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Abstract

We prove new summability properties for multilinear operators on ¢, spaces.
An important tool for this task is a better understanding of the interplay between
almost summing and absolutely summing multilinear operators.

1 Introduction

This work is the outgrowth of several papers by the authors and other researchers (see,
e.g., [2,3,6,7, 8,10, 11, 13, 14, 16, 17, 19, 24| and references therein) on summability
properties of multilinear mappings between Banach spaces.

As a consequence of the successful theory of absolutely summing linear operators,
the study of summability properties of multilinear mappings focuses on mappings that
improve the summability of series. Historical accounts of this multilinear theory can be
found in [2, 19].

As expected, at the heart of the theory lies the investigation of the interplay between
different types of summability of multilinear mappings. For example, [21] is a comparative
study of three different classes of absolutely summing multilinear mappings. Having in
mind that the interplay between almost summability and absolute summability is quite
profitable in the linear case (see [15, Chapter 12]), in this paper we will explore the
connections of almost summing and absolutely summing multilinear mappings and apply
them to obtain summability properties for multilinear operators on ¢, spaces.

The first natural issue is the well know fact that absolutely p-summing linear operators
are almost summing for every p. In some situations, for instance in the Pietsch Domi-
nation Theorem, the multilinear mappings that play the role of the absolutely summing
linear operators are the dominated ones. So it is a natural question if dominated multi-
linear mappings are almost summing. In Section 3 we prove that dominated multilinear
mappings actually satisfy a condition stronger than being almost summing.
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One of the trends of the theory is the identification of coincidence situations, that is, a
situation where E1, ..., E,, F are Banach spaces and every continuous n-linear mapping
A: By x---x E, — F enjoys a certain summability property. Probably the first result in
this line is the Defant—Voigt Theorem (see [10, Corollary 3.2] or [2], where an improved ver-
sion can be found), which states that multilinear forms are always (1;1,...,1)-summing.
Several other multilinear coincidence results can be found in, e.g., [4, Theorem 3.3|, [9,
Proposition 2.1] and [2, Theorem 3.7]. The core of Section 4 is the obtainment of new
coincidence results for absolutely summing multilinear functionals on ¢, spaces. Accord-
ing to the main idea of this paper, these new absolutely summing coincidence results
will follow from a general result (Theorem 3.2) concerning almost summing multilinear
mappings. We prove for instance that for any 1 < p < 2, continuous bilinear forms A on
¢, x F, where F' has type 2, are absolutely (p; 2, 1)-summing. Moreover, A is absolutely
(7p; Tp, Tp)-summing for any 1 < r, < 35—32. In particular, if 1 < p < 2and 1 < ¢ < 2,
then bilinear forms on ¢, x ¢, are (p;2,1)—summing and bilinear forms on ¢; x ¢, are
(r;r,r)—summing for 1 <r < 2.

2 Notation and background

All Banach spaces are considered over the scalar field K = R or C. Given a Banach space
E. let Bg denote the closed unit ball of E and E’ its topological dual.

Let p > 0. By £,(F) we denote the (p-)Banach space of all absolutely p-summable
sequences (7;)32, in £ endowed with its usual £,-norm (p-norm if 0 < p < 1). Let (}'(E)
be the space of those sequences (z;)32, in £ such that (¢(z;));2, € £, for every p € £
endowed with the norm (p-norm if 0 < p < 1)

(@)1 llew () = sup (Zhﬁ(fﬂj)’p) -

pE€Bp j=1

Let £;(E) denote the closed subspace of £}'(E) formed by the sequences ()32, € ;) (E)

such that limgeo [|(25)324 |l ew () = 0.

Let Ey,..., E,, E, F be Banach spaces. The Banach space of all continuous n-linear
mappings from F; X --- X E, into F is denoted by E(El, . ,En; F) and endowed with
the usual sup norm. We simply write £("E; F') when E1 =FE,=F.

For 0 < p,p1,p2,...,pn < 00, We assume that 1 < o + +p— An n—linear mapping
A€ L(Ey,...,E; F)is absolutely (p; p1, D2, - - - ,pn) summmg if there is C' > 0 such that

I(A(zj, 23, ..., 27))}- 1Hp§CHH Ji=1lleg, e

for all finite families of vectors x%,... 2} € F;, i =1,2,...,n. The infimum of such C > 0
is called the (p;pi,...,ps)-summing norm of A and is denoted by 7(pp,,..p.)(A). Let
ipipr poypn) (B, - -, By F) denote the space of all absolutely (p;p1,p2; ..., pn)-summing
n-linear mappings from E; X --- x E, to F' endowed with the norm 7., . .-

It is well known that we can replace £, (E},) with £ (E}) in the definition of absolutely
summing mappings.



Absolutely summing mappings fulfill the following inclusion result, which appears in
[20, Proposition 3.3] (see also [2]):

Theorem 2.1. (Inclusion Theorem) Let 0 < g < p < 00, 0 < ¢g; < p; < oo for all
j=Lon If ot b b= D<o L — L then

H(Q?Qlww‘]n)(El? R E?’L’ F) g H(p;plw,,pn)(El, ey En, F)

and Tippy . pn) < Tgiqr,nqn) JOT all Banach spaces Ey, ..., E,, F.

If ]lo = pil +- 4 ﬁ, absolutely (p; p1, . .., p,)-summing n-linear mappings are usually
called (p1,...,pn)-dominated. They satisfy the following factorization result (see [22,
Theorem 13]):

Theorem 2.2. (Factorization Theorem) A multilinear mapping A € L(Es, ..., E,; F)
is (p1,-..,pn)-dominated if and only if there are Banach spaces Gy, ...,G,, operators

u; € 1L, (E;;Gy), j=1,...,n, and B € L(G,...,Gp; F) such that A = Bo(uy,...,uy).

As mentioned in the introduction, the next theorem is probably the first coincidence
result for multilinear mappings:

Theorem 2.3. (Defant—Voigt Theorem) Let n > 2 and Ei, ..., E, be Banach spaces.
Then L(Ex, ..., Ey;K) =g, (B, ..., By K) isometrically.

We denote by Rad(FE) the space of sequences (z;)52, in £ such that

n
E T

Jj=1

< 00,

I (%‘)?‘;1 | Rad(E) = sup
neN
L2([0,1],E)

where (7;);en are the Rademacher functions on [0, 1] defined by r;(t) = sign(sin 2/7t). If
instead of the L?([0, 1], E') norm one considers in the definition of Rad(F) the L?([0, 1], E)
norm, 1 < p < oo, one gets equivalent norms on Rad(FE) as a consequence of Kahane’s
inequalities (see [15, p. 211]). These norms, when needed, will be denoted by || - || gaa, ()-

Recall also that a linear operator u: ' — F is said to be almost summing if there is
a C' > 0 such that

I (i) raacry < C Nl @)7al |y

for any finite set of vectors {xi,...,z,,} in E. The space of all almost summing linear
operators from F to F' is denoted by Il,s(F; F') and the infimum of all C' > 0 fulfill-
ing the above inequality is denoted by ||u||.s. Note that this definition differs from the
definition of almost summing operators given in [15, p. 234] but coincides with the
characterization which appears a few lines after that definition (yes, the definition and
the stated characterization are not equivalent). Since the proof of [15, Proposition 12.5]
uses the characterization (which is our definition), we can conclude that every absolutely
p-summing linear operator, 1 < p < 400, is almost summing.



The concept of almost summing multilinear mapping was considered in [5, 6] and reads
as follows: A multilinear map A € L(E}, ..., E,; F) is said to be almost summing if there
exists C' > 0 such that

n

(A, @) raaery < O T LI e (1)

=1

for any finite set of vectors (2%)72, C E; for i = 1,...,n. We write Hs(Ey, ..., Ey; F) for
the space of almost summing multilinear maps, which is endowed with the norm

| Al|as := inf{C > 0 such that (1) holds}.
Forn>1and A € L(E,,...,E,; F),

A lo(By) X - X loo(By) — Lo (F) , A((zh)22, .. (2™)2,) i= (A(z), ..., 2"))

jli=1 j)i=1 g i) j=1s

is a bounded n-linear mapping. Given subspaces X; C (. (F;) for 1 < i < n and
Y C ((F), we say that A: Xy x - x X,, — Y is bounded — or, equivalently, Ae
L(X1,...,X,;Y) — if the restriction of A to X x -+- x X, is a well defined (hence n-
linear) continuous Y-valued mapping.

3 The interplay between almost summing and abso-
lutely summing multilinear mappings

In next section we use almost summing multilinear mappings to identify a number of
situations where all multilinear functionals on ¢, spaces are absolutely summing. These
coincidence results will be consequences of the next result, which asserts that if a k-linear
mapping, 1 < k < n, associated to the n-linear form A is almost summing, then A is not
only absolutely (1;1,...,1)-summing but absolutely (1;2,...,2,1...1)-summing.

Definition 3.1. Let F4,..., E,, F' be Banach spaces and A: £} X --- x F,, — F be a
continuous n-linear mapping. For 1 < k < n, the k-linear mapping A, associated to A is
given by

Ap: By X - X By — L(Egy1, .. Ens F) ) Ay, oo 26) (Tpaty - - @) = Ax, o0 2).
It is clear that Ay € L(Ey, ..., Ex; L(Exy1, ..., Eq F)) and || Al = | 4]
Theorem 3.2. Let 1 <k <n and A€ L(Ey,...,E,;K) be such that

Ay € Uus(Fy, ... By L(Egyq, - .., By K)).

Then,
AUy (Ey) X -+ x 5 (Eg) X Rad(Eg41) X -+ X Rad(E,) — {1,

is bounded. Moreover || A|| < || Agl|as-
In particular A € 1,0 21, 1)(En, ..., En; K).



Proof. Let (2%)22, be a finite sequence in Ej, i = 1,...,n. Take a scalar sequence ()3
let A = Ag(z},25,... 2%) and define

Jj=b

Zaj kr] (tr); fi(t:) er é,i:k—i—l,...,n—l; and

o0

Faltir o otuma) = > ri(te) - (b2, iy taog € 10,1].

j=1
The orthogonality of the Rademacher system shows that

f:A(ajx;,..., ) ZAk (o j,..., -)(xlCJrl ..,x;-‘):iain(m?’“,...,x?)
- 1 1 =
:/ / fa<tk)<fk+1(tk+1)7-~.7fn—1(tn—1)7fn(tk7'"7tn—1))dtk'"dtn—l
0 0
1 1 1
<[ / (Mol Ut ) e ) s st

< HAkHasHH )51 lley (2
) 1/2
/ / / [ fn (s tan) ] dtk) [ frar ()| L e (Gt ([ o -+ - dlys

<HAk\asHH Dl (H @5 s ) )52

i=k+1
The result follows. OJ

It is well known that p—absolutely summing linear operators are almost summing,
more precisely (see [15, Proposition 12.5]):

UL (B; F) C Iy (E; F). (2)

In the multilinear setting, for a Hilbert space H, clearly

Has<E17"'7En;H>:H(2;2 2)(E17-"7En;H)7

.....

because Rad(H) = l2(H); and the corresponding inclusions hold whenever F' has type p
or cotype gq.

In view of [5, Theorem 4.1], a multilinear version of (2) asserting that dominated
multilinear mappings are almost summing is expected. Next we give a short proof of this
fact, but the aim of this section is to go a bit further.

i=1p

Proposition 3.3. Let M, = {(pl, cypnyp) ERYTL: % =y } and By, ..., E,, F be

Banach spaces. Then

U Hopes)(Bry o By F) CHug(Br, .. By F).

(pl ----- DPn 7p)€Mn



Proof. Using (2) and the Factorization Theorem 2.2 — see also [5, Theorem 4.1] — it is not
difficult to see that

U Tgmp (B, En F) Coo(By, ... Egs F).
p>0

Given (p1,...,pn,p) € M, using the Inclusion Theorem 2.1 and letting py = max{p;, 1 <
i <n}, we have

H(P%Z?l ----- pn)<El77En7F> g H(p—o Ela"‘aEn;F)a

0005+, Po)(

which gives the result. O]

We now show that by replacing Rad(F) with a bigger space Rad®(F) we get a
variation of the above result, with a kind of multiple summation.

Definition 3.4. For a Banach space F, by Rad®(F) we denote the space of sequences
(xi,j)i,jzo Q F' such that

5 N\ 1/2

dt < 0.

D wigri(t)r;(t)

i,j=0

1
155) | ey iy = SUP /
m>0 0

We give an example where the number |[(; ;) || gaa2 () can be explicitly computed:
Example 3.5. Given d € N, for F' = C? we have
(@) Raae» 7y = sup <Z sl + 2 Z Re((xis,7;5)) + Z @i + fj,z"|2> :
™ \i=0 i<j i<j
Indeed, given m > 0, for (x,y) = Z;l:l z(5)y(7),

/ =
|

2

dt

1

> wigri(t)ri(t)

i.j=0

Z T + Z(Zlf@j + l‘jyi)’f’i(t)rj (t)
=0 1<j
Tii, Z 9Ui',z">
=0 /=0
1 m m
+ / <Z(xi’j + Ij’i)ﬁ(t)’r’j (t), Z xi’,i’> dt
0 /=0

1<J
1 m m
+ / <Z Xi i Z(xi’j + xj,,;)ri(t)rj (t)> dt
0 \i=0 i<j
1 m m
+ /0 <Z(SC7;J + xj,l-)n-(t)rj (t), Z(:Ci/’j/ + l’j/,i/)ri/ (t)?“j/ (t)> dt.
i<j i<y’

The desired formula now follows using that fol ri(t)rj(t)ri(t)ry(t)dt = 0 unless i = i’ and
j =7 (see [15, p.10]) and the fact (z,y) + (y,z) = 2Re({x,y)).
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Definition 3.6. We say that a bilinear map A : F; x Ey — F'is bilinear almost summing
if there exists C' > 0 such that

2

Red®) (7 H Vitollew (&) (3)

=1

|t 2575

for any finite set of vectors (z¥)7", C Ej for k = 1,2. We write Iy, (E1, Es; F) for the
space of bilinear almost summing multilinear maps, which is endowed with the norm

| Al|pas := inf{C > 0 such that (3) holds}.
Proposition 3.7. [l (Ey, Eo; F) C I 5(Ey, Ey F)

Proof. Let A € Iyas(Er, Eo; F) and (24)7, C Ey for k = 1,2. Denote A(x},2%) = z;; € F
for 0 <14,57 < m. By the orthogonality of the Rademacher functions we have

1 m
/ Z x; jri(t)r; ()dt|| < / Z x; i (t)r; (1) || di
0 ;=0 i,j=0
2
< @il raaenr () < N Albas [ T 10 lleg (i0)-
k=1
Therefore, replacing x} with r;(¢)z} one has
> Al 20| < 1A s - H 1(25) o lleg (), ¢ € 10, 1.
i=0
Now integrating over [0, 1] one gets || A||as < C| Allpas- O

Theorem 3.8. Let M = {(pl,pg,Q) € ]R‘i : % = p% + p%} and E, Es, F' be Banach spaces.

Then
U Tepp(Br Ex F) € (B, B F).

(pl P2 72) eEM

Proof. Let m € N and denote I, = [0, 2m) L = [552, £ for k€ {2,3,...,2m — 1}

om 3y om
and Iom , = [2 —1 1]. Hence we can define Xy, by means of the formula

2m )
m 2m
E iy = E Xk XLy
=0 k=1

Let x € El,x € FE, for j =1,...,m. Note that

5 N\ 12

H(A(le,:c?))Z = sup

J 11 Rad(® (F) m>0

A (Z xlri(t), Z wir; (t))




On the other hand

m m 27"/ 27’7l
A (zxm S, <t>) 4 (z X 0.3 X%,mxfk,,m<t>)
i=0 =0 k=1

k=1
2m
= Z A (Xli,mXIk,m (t)7 Xlz’,mXIk/‘m (t)>
k k=1
2m
- Z A (X]im/” Xlzym) Xlk,m (t)
k=1

Finally observe that

am gm 1/2
S AL X - (z A (X X2, ||22-m)
k=1 L2([0,1],F) k=1

o 1/2
_ (Z 1Ak, oo, X2, i) H2>
k=1

§7T(Q;phpz)( - Sup (Z} ka m/p1 *>

|| g5 =1
1/p2
Pz)
m

1
< Taipy ) (A) - Lo 1(/0 S (k2
T* B} =

j=0
1 m p2 1/p2
- sup / dt
ly*llpg=1\~/0

> (@5 y)ri()
< CTgpy o (A) - ||($})||ea(E1) : ||(x§)||€2w(E2)'

1/p1
1)
p1 1/p1
dt)

S

ly*lles=1

Jj=0

4 Summability on ¢, spaces
We start deriving consequences of Theorem 3.2 in the context of ¢, spaces.
Proposition 4.1. If E' has type 2 and 1 < r < 2, then
L(ly, E;K) = Hae1) (b, E;K) = 0, (0, E;K).
In particular, if 1 <q<2and1<r <2, then

5(517 gq; K) = H(1;2,1)(€17 gq; K) = H(r;2,r) (61, EqS K)



Proof. We only treat the case K = C. The case K = R follows from a complexification
argument (see [7, 8, 20] for details). Let A € L({y, E;C). Since E’ has type 2, it follows
from [15, Theorem 12.10] that A; € II,5(¢1; E'). So, from Theorem 3.2 it follows that

A 09(0)) x (9(E) — £,

is bounded. Hence A € H(l;m)(ﬁl, E;C). The Inclusion Theorem yields now the right
hand side equality. O]

Proposition 4.1 yields for r = 1 that
L0, 84 K) = T 12,1)(6, £g; K)

for 1 < ¢ < 2. Whereas, from the Inclusion Theorem and the Defant-Voigt Theorem, one
also has, for any 1 < ¢ < oo,

L(ly, ly; K) = H(2;2,1)(€27€q; K).
So, by interpolation one may expect that for 1 <p <2 and 1 < g <2,
L(ly, g K) = Hipz,1) (6, £ K). (4)

We do not know if (4) holds, but we shall prove now that it does not hold for ¢ > 2
(cf. Proposition 4.3) and, moreover, next we will see that we can get quite close to (4)
via interpolation (cf. Theorem 4.5).

The following lemma, which is less general than [3, Theorem 2.3], shall be used twice
later. We give a short proof for the convenience of the reader.

Lemma 4.2. Let F' be a Banach space, 1 < k < n and assume that E; has finite cotype
¢, 1=1,...,k. Let p <q.
(i) If ¢; > 2 foralli=1,... k, then

H(p;l,...,l,pk+1 ..... pn)(Ela ey Ena F) = H(q;ql,...,qk,pk+1 ...... pn)<E17 ey Ena F)

. ko1 1 1
foranyl<gq <dc,i=1,...k, Suchthatzizla—azk‘—;.

(ii) If ¢; =2 for alli=1,... k" for some k' <k, then
H(p;l,...,l,pk+1 ..... pn)<E17 ey Ena F) = H(q;ql,...,qk,pk+1 ...... pn)<E17 ey Ena F)

foranyl<q; <2, i=1,....,kK and1 <gq; <dc,i=K+1,...k, suchthatzgli—%:
k-1
p

Proof. In both cases the inclusion
H(p;l,...,l,karl ..... pn)(Ela s 7En7 F) g H(q;ql,...,qk,pk+1 ...... pn)(Ela cee 7En7 F)

follows from Theorem 2.1. Assume first that ¢; > 2 for all ¢ = 1,... k. Let A €
Wgiar, o armrstspn) (s - - s Eny F), (xé);";l e ty¥(E;) fori=1,...,k, and (x;);";l € E;;’(El)

for i =k+1,...,n. Since E; has cotype ¢; and ¢; < ¢, by [1, Proposition 6(b)] we know

9



that (' (E;) = Ly - L8 (E;),i=1,..., k. Hence there are ()52, € £y and (y)32, € (2(E})

such that (%)%, = (aly})2,, 1 = , k. In this fashion, (aj ---a¥)%2, € Ly - Ly =1,
where%:Zflq/,and (A(yjl-,...,yj, f“,...,x])) °1 € Ly(F). Since [+, = - it follows
that

(A(le,,x;‘));‘il = (ozjl--nafA(y]l-,...,yj, f“,...,x?))}il € l,(F),

which proves (i). If ¢; = 2 for all i = 1,..., k, then we use [1, Proposition 6(a)] to get in
a similar way that

H(q;2,...,2,pk+l ...... pn)(Ela ey Ena F) g H(p;l,...,l,pk+1 ,,,,, pn)(E17 cee 7En; F)

Now we can prove that (4) does not hold for ¢ > 2:

Proposition 4.3. Let 1 < p < 4/3 and ZQTPP <q< ﬁ. Then

H(p;2,1)(£pagq5 K) # £<€p=£¢13 K).

Proof. Assume that
L(ly, Lg; K) = Hpio 1) (€, £g; K)
for some ;Tp < q < 25, Since /, has cotype 2, one concludes from Lemma 4.2(ii) and
) )
the assumption that, for 1/s —1/p=1/2 and 1/r' =1/p —1/2,

E(gp,gq,K) = H 5-1 1 (gp,gq,K) = H(l'rl (gp,gq; K)

Let us see that if 7': ¢, — {,; is a bounded linear operator, then T 00 (ly) — L (ly)
is also bounded. It sufﬁces to be proved that for any sequences (y;)32,
(27)52, € €:(€p) = £,.(£,)" the product ((T'(y;), z;))32, belongs to /1. Smce 0,(C,
the sequence ()32, belongs to £’(¢,). Since the bilinear form

(2, y) € by x Ly = (T(y), x)

is (1;7,1)-summing, it follows that ((T'(y;), x;))32, € {1, hence, f((yj);’il) = (T(y;))32, €
(v (). We have just proved that L(lg;¢y) = IL;r1)(€g; ¢y). The condition on r means
that 7 < ¢ < p’ and, in this case, the formal inclusion Id: ¢, — ¢,, would belong to
1y (€g; £ ). However, according to a result due to Carl and Bennet, independently, (see
(15, p. 209]), Id € TL(41)(lg; £y) and Id & TL(s1)({g; €y) for s < q. So g < 7', a contradiction
that completes the proof. O

Let us return to the consequences of Theorem 3.2 and Proposition 4.1. For a real
number a, let us fix the notation a® := max{a,0}. Under type/cotype assumptions
we can make use of a result due to Carl and Bennet which establishes, for s; < s, that
Id: by, — Uy is (a, 1)-summing for 1/a = 1/s;—(1/s—1/2)", to improve the summability
of bilinear forms whenever they are restricted to a “smaller” domain. For 1 < s; < s and
A € L(, E;K), let us also use A to denote its restriction to ¢;, x E. Henceforth the
inclusion

L(ls, E;K) C I (g:91,40) (s, E;K)
means that the restriction to /5, x E of any continuous bilinear form defined on ¢ x F is
(¢; @1, 2) —summing.

10



Proposition 4.4. Let 1 < s; < s and a given by 1/a = 1/s1 — (1/s — 1/2)*. Assume
that E has finite cotype r.

(i) If s1 > 2 then L({s, E;K) C I(gq,,1)(Us,, £ K) for any 1 < 1 < s} and q given by
/g1 —1/g=1—-1/a—1/r.

(i) If s1 < 2 then L(Ls, E;K) C Igq.1)(s,, E5K) for any 1 < g1 < 2 and q given by
/g —1/g=1—=1/a—1/r.

Proof. Let (z;)52, € €Y({s,) and (y;)32, € ({(E). Then (z;)52, € {4({s) for a such that
l/a = 1/s; — (1/s — 1/2)*, and, as E has cotype 7, (y;)52; € £.(£). This obviously
leads to (A(r;,y;))52, € €y, for 1/p = 1/a+ 1/r. Consequently, A € 1)Ly, £;K).
Since /,, has the cotype ¢ = max{sy, 2}, then A € I(gq, 1)(ls,, E;K), where 1 < ¢y < ¢ if
c=s51>2o0r1< ¢ <cife=2and 1/¢y —1/g=1—1/p, by Lemma 4.2. ]

Let us now show that, using an interpolation argument, we are able to improve the
result above and to get quite close to (4):

Theorem 4.5. Let E be a Banach space such that E' has type 2 and 1 < p < oo. Then
L(ly, E;K) C Hpio1)(ly,, E5K) for any 1 <py <p and 1/r =1/2+ (1/p1 — 1/p)p'/2.

Proof. Again we treat only the complex case; the real case follows from a complexification
argument (see [7, 8, 20] for details). Let A € L(¢,, E;K). The case p; = 1 follows from
Proposition 4.1. Hence A € Il(19,1)(¢1, E5;K). On the other hand, from the Defant-Voigt
theorem and the inclusion theorem we know that £(¢,, E;K) = l(9,01)(¢p, E; K). Let now
1L <p1 <p. Fix (y;)32, € £{(£) and consider the mappings

T®: 0¥(,) — b, and TW: (¥(0y) — £,

given by
T ((25)521) = (Alzs,9))520, k=12

j=1
Since A € I101)(41, B K) N g0 1) (4, £ K), T and T® are well-defined, linear and
continuous. Using the fact that €5 (¢;) = L(¢2;4;) for t = 1, p, it follows that

05 (6p) € (65'(6), €5 (64))o
for pil - % = ]% (see [23, proof of the Theorem]). So the complex interpolation method
implies that, for % = 1%9 + %,
T 45 (Cp) — by T((25)521) = (A2, 95))70,
is continuous. It follows that A € I1(;,21)(¢p,, £, K). Now observe that

1 1 60 p 1 1
. .
m
We finish the paper with another combination of our previous results with an argument
of complex interpolation. Alternatively, this last result can also be obtained using results

from [10] and the idea of the proof of Theorem 4.5.
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Proposition 4.6. Letn > 2 and 1 <p < 2. Then

E(El) T'LT'17 gla gpv K) = H(rn;rn ..... rn) (617 T'LT'Iu 617 gpa K)a

n—1

2
Jor every 1 <r, < 57—

Proof. The case n = 2 is proved in Proposition 4.1. From [17, Theorem 3 and Remark 2]
it suffices to prove the result for r, = 23”—11

Case n =3 and K= C: Let A € L({1,/1,(,;C). From Proposition 4.1 we know that
L(1,0,;C) =1L1.0,1)(¢1,¢p; C).
Combining this with [10, Corollary 3.2] we get
L(ly, 01,0, C) = U141, b, bp; C) = 1121y (61, 41, £p; C).

So,
Az Uy (0y) x £ (6y) x £} (L,) — £, (5)

is bounded. Combining now Proposition 4.1(ii) with [10, Corollary 3.2] we conclude that
A 04(ly) X 05 (0y) X L8(0,) — £y (6)
is bounded. So, using complex interpolation for (5) and (6) we obtain that
A: Ci3(l1) X Cyps(Cr) X C3y5(6p) — Lays

is bounded (this use of interpolation is based on results of [12], which are closely related
to the classical paper [18] — further details can be found in [17]).
Case n =4 and K = C: From the case n = 3 and [10, Corollary 3.2] we know that

,C(El,fl,fl,gp;(:) = H( .

ol

% % % (617517617619) (C)

Since § < 2, Proposition 4.1(i) gives that £({1, £,; C) = H(1;§,1)(€17 ¢,; C). So [10, Corollary
3.2] implies
5(51,517517@75 (C) = H(l;g,l,l,l)(&,51,517@75 (C)'

Hence

A 080y x 05(6) x £5(6y) X £%(L,) —> €4 and
3 3 3 3
A: 62(61) X P (0) x 01 (0) x 01 (Ly) — 44
are bounded. Using complex interpolation once more we conclude that
A: Zg(&) X 6%(61) X 6%(61) X Fé(fp) — Kg

is bounded as well. The cases n > 4 are similar and the real case follows, again, by
complexification. |
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