STUDY OF THE ABSORPTION MECHANISM OF TRIAMTERENE IN RATS.
M.Montalar, R. Nalda, A.Ruiz-García, G. Sánchez-Castaño, M. Bermejo, V. Merino, T.M.Garrigues

Introduction

Triamterene is currently used as a diuretic in therapeutics and has a low bioavailability. This study intends to go insight the intestinal absorption mechanism of triamterene in rat to find possible causes to its bioavailability problems and in order to make further comparison with the absorption of solid formulations.

Experimental Methods

The concentration dependence of the absorption was studied by perfusion of five different concentrations of triamterene ranging from 0.08µg/mL to 8 µg/mL, using an intestinal in situ perfusion technique. The solutions were perfused in the whole intestine of the anesthesized rats and samples of the luminal content were taken every 5 minutes over a period of 30 minutes. Permeability values, \(P_{\text{eff}} \), were calculated in every condition by non linear regression of the remaining concentration of triamterene in lumen versus time.

Kinetic values were obtained by nonlinear regression of effective permeabilities versus concentration using the following equation:

\[
P_{\text{eff}} = \frac{P_c}{1+\frac{C}{K_m}} + P_m \tag{1}
\]

where \(P_c \) is the carrier permeability (=Jmax/Km), \(K_m \) is the Michaelis constant, \(P_m \) is the nonsaturable membrane permeability and \(C \) is the initial perfusion concentration. The fitting was made with the aid of SIGMAPLOT 2.0.

Results and Discussion

The permeability values of triamterene in each condition are listed in Table 1. The one way analysis of variance (ANOVA) showed statistically significant differences between \(P_{\text{eff}} \) values in the different conditions (p=0.02). In Figure 1 shows the plot of \(P_{\text{eff}} \) versus concentration and the best fit line. Parameters and the statistical figures associated are listed in Table 2.

![Figure 1](image)

Table 1

<table>
<thead>
<tr>
<th>Concentration µg/mL</th>
<th>(P_{\text{eff}}) (cm/s) (SD)</th>
</tr>
</thead>
<tbody>
<tr>
<td>0.008</td>
<td>(3.12\times10^{-5}) (9.6\times10^{-6})</td>
</tr>
<tr>
<td>0.08</td>
<td>(2.33\times10^{-5}) (5.6\times10^{-6})</td>
</tr>
<tr>
<td>0.8</td>
<td>(1.84\times10^{-5}) (3.5\times10^{-6})</td>
</tr>
<tr>
<td>4</td>
<td>(1.73\times10^{-5}) (1.9\times10^{-6})</td>
</tr>
<tr>
<td>8</td>
<td>(1.67\times10^{-5}) (4.1\times10^{-6})</td>
</tr>
</tbody>
</table>

Table 2

<table>
<thead>
<tr>
<th>Parameter</th>
<th>Value</th>
</tr>
</thead>
<tbody>
<tr>
<td>Jmax (µg/s·cm²)</td>
<td>(8.32\times10^{-1}) (0.13\times10^{-1})</td>
</tr>
<tr>
<td>Km (µg/mL)</td>
<td>(5.07\times10^{-2}) (7.87\times10^{-3})</td>
</tr>
<tr>
<td>Pc (cm/s)</td>
<td>(1.64\times10^{-3}) (6.61\times10^{-4})</td>
</tr>
<tr>
<td>Pm (cm/s)</td>
<td>(1.70\times10^{-5}) (2.55\times10^{-6})</td>
</tr>
<tr>
<td>(R^2)</td>
<td>0.9978</td>
</tr>
</tbody>
</table>

Concentration

A combined kinetic of passive and carrier mediated mechanism describes the absorption process of triamterene in small intestine of rat. The low permeability at the higher luminal concentrations could be partially responsible of the low and variable bioavailability.

References

1. V.K. Kapoor. Analytical profiles of drug substances and excipients. 23: 571-605

Acknowledgements

The authors are indebted to the Ministry of Education and Science from Spain for grants to A.R.G. and G.S.C.