BIOAVAILABILITY PREDICTIONS FROM IN SITU PERMEABILITY: 6-FLUOROQUINOLONES

Departamento de Farmacia y Tecnología Farmacéutica. Facultad de Farmacia. Universidad de Valencia.

Introduction
In the early stages of drug development a method to obtain information about oral bioavailability of new candidates could help to simplify the initial screening and focus on more absorbable derivatives. One of these methodologies consists of predicting the fraction of dose absorbed from intestinal permeability. In this work the relationship between the in situ permeability values (P_{eff}) and oral bioavailability (F) determined in rat of some antibacterial quinolones is being investigated. Preliminary data corresponding to two new Ciprofloxacin derivatives are presented.

Experimental Methods
Two Ciprofloxacin derivatives were synthesised by CENAVISA S.A. Laboratories. The structures are represented in Figure 1.

![Figure 1](image-url)

The study was carried out on male Wistar rats, weighing 250-300 g, maintained in perfect housing conditions. The in situ absorption experiments were performed on six animals, using a closed loop technique on the whole intestine of the animal, as previously described.

Bioavailability studies were carried out on non-anesthetised rats. The animals were cannulated on the jugular vein the day before to the experiment. Intravenous administration of was carried out by means of the jugular cannula and the intra-gastric administration was made using a gavage needle.

Blood samples were taken from the cannula at selected times.

The analysis of the samples was carried out by HPLC with a fluorimetric detection. Analysis procedures were validated for every compound.

Mean plasma levels of five animals were used to estimate the pharmacokinetic parameters describing the profile versus time and to calculate the area under the curve AUC by trapezoidal rule.

The fitting equation used for permeability -bioavailability correlations was:

\[F_{abs} = 1 - e^{\left(\frac{-P_{eff}^2}{R^2 T}\right)} \]

where R is the intestinal radius and T the effective intestinal transit time for absorption. The fitting procedures were made by means of PCNONLIN 4.0.

Results and Discussion
In Table 1 the permeability values obtained in situ and the bioavailabilities determined in vivo are shown for the two new quinolones along with other experimental results previously reported. In Figure 2 the relationship between permeability in situ values and oral bioavailability is graphically outlined.

The predictive performance of the model was evaluated using a "leave-one-out" procedure and computation of both the mean prediction error (ME) showing the prediction bias and the squared root of the mean squared prediction error (RMSE showing the prediction accuracy). Considering these parameters there is a good relationship between P_{eff} and bioavailability (ME=7.8% and RMSE=17%).

As regards absorbing transit time, T, the value obtained (1.2 h) is very closed to the referenced.

Table 1

<table>
<thead>
<tr>
<th>Compound</th>
<th>P_{eff} (cm/s)</th>
<th>F_{abs} %</th>
</tr>
</thead>
<tbody>
<tr>
<td>CNV97100</td>
<td>1.86·10^{-5}</td>
<td>73.5</td>
</tr>
<tr>
<td>CNV97102</td>
<td>7.99·10^{-5}</td>
<td>86.5</td>
</tr>
<tr>
<td>Norfloxacin</td>
<td>1.05·10^{-4}</td>
<td>33.8</td>
</tr>
<tr>
<td>Pefloxacin(\text{a},\text{b})</td>
<td>4.78·10^{-4}</td>
<td>85.5</td>
</tr>
<tr>
<td>N'-Pepyl-norfloxacin(\text{a},\text{b})</td>
<td>1.01·10^{-4}</td>
<td>92.8</td>
</tr>
</tbody>
</table>

Figure 2

Conclusion
A good relationship could be established in our experimental conditions between in situ permeability and in vivo bioavailability. A new set of quinolone derivatives must be assayed in order to perform the external validation of the correlation to check its predictive potentialities.

References

Acknowledgements
This work was supported by the CYCIT from the Ministry of Education and Science of Spain (Project SAF36-1710). The authors are indebted to the Ministry of Education and Science from Span for grants to A.R.G. and G.S.C.