(µ(T −M)).

Thus, for x < T , we have

(φT )′1(x) = −µφT
1 (x)− emφT

1 (T )

µµh

exp(µ(T −M))φT
1 (x).

From where it follows that

φT
1 (x) = φT

1 (0) exp
[(
− µ− emφT

1 (T )

µµh

exp [µ(T −M)]
)
x

]
for 0 ≤ x ≤ T.

Then, since φT
1 is continuous, we get

φT
1 (T ) = B exp(−µT ) exp

[
− emT

µµh

exp(µ(T −M))φT
1 (T )

]
. (3.6)

Since B exp(−µT ) > 0 and − emT
µµh

exp(µ(T − M)) < 0, the equation (3.6) has a

unique solution φT
1 (T ). Consequently, we have
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φT
1 (x) =





B exp
[(
− µ− emφT

1 (T )

µµh
exp [µ(T −M)]

)
x

]
for 0 ≤ x ≤ T

φT
1 (T ) exp(µT ) exp(−µx) for x ≥ T,

(3.7)

with φT
1 (T ) given by (3.6).

On the other hand, by (3.2), for x ≥ T , φT
2 (x) = φT

2 (T ) exp(µT ) exp(−µx), and for
x < T , we have

(φT )′2(x) = −µφT
2 (x) +

emφT
1 (T )

µµh

exp [µ(T −M)]φT
1 (x).

From here, using (3.7), it follows that for x < T ,

φT
2 (x) = B exp(−µx)

[
1− exp

(
− emφT

1 (T )

µµh

exp [µ(T −M)]x
)]

.

Then, by the continuity of φT
2 we obtain

φT
2 (T ) = B exp(−µT )

[
1− exp

(
− emφT

1 (T )

µµh

exp [µ(T −M)]T
)]

. (3.8)

Therefore,

φT
2 (x) =





B exp(−µx)
[
1− exp

(
− emφT

1 (T )

µµh
exp [µ(T −M)]x

)]
for 0 ≤ x ≤ T

B exp(−µx)
[
1− exp

(
− emφT

1 (T )

µµh
exp [µ(T −M)]T

)]
for x ≥ T.

(3.9)

Consequently, at the demographic equilibrium, the number of males (H(T )∗), of virgin
mictic females (F (T )∗v) and of mated mictic females (F (T )∗m), is given by:

H(T )∗ =
∫ ∞

0
φT

3 (x) dx =
mφT

1 (T )

µµh

exp (µ(T −M)). (3.10)

F (T )∗v =
∫ ∞

0
φT

1 (x) dx =
φT

1 (T )

µ
+

B

µ + eH∗(T )

[
1− exp

(
(−µ− eH(T )∗)T

)]
. (3.11)
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F (T )∗m =
∫ ∞

0
φT

2 (x) dx = B
(

1

µ + eH(T )∗
− 1

µ

)(
exp

[
(−µ−eH(T )∗)T

]
−1

)
. (3.12)

At the equilibrium, we have that the number of resting egg-producing mictic females
( F (T )∗r :=

∫∞
M φT

2 (x) dx) is given by

F (T )∗r =
B

µ
exp(−µM)

[
1− exp

(
− emφT

1 (T )

µµh

exp (µ(T −M))T
)]

. (3.13)

Now, by (3.8) and (3.10), we also have

F (T )∗r =
φT

2 (T )

µ
exp (µ(T −M)) (3.14)

and

F (T )∗r =
B

µ
exp(−µM)

[
1− exp(−eH(T )∗T )

]
. (3.15)

On the other hand, the number at the equilibrium of male-producing mictic females
( F (T )∗h :=

∫∞
M φT

1 (x) dx) is given by

F (T )∗h =
φT

1 (T )

µ
exp (µ(T −M)). (3.16)

Then, by (3.10) we have

F (T )∗h =
µh

m
H(T )∗. (3.17)

Now, by (3.6) and (3.10), it follows that

φT
1 (T ) = B exp(−µT ) exp(−eH(T )∗T ). (3.18)

By combining equations (3.16) and (3.18), we obtain

F (T )∗h =
B

µ
exp(−eH(T )∗T ) exp(−µM). (3.19)

Hence, by (3.17) and (3.19), we can write the equation
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H(T )∗ =
mB

µµh

exp(−eH(T )∗T ) exp(−µM). (3.20)

Finally, combining equations (3.15) and (3.20), we get

F (T )∗r =
B

µ
exp(−µM)− µh

m
H(T )∗. (3.21)

From this equation, where T is absent, we conclude that maximazing resting eggs
production involves the choice of a value of T that minimizes the number of males at
equilibrium. Now (3.20) yields

T =
K − log(H(T )∗)

eH(T )∗
, (3.22)

where

K = log
(

mB

µµh

)
− µM

is constant. On the other hand, since T > 0, we have that H(T )∗ < exp(K). Hence,

since the function f(x) = K−log(x)
ex

is decreasing if x ≤ exp(K + 1), from (3.22) it
follows that the value of T maximazing the production of resting eggs is the maximum
possible, that is, M . In conclusion, we have proved that:

In order to maximize the production of resting eggs in a population of monogonont
rotifers the threshold age of fertilization should be the age at maturity.

The same conclusion has been obtained in [1].

4 Evolutionarily Stable Strategy

Laboratory populations studies, of different rotifer species, show that susceptibility
to fertilization dissappears a significant time before mictic females reach maturity (see
[1] and the references therein). So, in [1], it is studied if T = M is an Evolutionarily
Stable Strategy (ESS) in the sense of Maynard Smith and Price ([8]), that is, a strategy
that, if all the members of a population adopt it, no mutant strategy could invade the
population under the influence of natural selection, and the authors show by simulation
that T = M is not an ESS. In this section we obtain this result analytically.
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The invasibility of a value T of the threshold age of fertilization can be tested by
assuming a small rate of recruitment Bi of sexual females with a dominant mutant
allele determining a different value T ′ ≤ M of the threshold age of fertilization. As
usual, one assumes that the (small) invading population does not change the envi-
ronmental conditions determined by the resident one. In this case these reduce to the
population density φT

1 of the resident virgin mictic females and to the total population
H(T )∗ of the resident males, both at the demographic equilibrium.

For the invading population we write a system of four linear equations where the
state variable are the density ψ1(x, t) of virging mictic females (heterozygotic), the
density ψ2(x, t) of mictic mated females (heterozygotic too), the density ψ3(x, t) of
males (haploid, carrying the mutant allele T ′) and the density ψ4(x, t) of resident
resting-egg producing mictic females mated with mutant males (whose eggs will be
heterozygotic). With mutant allels being rare, homozygote mutant individuals have
negligible frequency under random mating, and they will not been considered.

In this system, the rate of transition from virgin to mated is proportional to the
density of virgin mictic females and to the population number of resident males for
ages below the threshold T ′ and it is zero above it. The rate of production of resident
females mated to a mutant male is proportional to the density of virgin resident females
and to the population number of mutant males for ages below the threshold T and it
is zero above it. Finally, the birth rate of mutant males is equal to the fecundity rate of
virgin (heterozygotic) females times half the number of them older than the maturity
age M . Notice that this is in agreement with the hypothesis that terms of second (or
higher order) as, for instance, the number of heterozygotic females mating with mutant
males, can be ignored because the proportion of the mutant allele is small.

Assuming that the demographic equilibrium is also prevalent for the invading pop-
ulation (cf. [1]), we compute the production rate of heterozygotic resting eggs and
define a measure s(T, T ′) of the fitness of a dominant allele T ′ invading a resident
homozygotic population T . s(T, T ′) is defined as the frequency of the rare allele
T ′ in the resting egg production divided by the frequency of T ′ in the production
of mictic females (this latter is Bi/B). This definition is motivated by the following
reasoning. Notice that, as the phenotypic differences between alleles T and T ′ only
affect the length of the fertilizable period of the sexual mictic females, i.e., they do not
have any competition effect, the frequency of allele T ′ in the recruitment of sexual
females in the next sexual reproduction period (following a parthenogenetic reproduc-
tion period ended at a demographic equilibrium), i.e., the “new” Bi/B, will be the
same as the frequency of T ′ in the resting egg production was, i.e., s(T, T ′)Bi/B.
Therefore, s(T, T ′) < 1 will imply an exponential extinction of the mutant allele and
s(T, T ′) > 1 will imply a spread of the mutant allele, at least while its frequency is so
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small that the number of heterozygotic females mating with mutant males and hence,
the nonlinear or global dynamics effects, can be ignored.

To obtain the function s(T, T ′), observe that the system for the invading population
can be written as a non-homogeneus linear (ADP)-problem with birth function (F̃ ) and
aging function (G̃) given by:

F̃ (ψ1, ψ2, ψ3, ψ4) :=
(
Bi, 0,

m

2

∫ ∞

M
ψ1(y) dy, 0

)
,

and G̃ : L1 → L1 defined on ψ = (ψ1, ψ2, ψ3, ψ4) as

G̃(ψ)1(x) :=

{
−µψ1(x)− eH(T )∗ψ1(x) if x < T ′

−µψ1(x) if x ≥ T ′

G̃(ψ)2(x) :=

{
−µψ2(x) + eH(T )∗ψ1(x) if x < T ′

−µψ2(x) if x ≥ T ′

G̃(ψ)3(x) := −µhψ3(x)

G̃(ψ)4(x) :=

{
−µψ4(x) + eφT

1 (x)
∫∞
0 ψ3(y) dy if x < T

−µψ4(x) if x ≥ T

Working as in the previous sections, we can associate with this (ADP)-problem the
operator B, with domain

D(B) := {ψ ∈ L1
+ : ψ absolutely continuous on [0,∞[, ψ′ ∈ L1 and ψ(0) = F̃ (ψ)}

and defined by
Bψ := ψ′ − G̃(ψ) for ψ ∈ D(B).

Consequently, to obtain the equilibrium solution of (ADP) we have to find the
absolutely continuous functions ψ ∈ L1

+, with ψ′ ∈ L1, safisfying:

ψ′ = G̃(ψ) and ψ(0) =
(
Bi, 0,

m

2

∫ ∞

M
ψ1(x) dx, 0

)
.

Therefore, we need to solve the following ODE initial value-problem:

ψ′1(x) =

{
−µψ1(x)− eH(T )∗ψ1(x) if x < T ′

−µψ1(x) if x ≥ T ′ (4.1)
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ψ′2(x) =

{
−µψ2(x) + eH(T )∗ψ1(x) if x < T ′

−µψ2(x) if x ≥ T ′ (4.2)

ψ′3(x) = −µhψ3(x) if x ≥ 0 (4.3)

ψ′4(x) =

{
−µψ4(x) + eφT

1 (x)
∫∞
0 ψ3(y) dy if x < T

−µψ4(x) if x ≥ T
(4.4)

ψ1(0) = Bi, ψ2(0) = 0, ψ3(0) =
m

2

∫ ∞

M
ψ1(y) dy, ψ4(0) = 0. (4.5)

Solving this ODE initial value-problem, we obtain:

ψ1(x) =





Bi exp
[
−

(
µ + eH(T )∗

)
x

]
for 0 ≤ x ≤ T ′

Bi exp(−eT ′H(T )∗) exp(−µx) for x ≥ T ′
(4.6)

ψ2(x) =





Bi exp(−µx)
[
1− exp

(
− exH(T )∗

)]
for 0 ≤ x ≤ T ′

Bi exp(−µx)
[
1− exp

(
− eT ′H(T )∗

)]
for x ≥ T ′

(4.7)

ψ3(x) =
mBi

2µ
exp

(
− eT ′H(T )∗

)
exp(−µM) exp(−µhx) (4.8)

ψ4(x) =





e
( ∫∞

0 ψ3(y) dy
)

exp(−µx)
∫ x
0 exp(µy)φT

1 (y) dy for 0 ≤ x ≤ T

e
( ∫∞

0 ψ3(y) dy
)( ∫ T

0 exp(µy)φT
1 (y) dy

)
exp(−µx) for x ≥ T

(4.9)

From (3.7), (3.10), (4.8) and (4.9), it follows that, at the demographic equilibrium,
the number of resting egg-producing mictic females mated with mutant males is given
by
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n∗ :=
∫ ∞

M
ψ4(x) dx = e

( ∫ ∞

0
ψ3(y) dy

)( ∫ T

0
exp(µy)φT

1 (y) dy
) ∫ ∞

M
exp(−µx) dx =

=
emBi

2µµh

exp
(
− µM − eT ′H(T )∗

)
1

µ
exp(−µM)×

×
∫ T

0
exp(µy)B exp

(
− (µ + eH(T )∗)y

)
dy =

=
mBBi

2µ2µhH(T )∗
exp

(
− 2µM − eT ′H(T )∗

)[
1− exp

(
− eTH(T )∗

)]
.

From (4.7) we have that, at the demographic equilibrium, the number of resting egg-
producing heterozygotic females is given by

m∗ :=
∫ ∞

M
ψ2(x) dx =

Bi

µ
exp(−µM)

[
1− exp

(
− eT ′H(T )∗

)]
.

Consequently, the production of resting eggs of genotype (TT ′) is given by

m̃(
1

2
m∗ + n∗) =

m̃Bi

2µ
exp(−µM)×

×
[
1− exp (− eT ′H(T )∗)

(
1− mB

µµhH(T )∗
exp(−µM)[1− exp (− eTH(T )∗)]

)]
,

where m̃ stands for the fecundity of resting eggs-producing females.

Then by (3.20), we get

m̃(
1

2
m∗ + n∗) =

m̃Bi

2µ
exp(−µM)

[
1− exp (− eT ′H(T )∗)

(
2− exp (eTH(T )∗)

)]
.

From here and (3.15), we have the following expression for the fitness:

s(T, T ′) =

1
2

+
(

1
2
exp(eTH(T )∗)− 1

)
exp (− eT ′H(T )∗)

1− exp (− eTH(T )∗)
. (4.10)

From (4.10) it follows that the function s(T, T ′) takes the value 1 when T = T ′

(as expected) and also when exp (eTH(T )∗) = 2 ( for any T ′). Then, if we denote
this value of T by Tess, by (3.20) we obtain
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Tess =
µµh log(4) exp(µM)

emB
. (4.11)

We have that the function s(T, T ′) is monotonous as a function of T ′ for any
other value of T 6= Tess, strictly increasing when T < Tess, and strictly decreasing
when T > Tess. Finally, s(T, Tess) > 1 if T 6= Tess. This means that Tess (provided
that it is less than M) is an Evolutionarily Stable Strategy in the sense that it can not
be invaded by a small population of mutants carrying any different allele (the frequency
of them would not increase) and, on the other hand, it can invade (as a mutant) any
resident allele. Moreover, it is globally convergence in the sense of [6] because any value
of T different from Tess can be invaded by mutants carrying alleles determining
values of T closer to Tess.

The ESS value deduced analytically here for the threshold age of fertilization co-
incides with the one obtained in [1] by numerical evidence of the fact that an invad-
ing/noninvadable strategy T is such that the frequency of male-producing females
equals the frequency of resting egg-producing females at equilibrium. Observe that we
obtain also this result since from (4.11), (3.15) and (3.19), it follows that

F (Tess)
∗
r = F (Tess)

∗
h. (4.12)

As it is remarked in [1], (4.12), which is the prediction that evolution proceeds
toward the state at which the stable numbers of male-producing mictic females versus
resting eggs-producing mictic females are equal, can be interpreted in the context of
the sex allocation theory of Fisher ([5]). Moreover, from (3.14), (3.16) and (4.12), it
follows that

φTess
1 (Tess) = φTess

2 (Tess). (4.13)

Finally, when Tess given by (4.11) is large than M and hence unattainable, an
analysis of s(T, T ′) easily gives that any resident strategy T < M can be invaded
by any mutant with allele T ′ > T since then s(T, T ′) > 1. As s(M, T ′) < 1 for any
T ′ < M < Tess, T = M turns out to be an ESS which is globally convergence stable
also in this case.

5 Concrete Example

In this section we are going to calculate, using Mathematica, the stationary popu-
lation for concrete values of the constant parameters.
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In some rotifer species, belonging to the genera Brachionus, the constant parameters
of the model are well known (see [1]), and they are the following:

The per capita mortality rate for females µ = 1
60

h−1,

The per capita mortality rate for males µh = 0.7
24

h−1,

The male-female encounter rate e = 0.04
24

lh−1male−1,

The fecundity of male-producing mictic females m = 1.5
24

male female−1h−1.

First of all, we get that with this values of the parameters and assuming that B = 1
and M = 24h, we obtain from (4.11) that Tess ≈ 9.651. Consequently, in this example,
the optimal threshold age of fertilization to have ESS is strictly less than the age at
maturity.

For these concrete value of the parameters, to get the value of φT
1 (T ) given by

(3.6), we need to find the root of the equation

x−B exp
(
− T

60

)
exp

[
− 1.5

7
exp

(
1

60
(T −M)

)
x

]
= 0. (5.1)

Then, by (3.10), (3.11), (3.12), (3.15) and (3.16), we have the following formulas:

H(T, M)∗ =
900

7
φT

1 (T ) exp
(

1

60
(T −M)

)
.

F (T, M)∗v = 60φT
1 (T ) +

B
1
60

+ 1.5
7

φT
1 (T ) exp ( 1

60
(T −M))

×

×
(
1− exp

[(
− 1

60
− 1.5

7
φT

1 (T ) exp
(

1

60
(T −M)

))
T

])
.

F (T,M)∗m = B
(

1
1
60

+ 1.5
7

φT
1 (T ) exp ( 1

60
(T −M))

− 60
)
×

×
(

exp
[(
− 1

60
− 1.5

7
φT

1 (T ) exp
(

1

60
(T −M)

))
T

]
− 1

)
.

F (T, M)∗r = 60B exp
(
− M

60

)(
1− exp

[
− 1.5

7
φT

1 (T ) exp
(

1

60
(T −M)

)
T

])
.

F (T, M)∗h = 60φT
1 (T ) exp

(
1

60
(T −M)

)
.
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Using Mathematica we can obtain the following plots for the total numbers of equi-
librium populations for different values of T and M , assuming that B = 1:

H(T,M)∗

M

T

Figure 1: Plot of the function H(T, M)∗, giving the males at equilibrium for different
values of the parameters T and M .

F (T, M)∗v

M

T

Figure 2: Plot of the function F (T, M)∗v, giving the virgin females at equilibrium for
different values of the parameters T and M
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F (T, M)∗m

M

T

Figure 3: Plot of the function F (T, M)∗m, giving the mated females at equilibrium for
different values of the parameters T and M .

F (T, M)∗r

M

T

Figure 4: Plot of the function F (T, M)∗r, giving the resting eggs-producing females at
equilibrium for different values of the parameters T and M .
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F (T, M)∗h

M

T

Figure 5: Plot of the function F (T, M)∗h, giving the male-producing mictic females at
equilibrium for different values of the parameters T and M .

6 Concluding remarks

Sex allocation theory is a robust branch of the evolutionary biology, founded long
time ago. The generality of that theory should be tested by applying it to special
cases, particularly to organisms with sexual reproduction associated to complex life
cycles. We have shown that the theory can be developed for organisms with hap-
lodiploid cyclical parthenogens, in which sexual reproduction is episodic and combined
to asexual reproduction, and males are haploids. Rotifers are haplodiploid cyclical
parthenogens with density dependent frequency of males. We have shown that the
technical difficulties arisen from the non-linear effects in its life cycle can be overcome.
We have proved that the main result from the sex allocation theory (i.e., the even sex
allocation theorem) holds in such a complex life cycle, if the meaning of sex allocation
in this context concept is adequately clarified. It refers the allocation in two types of
females: male-producing mictic females and resting-egg producing mictic females. This
result confirms the generality of the findings in [1] on a more rigorous basis relying in
the analytical computation of the evolutionarily stable value of the threshold age of
fertilization T of the mictic females. This value, less than the age at maturity in most
of the biologically realistic cases, turns out to be convergence stable in the sense that
a resident allele with another value of T is invadable by any mutant with a theshold
age of fertization closer to Tess than T . Although a threshold age of fertilization
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equal to the age at maturity is the value of T maximizing resting eggs production, it
is not, typically, the value towards which evolution proceeds.

7 Appendix A: Proof of Theorem 2.2

By [13, Theorem 2.4], to get a unique local positive solution we only need to verify
that (2.1), (2.2), (2.22) and (2.23) of [13] hold. In fact:

|F (φ)− F (ψ)| = m

∣∣∣∣
∫ ∞

M
(φ1(x)− ψ1(x)) dx

∣∣∣∣ ≤ m‖φ− ψ‖1.

Hence, (2.1) holds with c1(r) = m for all r > 0.
Let φ, ψ ∈ L1 with ‖φ‖1 ≤ r and ‖ψ‖1 ≤ r. Then,

∫ ∞

0
|G(φ)1(x)−G(ψ)1(x)| dx =

=
∫ T

0

∣∣∣∣− µφ1(x)− eφ1(x)
∫ ∞

0
φ3(y) dy + µψ1(x) + eψ1(x)

∫ ∞

0
ψ3(y) dy

∣∣∣∣ dx+

+
∫ ∞

T
| − µφ1(x) + µψ1(x)| dx ≤ µ

∫ ∞

0
|φ1(x)− ψ1(x)| dx+

+e
∫ T

0

∣∣∣∣φ1(x)
( ∫ ∞

0
φ3(y) dy

)
− ψ1(x)

( ∫ ∞

0
ψ3(y) dy

)∣∣∣∣ dx ≤

≤ µ‖φ1 − ψ1‖1 + e
∫ T

0

∣∣∣∣
∫ ∞

0
φ3(y) dy −

∫ ∞

0
ψ3(y) dy

∣∣∣∣|φ1(x)| dx+

+e
∫ T

0

∣∣∣∣
∫ ∞

0
ψ3(y) dy

∣∣∣∣|φ1(x)− ψ1(x)| dx ≤
≤ µ‖φ1 − ψ1‖1 + e‖φ1‖1‖φ3 − ψ3‖1 + e‖ψ3‖1‖φ1 − ψ1‖1.

Analogously, ∫ ∞

0
|G(φ)2(x)−G(ψ)2(x)| dx ≤

≤ µ‖φ2 − ψ2‖1 + e‖φ1‖1‖φ3 − ψ3‖1 + e‖ψ3‖1‖φ1 − ψ1‖1

and ∫ ∞

0
|G(φ)3(x)−G(ψ)3(x)| dx ≤ µh‖φ3 − ψ3‖1.

Therefore,

‖G(φ)−G(ψ)‖1 ≤ µ‖φ1 − ψ1‖1 + µ‖φ2 − ψ2‖1 + µh‖φ3 − ψ3‖1 + 2e‖φ1‖1‖φ3 − ψ3‖1+
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+2e‖ψ3‖1‖φ1 − ψ1‖1 ≤ γ‖φ− ψ‖1 + 2er‖φ− ψ‖1,

with γ = max{µ, µh}. Hence, (2.2) of [13] holds with c2(r) = γ + 2er for all r > 0.

On the other hand, it is obvious that F (L1
+) ⊂ R3

+, i.e., (2.22) of [13] holds, and it
is easy to see that if c3(r) = γ + er, then

G(φ) + c3(r)φ ∈ L1
+ if φ ∈ L1

+, ‖φ‖1 ≤ r,

so (2.23) of [13] holds too.

Consequently, for every φ ∈ L1
+ there exists a unique solution l of (ADP) on

a maximal interval of existence [0, Tφ[. Let us see that Tφ = ∞. Suppose that
‖φ‖1 ≤ r1. Having in mind the proof of [13, Proposition 2.2], the solution l exists on
[0, T1] if T1 satisfies

T1
c1(2r1) + c2(2r1) + (|F (0)|+ ‖G(0)‖1)

2r1

+
1

2
≤ 1.

Now, |F (0)| = B and ‖G(0)‖1 = 0. Hence, we can take

T1 =
r1

m + γ + B + 4er1

.

Then, we have ‖l(T1)‖1 ≤ 2r1 = r2. Thus, by the fixed point argument used in the
proof of [13, Proposition 2.2], if

T2 =
r2

m + γ + B + 4er2

,

there exists a solution l̂ on [0, T2] of the integral equation

l̂(x, t) =





F (l̂(·, t− x)) +
∫ x
0 G(l̂(·, s + t− x))(s) ds x ∈]0, t[

l(x− t, T1) +
∫ x
x−t G(l̂(·, s + t− x))(s) ds x ∈]t, +∞[.

Hence, by [13, Proposition 2.4], if we define l(·, t) := l̂(·, t− T1) for T1 < t ≤ T1 + T2,
then l is a solution on [0, T1 + T2]. Repeating this argument, if

Tn =
rn

m + γ + B + 4ern

, rn = 2n−1r1,

then l is solution of (ADP) on [0, T1 + · · · + Tn] for all n ∈ N. Therefore, since
limn→∞ Tn = 1

4e
, we get that Tφ = ∞, and the proof concludes.
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8 Appendix B: The Mathematica codes

In this appendix we give the Mathematica code that produce the figures of section
5.

Clear[functmale]

functmale[T,M][variable]:= Module[{tabla},tabla=variable/.
FindRoot[x- Exp[-T/60]*Exp[-1.5/7*T*

Exp[1/60 (T - M)]x]== 0,{x, 0}];
solution=N[tabla];

male=900/7*solution*Exp[1/60 (T - M)]; male]

Plot3D[functmale[T,M][x], {T,9,24},{M,24,26}] (see figure 1)

Clear[functvirgin]

functvirgin[T,M][variable]:= Module[{tabla},tabla=variable/.
FindRoot[x- Exp[-T/60]*Exp[-1.5/7*T*

Exp[1/60 (T - M)]x]== 0,{x, 0}];
solution=N[tabla];

virgin= solution*60 + (1/ (1/60 + 1.5/7*solution*

Exp[1/60*(T - M)]))*(1 - Exp[-(1/60 + 1.5/7*solution*

Exp[1/60*(T - M)])T]); virgin]

Plot3D[functvirgin[T,M] [x], {T,9,24},{M,24,26}] (see figure 2)

Clear[functmated]

functmated[T,M][variable]:= Module[{tabla},tabla=variable/.
FindRoot[x- Exp[-T/60]*Exp[-1.5/7*T*

Exp[1/60 (T - M)]x]== 0,{x, 0}];
solution=N[tabla];

mated= (1/(1/60+1.5/7*solution*Exp[1/60*(T - M)]) - 60)

(Exp[-(1/60 + 1.5/7*solution*Exp[1/60*(T - M)])T] - 1) ;mated]

Plot3D[functmated[T,M] [x], {T,9,24},{M,24,26}] (see figure 3)

Clear[functresting]

functresting[T,M][variable]:= Module[tabla,tabla=variable/.

FindRoot[x- Exp[-T/60]*Exp[-1.5/7*T*

Exp[1/60 (T - M)]x]== 0,{x, 0}];
solution=N[tabla];

resting= 60*Exp[-M/60]*(1 - Exp[- 1.5/7*solution*

Exp[1/60*(T - M)]T]) ;resting]

Plot3D[functresting[T,M] [x], {T,9,24},{M,24,26}] (see figure 4)
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Clear[functhaplo]

functhaplo[T,M][variable]:= Module[tabla,tabla=variable/.

FindRoot[x- Exp[-T/60]*Exp[-1.5/7*T*

Exp[1/60 (T - M)]x]== 0,{x, 0}];
solution=N[tabla];

haplo= 60*solution*Exp[1/60*(T - M)] ;haplo]

Plot3D[functhaplo[T,M] [x], {T,9,24},{M,24,26}] (see figure 5)
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