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Abstract

We prove new summability properties for multilinear operators on ℓp spaces.
An important tool for this task is a better understanding of the interplay between
almost summing and absolutely summing multilinear operators.

1 Introduction

This work is the outgrowth of several papers by the authors and other researchers (see,
e.g., [2, 3, 6, 7, 8, 10, 11, 13, 14, 16, 17, 19, 24] and references therein) on summability
properties of multilinear mappings between Banach spaces.

As a consequence of the successful theory of absolutely summing linear operators,
the study of summability properties of multilinear mappings focuses on mappings that
improve the summability of series. Historical accounts of this multilinear theory can be
found in [2, 19].

As expected, at the heart of the theory lies the investigation of the interplay between
different types of summability of multilinear mappings. For example, [21] is a comparative
study of three different classes of absolutely summing multilinear mappings. Having in
mind that the interplay between almost summability and absolute summability is quite
profitable in the linear case (see [15, Chapter 12]), in this paper we will explore the
connections of almost summing and absolutely summing multilinear mappings and apply
them to obtain summability properties for multilinear operators on ℓp spaces.

The first natural issue is the well know fact that absolutely p-summing linear operators
are almost summing for every p. In some situations, for instance in the Pietsch Domi-
nation Theorem, the multilinear mappings that play the role of the absolutely summing
linear operators are the dominated ones. So it is a natural question if dominated multi-
linear mappings are almost summing. In Section 3 we prove that dominated multilinear
mappings actually satisfy a condition stronger than being almost summing.
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One of the trends of the theory is the identification of coincidence situations, that is, a
situation where E1, . . . , En, F are Banach spaces and every continuous n-linear mapping
A : E1×· · ·×En −→ F enjoys a certain summability property. Probably the first result in
this line is the Defant–Voigt Theorem (see [10, Corollary 3.2] or [2], where an improved ver-
sion can be found), which states that multilinear forms are always (1; 1, . . . , 1)-summing.
Several other multilinear coincidence results can be found in, e.g., [4, Theorem 3.3], [9,
Proposition 2.1] and [2, Theorem 3.7]. The core of Section 4 is the obtainment of new
coincidence results for absolutely summing multilinear functionals on ℓp spaces. Accord-
ing to the main idea of this paper, these new absolutely summing coincidence results
will follow from a general result (Theorem 3.2) concerning almost summing multilinear
mappings. We prove for instance that for any 1 ≤ p ≤ 2, continuous bilinear forms A on
ℓp × F , where F ′ has type 2, are absolutely (p; 2, 1)-summing. Moreover, A is absolutely
(rp; rp, rp)-summing for any 1 ≤ rp ≤ 2p

3p−2
. In particular, if 1 ≤ p ≤ 2 and 1 < q ≤ 2,

then bilinear forms on ℓp × ℓq are (p; 2, 1)−summing and bilinear forms on ℓ1 × ℓq are
(r; r, r)−summing for 1 ≤ r ≤ 2.

2 Notation and background

All Banach spaces are considered over the scalar field K = R or C. Given a Banach space
E, let BE denote the closed unit ball of E and E ′ its topological dual.

Let p > 0. By ℓp(E) we denote the (p-)Banach space of all absolutely p-summable
sequences (xj)

∞
j=1 in E endowed with its usual ℓp-norm (p-norm if 0 < p < 1). Let ℓwp (E)

be the space of those sequences (xj)
∞
j=1 in E such that (φ(xj))

∞
j=1 ∈ ℓp for every φ ∈ E ′

endowed with the norm (p-norm if 0 < p < 1)

∥(xj)
∞
j=1∥ℓwp (E) = sup

φ∈BE′

(
∞∑
j=1

|φ(xj)|p
) 1

p

.

Let ℓup(E) denote the closed subspace of ℓwp (E) formed by the sequences (xj)
∞
j=1 ∈ ℓwp (E)

such that limk→∞ ∥(xj)
∞
j=k∥ℓwp (E) = 0.

Let E1, . . . , En, E, F be Banach spaces. The Banach space of all continuous n-linear
mappings from E1 × · · · × En into F is denoted by L(E1, . . . , En;F ) and endowed with
the usual sup norm. We simply write L(nE;F ) when E1 = · · · = En = E.

For 0 < p, p1, p2, . . . , pn ≤ ∞ , we assume that 1
p
≤ 1

p1
+ · · ·+ 1

pn
. An n−linear mapping

A ∈ L(E1, . . . , En;F ) is absolutely (p; p1, p2, . . . , pn)-summing if there is C > 0 such that

∥(A(x1
j , x

2
j , . . . , x

n
j ))

k
j=1∥p ≤ C

n∏
i=1

∥(xi
j)

k
j=1∥ℓwpi (Ei)

for all finite families of vectors xi
1, . . . , x

i
k ∈ Ei, i = 1, 2, . . . , n. The infimum of such C > 0

is called the (p; p1, . . . , pn)-summing norm of A and is denoted by π(p;p1,...,pn)(A). Let
Π(p;p1,p2,...,pn)(E1, . . . , En;F ) denote the space of all absolutely (p; p1, p2, . . . , pn)-summing
n-linear mappings from E1 × · · · × En to F endowed with the norm π(p;p1...,pn).

It is well known that we can replace ℓwpk(Ek) with ℓupk(Ek) in the definition of absolutely
summing mappings.
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Absolutely summing mappings fulfill the following inclusion result, which appears in
[20, Proposition 3.3] (see also [2]):

Theorem 2.1. (Inclusion Theorem) Let 0 < q ≤ p ≤ ∞, 0 < qj ≤ pj ≤ ∞ for all
j = 1, . . . , n. If 1

q1
+ · · ·+ 1

qn
− 1

q
≤ 1

p1
+ · · ·+ 1

pn
− 1

p
, then

Π(q;q1,...,qn)(E1, . . . , En;F ) ⊆ Π(p;p1,...,pn)(E1, . . . , En;F )

and π(p;p1,...,pn) ≤ π(q;q1,...,qn) for all Banach spaces E1, . . . , En, F .

If 1
p
= 1

p1
+ · · ·+ 1

pn
, absolutely (p; p1, . . . , pn)-summing n-linear mappings are usually

called (p1, . . . , pn)-dominated. They satisfy the following factorization result (see [22,
Theorem 13]):

Theorem 2.2. (Factorization Theorem) A multilinear mapping A ∈ L(E1, . . . , En;F )
is (p1, . . . , pn)-dominated if and only if there are Banach spaces G1, . . . , Gn, operators
uj ∈ Πpj(Ej;Gj), j = 1, . . . , n, and B ∈ L(G1, . . . , Gn;F ) such that A = B ◦ (u1, . . . , un).

As mentioned in the introduction, the next theorem is probably the first coincidence
result for multilinear mappings:

Theorem 2.3. (Defant–Voigt Theorem) Let n ≥ 2 and E1, . . . , En be Banach spaces.
Then L(E1, . . . , En;K) = Π(1;1,...,1)(E1, . . . , En;K) isometrically.

We denote by Rad(E) the space of sequences (xj)
∞
j=1 in E such that

∥(xj)
∞
j=1∥Rad(E) = sup

n∈N

∥∥∥∥∥
n∑

j=1

rjxj

∥∥∥∥∥
L2([0,1],E)

< ∞,

where (rj)j∈N are the Rademacher functions on [0, 1] defined by rj(t) = sign(sin 2jπt). If
instead of the L2([0, 1], E) norm one considers in the definition of Rad(E) the Lp([0, 1], E)
norm, 1 ≤ p < ∞, one gets equivalent norms on Rad(E) as a consequence of Kahane’s
inequalities (see [15, p. 211]). These norms, when needed, will be denoted by ∥ · ∥Radp(E).

Recall also that a linear operator u : E −→ F is said to be almost summing if there is
a C > 0 such that

∥ (u(xj))
m
j=1 ∥Rad(F ) ≤ C

∥∥(xj)
m
j=1

∥∥
ℓw2 (E)

for any finite set of vectors {x1, . . . , xm} in E. The space of all almost summing linear
operators from E to F is denoted by Πas(E;F ) and the infimum of all C > 0 fulfill-
ing the above inequality is denoted by ∥u∥as. Note that this definition differs from the
definition of almost summing operators given in [15, p. 234] but coincides with the
characterization which appears a few lines after that definition (yes, the definition and
the stated characterization are not equivalent). Since the proof of [15, Proposition 12.5]
uses the characterization (which is our definition), we can conclude that every absolutely
p-summing linear operator, 1 ≤ p < +∞, is almost summing.
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The concept of almost summing multilinear mapping was considered in [5, 6] and reads
as follows: A multilinear map A ∈ L(E1, . . . , En;F ) is said to be almost summing if there
exists C > 0 such that

∥
(
A(x1

j , . . . , x
n
j )
)m
j=1

∥Rad(F ) ≤ C
n∏

i=1

∥(xi
j)

m
j=1∥ℓw2 (Ei) (1)

for any finite set of vectors (xi
j)

m
j=1 ⊆ Ei for i = 1, . . . , n. We write Πas(E1, . . . , En;F ) for

the space of almost summing multilinear maps, which is endowed with the norm

∥A∥as := inf{C > 0 such that (1) holds}.

For n ≥ 1 and A ∈ L(E1, . . . , En;F ),

Â : ℓ∞(E1)× · · · × ℓ∞(En) −→ ℓ∞(F ) , Â((x1
j)

∞
j=1, . . . , (x

n
j )

∞
j=1) := (A(x1

j , . . . , x
n
j ))

∞
j=1,

is a bounded n-linear mapping. Given subspaces Xi ⊆ ℓ∞(Ei) for 1 ≤ i ≤ n and

Y ⊆ ℓ∞(F ), we say that Â : X1 × · · · × Xn −→ Y is bounded – or, equivalently, Â ∈
L(X1, . . . , Xn;Y ) – if the restriction of Â to X1 × · · · × Xn is a well defined (hence n-
linear) continuous Y -valued mapping.

3 The interplay between almost summing and abso-

lutely summing multilinear mappings

In next section we use almost summing multilinear mappings to identify a number of
situations where all multilinear functionals on ℓp spaces are absolutely summing. These
coincidence results will be consequences of the next result, which asserts that if a k-linear
mapping, 1 ≤ k < n, associated to the n-linear form A is almost summing, then A is not
only absolutely (1; 1, . . . , 1)-summing but absolutely (1; 2, . . . , 2, 1 . . . 1)-summing.

Definition 3.1. Let E1, . . . , En, F be Banach spaces and A : E1 × · · · × En −→ F be a
continuous n-linear mapping. For 1 ≤ k < n, the k-linear mapping Ak associated to A is
given by

Ak : E1×· · ·×Ek −→ L(Ek+1, . . . , En;F ) , Ak(x1, . . . , xk)(xk+1, . . . , xn) = A(x1, . . . , xn).

It is clear that Ak ∈ L(E1, . . . , Ek;L(Ek+1, . . . , En;F )) and ∥Ak∥ = ∥A∥.

Theorem 3.2. Let 1 ≤ k < n and A ∈ L(E1, . . . , En;K) be such that

Ak ∈ Πas(E1, . . . , Ek;L(Ek+1, . . . , En;K)).

Then,
Â : ℓw2 (E1)× · · · × ℓw2 (Ek)×Rad(Ek+1)× · · · ×Rad(En) −→ ℓ1,

is bounded. Moreover ∥Â∥ ≤ ∥Ak∥as.
In particular A ∈ Π(1;2,...2,1,...,1)(E1, . . . , En;K).
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Proof. Let (xi
j)

∞
j=1 be a finite sequence in Ei, i = 1, . . . , n. Take a scalar sequence (αj)

∞
j=1,

let Aj
k = Ak(x

1
j , x

2
j , . . . , x

k
j ) and define

fα(tk) =
∞∑
j=1

αjA
j
krj(tk); fi(ti) =

∞∑
j=1

rj(ti)x
i
j, i = k + 1, . . . , n− 1; and

fn(tk, . . . , tn−1) =
∞∑
j=1

rj(tk) · · · rj(tn−1)x
n
j , tk, . . . , tn−1 ∈ [0, 1].

The orthogonality of the Rademacher system shows that
∞∑
j=1

A(αjx
1
j , . . . , x

n
j ) =

∞∑
j=1

Ak(αjx
1
j , . . . , x

k
j )(x

k+1
j , . . . , xn

j ) =
∞∑
j=1

αjA
j
k(x

k+1
j , . . . , xn

j )

=

∫ 1

0

· · ·
∫ 1

0

fα(tk)(fk+1(tk+1), . . . , fn−1(tn−1), fn(tk, . . . , tn−1))dtk · · · dtn−1

≤
∫ 1

0

· · ·
∫ 1

0

(∫ 1

0

∥fα(tk)∥ · ∥fn(tk, . . . , tn−1)∥dtk
)
∥fk+1(tk+1)∥ · · · ∥fn−1(tn−1)∥ dtk+1 · · · dtn−1

≤ ∥Ak∥as
k∏

i=1

∥(xi
j)

∞
j=1∥ℓw2 (Ei)

.

∫ 1

0

· · ·
∫ 1

0

(∫ 1

0

∥fn(tk, . . . , tn−1)∥2dtk
)1/2

∥fk+1(tk+1)∥ · · · ∥fn−1(tn−1)∥dtk+1 · · · dtn−1

≤ ∥Ak∥as
k∏

i=1

∥(xi
j)

∞
j=1∥ℓw2 (Ei)

( n−1∏
i=k+1

∥(xi
j)

∞
j=1∥Rad1(F )

)
∥(xn

j )
∞
j=1∥Rad2(F ).

The result follows.

It is well known that p−absolutely summing linear operators are almost summing,
more precisely (see [15, Proposition 12.5]):∪

p>0

Πp(E;F ) ⊆ Πas(E;F ). (2)

In the multilinear setting, for a Hilbert space H, clearly

Πas(E1, . . . , En;H) = Π(2;2,...,2)(E1, . . . , En;H),

because Rad(H) = ℓ2(H); and the corresponding inclusions hold whenever F has type p
or cotype q.

In view of [5, Theorem 4.1], a multilinear version of (2) asserting that dominated
multilinear mappings are almost summing is expected. Next we give a short proof of this
fact, but the aim of this section is to go a bit further.

Proposition 3.3. Let Mn =
{
(p1, . . . , pn, p) ∈ Rn+1

+ : 1
p
=
∑n

i=1
1
pi

}
and E1, . . . , En, F be

Banach spaces. Then∪
(p1,...,pn,p)∈Mn

Π(p;p1,...,pn)(E1, . . . , En;F ) ⊆ Πas(E1, . . . , En;F ).
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Proof. Using (2) and the Factorization Theorem 2.2 – see also [5, Theorem 4.1] – it is not
difficult to see that∪

p>0

Π(p/n;p...,p)(E1, . . . , En;F ) ⊆ Πas(E1, . . . , En;F ).

Given (p1, . . . , pn, p) ∈ M , using the Inclusion Theorem 2.1 and letting p0 = max{pi, 1 ≤
i ≤ n}, we have

Π(p;p1,...,pn)(E1, . . . , En;F ) ⊆ Π(
p0
n
;p0,...,p0)(E1, . . . , En;F ),

which gives the result.

We now show that by replacing Rad(F ) with a bigger space Rad(2)(F ) we get a
variation of the above result, with a kind of multiple summation.

Definition 3.4. For a Banach space F , by Rad(2)(F ) we denote the space of sequences
(xi,j)i,j≥0 ⊆ F such that

∥(xi,j)∥Rad(2)(F ) = sup
m≥0

∫ 1

0

∥∥∥∥∥
m∑

i,j=0

xi,jri(t)rj(t)

∥∥∥∥∥
2

dt

1/2

< ∞.

We give an example where the number ∥(xi,j)∥Rad(2)(F ) can be explicitly computed:

Example 3.5. Given d ∈ N, for F = Cd we have

∥(xi,j)∥Rad(2)(F ) = sup
m

(
m∑
i=0

∥xi,i∥2 + 2
m∑
i<j

Re(⟨xi,i, xj,j⟩) +
m∑
i<j

∥xi,j + xj,i∥2
)1/2

.

Indeed, given m ≥ 0, for ⟨x, y⟩ =
∑d

j=1 x(j)y(j),∫ 1

0

∥∥∥∥∥
m∑

i,j=0

xi,jri(t)rj(t)

∥∥∥∥∥
2

dt =

∫ 1

0

∥∥∥∥∥
m∑
i=0

xi,i +
m∑
i<j

(xi,j + xj,i)ri(t)rj(t)

∥∥∥∥∥
2

dt

=

⟨
m∑
i=0

xi,i,

m∑
i′=0

xi′,i′

⟩

+

∫ 1

0

⟨
m∑
i<j

(xi,j + xj,i)ri(t)rj(t),
m∑

i′=0

xi′,i′

⟩
dt

+

∫ 1

0

⟨
m∑

i′=0

xi′,i′ ,

m∑
i<j

(xi,j + xj,i)ri(t)rj(t)

⟩
dt

+

∫ 1

0

⟨
m∑
i<j

(xi,j + xj,i)ri(t)rj(t),
m∑

i′<j′

(xi′,j′ + xj′,i′)ri′(t)rj′(t)

⟩
dt.

The desired formula now follows using that
∫ 1

0
ri(t)rj(t)ri′(t)rj′(t)dt = 0 unless i = i′ and

j = j′ (see [15, p. 10]) and the fact ⟨x, y⟩+ ⟨y, x⟩ = 2Re(⟨x, y⟩).
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Definition 3.6. We say that a bilinear map A : E1×E2 −→ F is bilinear almost summing
if there exists C > 0 such that∥∥∥(A(x1

i , x
2
j)
)m
i,j=0

∥∥∥
Rad(2)(F )

≤ C
2∏

k=1

∥(xk
j )

m
j=0∥ℓw2 (Ek) (3)

for any finite set of vectors (xk
j )

m
j=0 ⊆ Ek for k = 1, 2. We write Πbas(E1, E2;F ) for the

space of bilinear almost summing multilinear maps, which is endowed with the norm

∥A∥bas := inf{C > 0 such that (3) holds}.

Proposition 3.7. Πbas(E1, E2;F ) ⊆ Πas(E1, E2;F )

Proof. LetA ∈ Πbas(E1, E2;F ) and (xk
j )

m
j=0 ⊆ Ek for k = 1, 2. DenoteA(x1

i , x
2
j) = xi,j ∈ F

for 0 ≤ i, j ≤ m. By the orthogonality of the Rademacher functions we have∥∥∥∥∥
m∑
i=0

xi,i

∥∥∥∥∥ =

∥∥∥∥∥
∫ 1

0

m∑
i,j=0

xi,jri(t)rj(t)dt

∥∥∥∥∥ ≤
∫ 1

0

∥∥∥∥∥
m∑

i,j=0

xi,jri(t)rj(t)

∥∥∥∥∥ dt
≤ ∥(xi,j)

m
i,j=0∥Rad(2)(F ) ≤ ∥A∥bas

2∏
k=1

∥(xk
j )

m
j=0∥ℓw2 (Ek).

Therefore, replacing x1
i with ri(t)x

1
i one has∥∥∥∥∥

m∑
i=0

A(x1
i , x

2
i )ri(t)

∥∥∥∥∥ ≤ ∥A∥bas ·
2∏

k=1

∥(xk
j )

m
j=0∥ℓw2 (Ek), t ∈ [0, 1].

Now integrating over [0, 1] one gets ∥A∥as ≤ C∥A∥bas.

Theorem 3.8. Let M =
{
(p1, p2, 2) ∈ R3

+ : 1
2
= 1

p1
+ 1

p2

}
and E1, E2, F be Banach spaces.

Then ∪
(p1,p2,2)∈M

Π(2;p1,p2)(E1, E2;F ) ⊆ Πbas(E1, E2;F ).

Proof. Let m ∈ N and denote I1,m = [0, 1
2m

), Ik,m = [k−1
2m

, k
2m

) for k ∈ {2, 3, . . . , 2m − 1}
and I2m,m = [2

m−1
2m

, 1]. Hence we can define Xk,m by means of the formula

m∑
j=0

xjrj =
2m∑
k=1

Xk,mχIk,m .

Let x1
j ∈ E1, x

2
j ∈ E2 for j = 1, . . . ,m. Note that

∥∥∥(A(x1
i , x

2
j)
)
i,j

∥∥∥
Rad(2)(F )

= sup
m≥0

∫ 1

0

∥∥∥∥∥A
(

m∑
i=0

x1
i ri(t),

m∑
j=0

x2
jrj(t)

)∥∥∥∥∥
2

dt

1/2

.
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On the other hand

A

(
m∑
i=0

x1
i ri(t),

m∑
j=0

x2
jrj(t)

)
= A

(
2m∑
k=1

X1
k,mχIk,m(t),

2m∑
k′=1

X2
k′,mχIk′,m(t)

)

=
2m∑

k,k′=1

A
(
X1

k,mχIk,m(t), X
2
k′,mχIk′,m

(t)
)

=
2m∑
k=1

A
(
X1

k,m, X
2
k,m

)
χIk,m(t).

Finally observe that∥∥∥∥∥
2m∑
k=1

A
(
X1

k,m, X
2
k,m

)
χIk,m

∥∥∥∥∥
L2([0,1],F )

=

(
2m∑
k=1

∥A
(
X1

k,m, X
2
k,m

)
∥22−m

)1/2

=

(
2m∑
k=1

∥∥A (X1
k,m2

−m/p1 , X2
k,m2

−m/p2
)∥∥2)1/2

≤ π(2;p1,p2)(A) · sup
∥x∗∥E∗

1
=1

(
2m∑
k=1

∣∣⟨X1
k,m2

−m/p1 , x∗⟩∣∣p1)1/p1

· sup
∥y∗∥E∗

2
=1

(
2m∑
k=1

∣∣⟨X2
k,m2

−m/p2 , y∗
⟩∣∣p2)1/p2

≤ π(2;p1,p2)(A) · sup
∥x∗∥E∗

1
=1

(∫ 1

0

∣∣∣∣∣
m∑
j=0

⟨x1
j , x

∗⟩rj(t)

∣∣∣∣∣
p1

dt

)1/p1

· sup
∥y∗∥E∗

2
=1

(∫ 1

0

∣∣∣∣∣
m∑
j=0

⟨x2
j , y

∗⟩rj(t)

∣∣∣∣∣
p2

dt

)1/p2

≤ Cπ2;p1,p2(A) · ∥(x1
j)∥ℓ2w(E1) · ∥(x2

j)∥ℓ2w(E2).

4 Summability on ℓp spaces

We start deriving consequences of Theorem 3.2 in the context of ℓp spaces.

Proposition 4.1. If E ′ has type 2 and 1 ≤ r ≤ 2, then

L(ℓ1, E;K) = Π(1;2,1)(ℓ1, E;K) = Π(r;2,r)(ℓ1, E;K).

In particular, if 1 < q ≤ 2 and 1 ≤ r ≤ 2, then

L(ℓ1, ℓq;K) = Π(1;2,1)(ℓ1, ℓq;K) = Π(r;2,r)(ℓ1, ℓq;K).
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Proof. We only treat the case K = C. The case K = R follows from a complexification
argument (see [7, 8, 20] for details). Let A ∈ L(ℓ1, E;C). Since E ′ has type 2, it follows
from [15, Theorem 12.10] that A1 ∈ Πas(ℓ1;E

′). So, from Theorem 3.2 it follows that

Â : ℓw2 (ℓ1)× ℓw1 (E) −→ ℓ1

is bounded. Hence A ∈ Π(1;2,1)(ℓ1, E;C). The Inclusion Theorem yields now the right
hand side equality.

Proposition 4.1 yields for r = 1 that

L(ℓ1, ℓq;K) = Π(1;2,1)(ℓ1, ℓq;K)

for 1 ≤ q ≤ 2. Whereas, from the Inclusion Theorem and the Defant-Voigt Theorem, one
also has, for any 1 ≤ q < ∞,

L(ℓ2, ℓq;K) = Π(2;2,1)(ℓ2, ℓq;K).

So, by interpolation one may expect that for 1 < p < 2 and 1 ≤ q ≤ 2,

L(ℓp, ℓq;K) = Π(p;2,1)(ℓp, ℓq;K). (4)

We do not know if (4) holds, but we shall prove now that it does not hold for q > 2
(cf. Proposition 4.3) and, moreover, next we will see that we can get quite close to (4)
via interpolation (cf. Theorem 4.5).

The following lemma, which is less general than [3, Theorem 2.3], shall be used twice
later. We give a short proof for the convenience of the reader.

Lemma 4.2. Let F be a Banach space, 1 ≤ k ≤ n and assume that Ei has finite cotype
ci, i = 1, . . . , k. Let p ≤ q.
(i) If ci > 2 for all i = 1, . . . , k, then

Π(p;1,...,1,pk+1,...,pn)(E1, . . . , En;F ) = Π(q;q1,...,qk,pk+1,....,pn)(E1, . . . , En;F )

for any 1 ≤ qi < c′i, i = 1, . . . , k, such that
∑k

i=1
1
qi
− 1

q
= k − 1

p
.

(ii) If ci = 2 for all i = 1, . . . , k′ for some k′ ≤ k, then

Π(p;1,...,1,pk+1,...,pn)(E1, . . . , En;F ) = Π(q;q1,...,qk,pk+1,....,pn)(E1, . . . , En;F )

for any 1 ≤ qi ≤ 2, i = 1, . . . , k′ and 1 ≤ qi < c′i, i = k′+1, . . . , k, such that
∑k

i=1
1
qi
− 1

q
=

k − 1
p
.

Proof. In both cases the inclusion

Π(p;1,...,1,pk+1,...,pn)(E1, . . . , En;F ) ⊆ Π(q;q1,...,qk,pk+1,....,pn)(E1, . . . , En;F )

follows from Theorem 2.1. Assume first that ci > 2 for all i = 1, . . . , k. Let A ∈
Π(q;q1,...,qk,pk+1,...,pn)(E1, . . . , En;F ), (xi

j)
∞
j=1 ∈ ℓw1 (Ei) for i = 1, . . . , k, and (xi

j)
∞
j=1 ∈ ℓwpi(Ei)

for i = k + 1, . . . , n. Since Ei has cotype ci and ci < q′i, by [1, Proposition 6(b)] we know
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that ℓw1 (Ei) = ℓq′i ·ℓ
w
qi
(Ei), i = 1, . . . , k. Hence there are (αi

j)
∞
j=1 ∈ ℓq′i and (yij)

∞
j=1 ∈ ℓwqi(Ek)

such that (xi
j)

∞
j=1 = (αi

jy
i
j)

∞
j=1, i = 1, . . . , k. In this fashion, (α1

j · · ·αk
j )

∞
j=1 ∈ ℓq′1 · · · ℓq′k = ℓr,

where 1
r
=
∑k

i=1
1
q′i
, and (A(y1j , . . . , y

k
j , x

k+1
j , . . . , xn

j ))
∞
j=1 ∈ ℓq(F ). Since 1

r
+ 1

q
= 1

p
it follows

that
(A(x1

j , . . . , x
n
j ))

∞
j=1 = (α1

j · · ·αk
jA(y

1
j , . . . , y

k
j , x

k+1
j , . . . , xn

j ))
∞
j=1 ∈ ℓp(F ),

which proves (i). If ci = 2 for all i = 1, . . . , k, then we use [1, Proposition 6(a)] to get in
a similar way that

Π(q;2,...,2,pk+1,....,pn)(E1, . . . , En;F ) ⊆ Π(p;1,...,1,pk+1,...,pn)(E1, . . . , En;F ).

Now we can prove that (4) does not hold for q > 2:

Proposition 4.3. Let 1 < p < 4/3 and 2p
2−p

< q < p
p−1

. Then

Π(p;2,1)(ℓp, ℓq;K) ̸= L(ℓp, ℓq;K).

Proof. Assume that
L(ℓp, ℓq;K) = Π(p;2,1)(ℓp, ℓq;K)

for some 2p
2−p

< q < p
p−1

. Since ℓp has cotype 2, one concludes from Lemma 4.2(ii) and

the assumption that, for 1/s− 1/p = 1/2 and 1/r′ = 1/p− 1/2,

L(ℓp, ℓq;K) = Π(s;1,1)(ℓp, ℓq;K) = Π(1;r,1)(ℓp, ℓq;K).

Let us see that if T : ℓq −→ ℓp′ is a bounded linear operator, then T̂ : ℓw1 (ℓq) −→ ℓr′(ℓp′)
is also bounded. It suffices to be proved that for any sequences (yj)

∞
j=1 ∈ ℓw1 (ℓq) and

(xj)
∞
j=1 ∈ ℓr(ℓp) = ℓ′r(ℓ

′
p)

∗ the product (⟨T (yj), xj⟩)∞j=1 belongs to ℓ1. Since ℓr(ℓp) ⊆ ℓwr (ℓp),
the sequence (xj)

∞
j=1 belongs to ℓwr (ℓp). Since the bilinear form

(x, y) ∈ ℓp × ℓq 7→ ⟨T (y), x⟩

is (1; r, 1)-summing, it follows that (⟨T (yj), xj⟩)∞j=1 ∈ ℓ1, hence, T̂ ((yj)
∞
j=1) = (T (yj))

∞
j=1 ∈

ℓr′(ℓp′). We have just proved that L(ℓq; ℓp′) = Π(r′;1)(ℓq; ℓp′). The condition on r means
that r′ < q < p′ and, in this case, the formal inclusion Id : ℓq −→ ℓp′ would belong to
Π(r′;1)(ℓq; ℓp′). However, according to a result due to Carl and Bennet, independently, (see
[15, p. 209]), Id ∈ Π(q;1)(ℓq; ℓp′) and Id /∈ Π(s;1)(ℓq; ℓp′) for s < q. So q ≤ r′, a contradiction
that completes the proof.

Let us return to the consequences of Theorem 3.2 and Proposition 4.1. For a real
number a, let us fix the notation a+ := max{a, 0}. Under type/cotype assumptions
we can make use of a result due to Carl and Bennet which establishes, for s1 ≤ s, that
Id : ℓs1 −→ ℓs is (a, 1)-summing for 1/a = 1/s1−(1/s−1/2)+, to improve the summability
of bilinear forms whenever they are restricted to a “smaller” domain. For 1 ≤ s1 < s and
A ∈ L(ℓs, E;K), let us also use A to denote its restriction to ℓs1 × E. Henceforth the
inclusion

L(ℓs, E;K) ⊆ Π(q;q1,q2)(ℓs1 , E;K)

means that the restriction to ℓs1 ×E of any continuous bilinear form defined on ℓs ×E is
(q; q1, q2)−summing.
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Proposition 4.4. Let 1 ≤ s1 < s and a given by 1/a = 1/s1 − (1/s − 1/2)+. Assume
that E has finite cotype r.
(i) If s1 > 2 then L(ℓs, E;K) ⊆ Π(q;q1,1)(ℓs1 , E;K) for any 1 ≤ q1 < s′1 and q given by
1/q1 − 1/q = 1− 1/a− 1/r.
(ii) If s1 ≤ 2 then L(ℓs, E;K) ⊆ Π(q;q1,1)(ℓs1 , E;K) for any 1 ≤ q1 ≤ 2 and q given by
1/q1 − 1/q = 1− 1/a− 1/r.

Proof. Let (xj)
∞
j=1 ∈ ℓw1 (ℓs1) and (yj)

∞
j=1 ∈ ℓw1 (E). Then (xj)

∞
j=1 ∈ ℓa(ℓs) for a such that

1/a = 1/s1 − (1/s − 1/2)+, and, as E has cotype r, (yj)
∞
j=1 ∈ ℓr(E). This obviously

leads to (A(xj, yj))
∞
j=1 ∈ ℓp, for 1/p = 1/a + 1/r. Consequently, A ∈ Π(p;1,1)(ℓs1 , E;K).

Since ℓs1 has the cotype c = max{s1, 2}, then A ∈ Π(q;q1,1)(ℓs1 , E;K), where 1 ≤ q1 < c′ if
c = s1 > 2 or 1 ≤ q1 ≤ c if c = 2, and 1/q1 − 1/q = 1− 1/p, by Lemma 4.2.

Let us now show that, using an interpolation argument, we are able to improve the
result above and to get quite close to (4):

Theorem 4.5. Let E be a Banach space such that E ′ has type 2 and 1 < p < ∞. Then
L(ℓp, E;K) ⊆ Π(r;2,1)(ℓp1 , E;K) for any 1 ≤ p1 < p and 1/r = 1/2 + (1/p1 − 1/p)p′/2.

Proof. Again we treat only the complex case; the real case follows from a complexification
argument (see [7, 8, 20] for details). Let A ∈ L(ℓp, E;K). The case p1 = 1 follows from
Proposition 4.1. Hence A ∈ Π(1;2,1)(ℓ1, E;K). On the other hand, from the Defant-Voigt
theorem and the inclusion theorem we know that L(ℓp, E;K) = Π(2;2,1)(ℓp, E;K). Let now
1 < p1 < p. Fix (yj)

∞
j=1 ∈ ℓw1 (E) and consider the mappings

T (2) : ℓw2 (ℓp) −→ ℓ2 and T (1) : ℓw2 (ℓ1) −→ ℓ1

given by
T (k)((xj)

∞
j=1) = (A(xj, yj))

∞
j=1, k = 1, 2.

Since A ∈ Π(1;2,1)(ℓ1, E;K) ∩ Π(2;2,1)(ℓp, E;K), T (1) and T (2) are well-defined, linear and
continuous. Using the fact that ℓw2 (ℓt) = L(ℓ2; ℓt) for t = 1, p, it follows that

ℓw2 (ℓp1) ⊆ (ℓw2 (ℓp), ℓ
w
2 (ℓ1))θ

for 1
p1

− 1
p
= θ

p′
(see [23, proof of the Theorem]). So the complex interpolation method

implies that, for 1
r
= 1−θ

2
+ θ

1
,

T : ℓw2 (ℓp1) −→ ℓr , T ((xj)
∞
j=1) = (A(xj, yj))

∞
j=1,

is continuous. It follows that A ∈ Π(r;2,1)(ℓp1 , E;K). Now observe that

1

r
− 1

2
=

θ

2
=

p′

2
(
1

p1
− 1

p
).

We finish the paper with another combination of our previous results with an argument
of complex interpolation. Alternatively, this last result can also be obtained using results
from [10] and the idea of the proof of Theorem 4.5.
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Proposition 4.6. Let n ≥ 2 and 1 < p ≤ 2. Then

L(ℓ1, n−1. . . , ℓ1, ℓp;K) = Π(rn;rn,...,rn)(ℓ1,
n−1. . . , ℓ1, ℓp;K),

for every 1 ≤ rn ≤ 2n−1

2n−1−1
.

Proof. The case n = 2 is proved in Proposition 4.1. From [17, Theorem 3 and Remark 2]
it suffices to prove the result for rn = 2n−1

2n−1−1
.

Case n = 3 and K = C: Let A ∈ L(ℓ1, ℓ1, ℓp;C). From Proposition 4.1 we know that

L(ℓ1, ℓp;C) = Π(1;2,1)(ℓ1, ℓp;C).

Combining this with [10, Corollary 3.2] we get

L(ℓ1, ℓ1, ℓp;C) = Π(1;2,1,1)(ℓ1, ℓ1, ℓp;C) = Π(1;1,2,1)(ℓ1, ℓ1, ℓp;C).

So,
Â : ℓu2(ℓ1)× ℓu1(ℓ1)× ℓu1(ℓp) −→ ℓ1 (5)

is bounded. Combining now Proposition 4.1(ii) with [10, Corollary 3.2] we conclude that

Â : ℓu1(ℓ1)× ℓu2(ℓ1)× ℓu2(ℓp) −→ ℓ2 (6)

is bounded. So, using complex interpolation for (5) and (6) we obtain that

Â : ℓu4/3(ℓ1)× ℓu4/3(ℓ1)× ℓu4/3(ℓp) −→ ℓ4/3

is bounded (this use of interpolation is based on results of [12], which are closely related
to the classical paper [18] – further details can be found in [17]).

Case n = 4 and K = C: From the case n = 3 and [10, Corollary 3.2] we know that

L(ℓ1, ℓ1, ℓ1, ℓp;C) = Π( 4
3
;1, 4

3
, 4
3
, 4
3
)(ℓ1, ℓ1, ℓ1, ℓp;C).

Since 4
3
< 2, Proposition 4.1(i) gives that L(ℓ1, ℓp;C) = Π(1; 4

3
,1)(ℓ1, ℓp;C). So [10, Corollary

3.2] implies
L(ℓ1, ℓ1, ℓ1, ℓp;C) = Π(1; 4

3
,1,1,1)(ℓ1, ℓ1, ℓ1, ℓp;C).

Hence
Â : ℓu1(ℓ1)× ℓu4

3
(ℓ1)× ℓu4

3
(ℓ1)× ℓu4

3
(ℓp) −→ ℓ 4

3
and

Â : ℓu4
3
(ℓ1)× ℓu1(ℓ1)× ℓu1(ℓ1)× ℓu1(ℓp) −→ ℓ1

are bounded. Using complex interpolation once more we conclude that

Â : ℓu8
7
(ℓ1)× ℓu8

7
(ℓ1)× ℓu8

7
(ℓ1)× ℓu8

7
(ℓp) −→ ℓ 8

7

is bounded as well. The cases n > 4 are similar and the real case follows, again, by
complexification.
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