Dimension free estimates for the bilinear Riesz transform

O. Blasco, T.A. Gillespie

1 Introduction.

It is well known that the method of transference is a useful procedure for obtaining norm estimates independent of the dimension for classical operators acting on $L^{p}\left(\mathbb{R}^{n}, d x\right)$ (see for instance $[1,12,13]$) and even in the weighted situation (see for instance $[7,8,9]$). The aim of this note is to combine the techniques and methods at our disposal from the linear case (see $[1,6,7,17$, 12]) and the "bilinear transference" method, introduced in [4] (and extended in $[2,3])$, to show the boundedness of certain bilinear multipliers defined in \mathbb{R}^{n} with the norm independent of the dimension n.

One particular case of interest in this note is the bilinear version of the classical Riesz transforms on \mathbb{R}^{n}, defined for $1 \leq k \leq n$ by

$$
\begin{equation*}
\left(R_{k} f\right)(x)=c_{n} \lim _{\varepsilon \rightarrow 0} \int_{\varepsilon<|y|<1 / \varepsilon} f(x-y) \frac{y_{j}}{|y|^{n+1}} d y, \quad k=1,2, \ldots, n \tag{1}
\end{equation*}
$$

where $c_{n}=\Gamma\left(\frac{n+1}{2}\right) \pi^{-\frac{n+1}{2}}$, or equivalently, and more useful, by

$$
\begin{equation*}
\left(R_{k} f\right)(\xi)=\frac{-i \xi_{k}}{\left(\sum_{j=1}^{n} \xi_{j}^{2}\right)^{1 / 2}} \hat{f}(\xi), \quad k=1,2, \ldots, n \tag{2}
\end{equation*}
$$

where $\hat{f}(\xi)=\int_{\mathbb{R}^{n}} f(x) e^{-2 \pi i\langle x, \xi\rangle} d x$. These operators are known to satisfy, for $1<p<\infty$, the estimate

$$
\begin{equation*}
\left\|\left(\sum_{k=1}^{n}\left|R_{k}(f)\right|^{2}\right)^{1 / 2}\right\|_{L^{p}\left(\mathbb{R}^{n}\right)} \leq C\|f\|_{L^{p}\left(\mathbb{R}^{n}\right)} \tag{3}
\end{equation*}
$$

[^0]with a constant C independent of n.
The Riesz transforms are the basic examples of Calderón-Zygmund operators with kernels which are odd and homogeneous of degree 0 .

Throughout the paper $K(x)=\frac{\Omega(x)}{|x|^{n}}$, where Ω is an odd function, homogeneous of degree 0 and integrable over Σ_{n-1}, i.e. $\Omega(-x)=-\Omega(x)$ and $\Omega(\lambda x)=\Omega(x)$ for $x \in \mathbb{R}^{n}$ and $\lambda>0$, with $\Omega(u) \in L^{1}\left(\Sigma_{n-1}\right)$. We define

$$
T_{\Omega}(f)=c_{n}(\Omega) \lim _{\varepsilon \rightarrow 0} \int_{\varepsilon<|y|<1 / \varepsilon} f(x-y) \frac{\Omega(y)}{|y|^{n}} d y
$$

where $c_{n}(\Omega)$ is chosen such that $\left\|T_{\Omega}\right\|_{L^{2}\left(\mathbb{R}^{n}\right) \rightarrow L^{2}\left(\mathbb{R}^{n}\right)}=1$, i.e.

$$
c_{n}(\Omega)^{-1}=\|\hat{K}\|_{L^{\infty}\left(\mathbb{R}^{n}\right)} .
$$

We use the notations $v_{n}=\frac{\frac{n}{2}}{\Gamma\left(\frac{n}{2}+1\right)}$ for the volume of the unit ball and write $d \sigma$ the normalized area measure of the sphere Σ_{n-1}. We shall see from our considerations that actually the following result holds true: The condition

$$
\begin{equation*}
n v_{n} c_{n}(\Omega)\|\Omega\|_{\Sigma_{n-1}} \leq C \tag{4}
\end{equation*}
$$

implies

$$
\left\|T_{\Omega}(f)\right\|_{L^{p}\left(\mathbb{R}^{n}\right)} \leq C\|f\|_{L^{p}\left(\mathbb{R}^{n}\right)}
$$

for all $1<p<\infty$ with a constant C independent of n.
In the last decade the bilinear Hilbert transform, given by

$$
H(f, g)(x)=\lim _{\varepsilon \rightarrow 0} \frac{1}{\pi} \int_{|y|>\varepsilon} \frac{f(x-y) g(x+y)}{y} d y
$$

for f, g belonging to the Schwarzt class $\mathcal{S}(\mathbb{R})$, was shown by M. Lacey and C. Thiele to be bounded from $L^{2}(\mathbb{R}) \times L^{2}(\mathbb{R})$ into $L^{1}(\mathbb{R})$ solving an old question by A. Calderón. In the their fundamental work they discover that the parameter p_{3} in the range space could go even below 1 .

Theorem 1.1 (see [10, 11]) Let $1<p_{1}, p_{2}<\infty, 1 / p_{3}=1 / p_{1}+1 / p_{2}$ and $2 / 3<p_{3}<\infty$. Then there exists a constant $C>0$ such that

$$
\begin{equation*}
\|H(f, g)\|_{L^{p_{3}}(\mathbb{R})} \leq C\|f\|_{L^{p_{1}}(\mathbb{R})}\|g\|_{L^{p_{2}}(\mathbb{R})} . \tag{5}
\end{equation*}
$$

In a similar way we shall define the bilinear version of the operator T_{Ω} and shall try to get its boundedness from $L^{p_{1}}\left(\mathbb{R}^{n}\right) \times L^{p_{2}}\left(\mathbb{R}^{n}\right)$ into $L^{p_{3}}\left(\mathbb{R}^{n}\right)$ under the same conditions on p_{i}. To analyze the independence of the dimension for the norm of the corresponding bilinear operator one needs to select the right normalization constant $b_{n}(\Omega)$. Let us introduce the natural choice in the following definition.

Definition 1.2 Given Ω as above we define

$$
B_{\Omega}(f, g)(x)=b_{n}(\Omega) \lim _{\varepsilon \rightarrow 0} \int_{\varepsilon<|y|<1 / \varepsilon} f(x-y) g(x+y) \frac{\Omega(y)}{|y|^{n}} d y
$$

where $b_{n}(\Omega)$ is chosen in such a way that

$$
\left\|B_{\Omega}\right\|_{L^{2}\left(\mathbb{R}^{n}\right) \times L^{2}\left(\mathbb{R}^{n}\right) \rightarrow L^{1}\left(\mathbb{R}^{n}\right)}=1
$$

Let us also mention the formulation in terms of Fourier transforms which is left to the reader.

Remark 1.1 Let $f, g \in \mathcal{S}\left(\mathbb{R}^{n}\right)$. Then

$$
\begin{equation*}
B_{\Omega}(f, g)(x)=b_{n}(\Omega) \int_{\mathbb{R}^{n}} \int_{\mathbb{R}^{n}} \hat{f}(\xi) \hat{g}(\eta) \hat{K}(\xi-\eta) e^{2 \pi i\langle(\xi+\eta), x\rangle} d \xi d \eta \tag{6}
\end{equation*}
$$

Let us estimate $b_{n}(\Omega)$ and calculate $c_{n}(\Omega)$ for particular cases.
Proposition 1.3 Let Ω be defined as above. Then

$$
b_{n}(\Omega) \leq c_{n}(\Omega)
$$

Proof. Denote

$$
\tilde{B}_{\Omega}(f, g)(x)=\lim _{\varepsilon \rightarrow 0} \int_{\varepsilon<|y|<1 / \varepsilon} f(x-y) g(x+y) \frac{\Omega(y)}{|y|^{n}} d y
$$

and

$$
\tilde{T}_{\Omega}(f)(x)=\lim _{\varepsilon \rightarrow 0} \int_{\varepsilon<|y|<1 / \varepsilon} f(x-y) \frac{\Omega(y)}{|y|^{n}} d y
$$

We shall show that

$$
\left\|\tilde{B}_{\Omega}\right\|_{L^{2}\left(\mathbb{R}^{n}\right) \times L^{2}\left(\mathbb{R}^{n}\right) \rightarrow L^{1}\left(\mathbb{R}^{n}\right)} \geq\left\|\tilde{T}_{\Omega}\right\|_{L^{2}\left(\mathbb{R}^{n}\right) \rightarrow L^{2}\left(\mathbb{R}^{n}\right)}
$$

If $f, g \in \mathcal{S}\left(\mathbb{R}^{n}\right)$ we have

$$
\begin{aligned}
\left\|\tilde{B}_{\Omega}(f, g)\right\|_{L^{1}\left(\mathbb{R}^{n}\right)} & \geq\left|\int_{\mathbb{R}^{n}}\left(\int_{\mathbb{R}^{n}} f(x-y) g(x+y) d x\right) \frac{\Omega(y)}{|y|^{n}} d y\right| \\
& =\left|\int_{\mathbb{R}^{n}}\left(\int_{\mathbb{R}^{n}} f(x) g(x+2 y) d x\right) \frac{\Omega(y)}{|y|^{n}} d y\right| \\
& =\left|\int_{\mathbb{R}^{n}}\left(\int_{\mathbb{R}^{n}} f(x) g(x-y) d x\right) \frac{\Omega(y)}{|y|^{n}} d y\right| \\
& =\left|\int_{\mathbb{R}^{n}} f(x) \tilde{T}_{\Omega}(g)(x) d x\right| .
\end{aligned}
$$

Now taking the supremum over $f, g \in \mathcal{S}\left(\mathbb{R}^{n}\right)$ with $\|f\|_{L^{2}\left(\mathbb{R}^{n}\right)}=\|g\|_{L^{2}\left(\mathbb{R}^{n}\right)}=1$ we obtain $\left\|\tilde{B}_{\Omega}\right\|_{L^{2}\left(\mathbb{R}^{n}\right) \times L^{2}\left(\mathbb{R}^{n}\right) \rightarrow L^{1}\left(\mathbb{R}^{n}\right)} \geq\left\|\tilde{T}_{\Omega}\right\|_{L^{2}\left(\mathbb{R}^{n}\right) \rightarrow L^{2}\left(\mathbb{R}^{n}\right)}$ and the result follows.

Proposition 1.4 Let $a \in \mathbb{R}^{n} \backslash\{0\}$ and $\Omega_{a}(x)=\frac{\langle a, x\rangle}{|x|}$. Then, for $e_{1}=$ $(1,0, \ldots, 0)$,

$$
b_{n}\left(\Omega_{a}\right)=|a|^{-1} b_{n}\left(\Omega_{e_{1}}\right)
$$

Proof. Let A be an orthogonal transformation of \mathbb{R}^{n} such as $A e_{1}=\frac{a}{|a|}$ and write $f_{A}(x)=f(A x)$. Then, for $f, g \in \mathcal{S}\left(\mathbb{R}^{n}\right)$,

$$
\begin{aligned}
\tilde{B}_{\Omega_{a}}(f, g)(A x) & =\int_{\mathbb{R}^{n}} f(A x-y) g(A x+y) \frac{\langle a, y\rangle}{|y|^{n+1}} d y \\
& =|a| \int_{\mathbb{R}^{n}} f_{A}(x-u) g_{A}(x+u) \frac{u_{1}}{|u|^{n+1}} d u \\
& =|a| \tilde{B}_{\Omega_{e_{1}}}\left(f_{A}, g_{A}\right)(x)
\end{aligned}
$$

This allows to conclude the result.
Proposition $1.5 c_{n}\left(\Omega_{a}\right)=|a|^{-1} \pi^{-\frac{n+1}{2}} \Gamma\left(\frac{n+1}{2}\right)=\frac{c_{n}}{|a|}$.
Proof. It is elementary to show that if Ω is odd then

$$
\hat{K}(\xi)=\frac{i \pi n v_{n}}{2} \int_{\Sigma_{n-1}} \Omega(u) \operatorname{sign}\langle u, \xi\rangle d \sigma(u) .
$$

Hence $|\hat{K}(\xi)| \leq \frac{\pi n v_{n}}{2}\|\Omega\|_{L^{1}\left(\Sigma_{n-1}\right)}$. In particular for $\Omega=\Omega_{a}$ one gets $\hat{K}(a)=\frac{i \pi n v_{n}}{2} \int_{\Sigma_{n-1}}\left|\Omega_{a}(u)\right| d \sigma(u)$.

Hence

$$
\begin{equation*}
\pi n v_{n} c_{n}\left(\Omega_{a}\right)\left\|\Omega_{a}\right\|_{L^{1}\left(\Sigma_{n-1}\right)}=2 \tag{7}
\end{equation*}
$$

On the one hand, using polar coordinates, one has

$$
\int_{|x| \leq 1}|\langle a, x\rangle| d x=\frac{n}{n+1} v_{n}\left\|\Omega_{a}\right\|_{L^{1}\left(\Sigma_{n-1}\right)}
$$

and, on the other hand, using Fubini's theorem, one also has

$$
\int_{|x| \leq 1}|\langle a, x\rangle| d x=|a| \int_{|x| \leq 1}\left|x_{1}\right| d x=|a| \frac{2 v_{n-1}}{n+1} .
$$

Hence $n v_{n}\left\|\Omega_{a}\right\|_{L^{1}\left(\Sigma_{n-1}\right)}=2|a| v_{n-1}$ which gives

$$
c_{n}\left(\Omega_{a}\right)=\frac{1}{|a| \pi v_{n-1}}=|a|^{-1} \pi^{-\frac{n+1}{2}} \Gamma\left(\frac{n+1}{2}\right) .
$$

Definition 1.6 For $a=e_{k}, \Omega(x)=\frac{x_{k}}{|x|}, k=1,2, \ldots, n$, the bilinear Riesz transform is given by

$$
\begin{align*}
\left(R_{k}(f, g)\right)(x) & =b_{n} \lim _{\varepsilon \rightarrow 0} \int_{|y|>\varepsilon} f(x-y) g(x+y) \frac{y_{k}}{|y|^{n+1}} d y \tag{8}\\
& =-i \frac{b_{n}}{c_{n}} \int_{\mathbb{R}^{n}} \int_{\mathbb{R}^{n}} \hat{f}(\xi) \hat{g}(\eta) \frac{\xi_{k}-\eta_{k}}{|\xi-\eta|} e^{2 \pi i((\xi+\eta), x\rangle} d \xi d \eta \tag{9}
\end{align*}
$$

where $b_{n}^{-1}=\left\|\tilde{B}_{\Omega_{e_{1}}}\right\|_{L^{2}\left(\mathbb{R}^{n}\right) \times L^{2}\left(\mathbb{R}^{n}\right) \rightarrow L^{1}\left(\mathbb{R}^{n}\right)}$.
Hence $B_{\Omega_{a}}=|a|^{-1} \sum_{k=1}^{n} a_{k} R_{k}, a \in \mathbb{R}^{n} \backslash\{0\}$.
Our aim is to show that the transforms R_{k} (and more generally B_{Ω} for certain Ω) define bounded bilinear maps from $L^{p_{1}}\left(\mathbb{R}^{n}\right) \times L^{p_{2}}\left(\mathbb{R}^{n}\right)$ into $L^{p_{3}}\left(\mathbb{R}^{n}\right)$ for $\frac{1}{p_{3}}=\frac{1}{p_{1}}+\frac{1}{p_{2}}$ for $1<p_{1}, p_{2}<\infty$ and certain values of p_{3} with norm independent of the dimension. As in the linear case we shall make use of the method of rotations and a transference result.

We now define the directional bilinear Hilbert transform \mathbb{R}^{n} as follows: Given $u \in \Sigma_{n-1}$ we denote

$$
H^{u}(f, g)(x)=\lim _{\varepsilon \rightarrow 0} \frac{1}{\pi} \int_{\varepsilon<|t|<1 / \varepsilon} f(x-t u) g(x+t u) \frac{d t}{t} .
$$

We also use the notation

$$
H(f, g)(x, y)=H^{\frac{y}{|y|}}(f, g)(x), x \in \mathbb{R}^{n}, y \in \mathbb{R}^{n}, y \neq 0
$$

Here is our version of the method of rotations in the bilinear case.

Theorem 1.7 Let $\Omega \in L^{1}\left(\Sigma_{n-1}\right)$ be odd and homogeneous of degree 0 and let $\psi_{n} \in L^{1}\left(\mathbb{R}^{+}, \frac{d r}{r}\right)$. Define $d \mu_{n}(x)=\psi_{n}(|x|) d x$ and $\langle f, g\rangle_{\mu_{n}}=\int_{\mathbb{R}^{n}} f(x) g(x) \psi_{n}(|x|) d x$. Then

$$
\begin{gather*}
B_{\Omega}(f, g)(x)=\frac{\pi}{2} n v_{n} b_{n}(\Omega) \int_{\Sigma_{n-1}} H(f, g)(x, u) \Omega(u) d \sigma(u), x \in \mathbb{R}^{n} \tag{10}\\
B_{\Omega}(f, g)(x)=\frac{\pi b_{n}(\Omega)}{2\left\|\psi_{n}\right\|_{L^{1}\left(\mathbb{R}^{+}, \frac{d r}{r}\right)}}\langle H(f, g)(x, .), K\rangle_{\mu_{n}}, x \in \mathbb{R}^{n} \tag{11}
\end{gather*}
$$

for $f, g \in \mathcal{S}\left(\mathbb{R}^{n}\right)$.
Proof. Use the spherical coordinates to obtain (10).

$$
\begin{aligned}
B_{\Omega}(f, g)(x) & =n v_{n} b_{n}(\Omega) \lim _{\varepsilon \rightarrow 0} \int_{\Sigma_{n-1}} \int_{\varepsilon<t<1 / \varepsilon} f(x-t u) g(x+t u) \frac{\Omega(u)}{t} d \sigma(u) d t \\
& =\frac{n v_{n}}{2} b_{n}(\Omega) \lim _{\varepsilon \rightarrow 0} \int_{\Sigma_{n-1}} \int_{\varepsilon<|t|<1 / \varepsilon} f(x-t u) g(x+t u) \frac{\Omega(u)}{t} d \sigma(u) d t \\
& =\frac{\pi}{2} n v_{n} b_{n}(\Omega) \int_{\Sigma_{n-1}} \Omega(u) H(f, g)(x, u) d \sigma(u) .
\end{aligned}
$$

Now

$$
\begin{aligned}
\langle H(f, g)(x, \cdot), K\rangle_{\mu_{n}} & =\int_{\mathbb{R}^{n}} H(f, g)(x, y) \frac{\Omega(y)}{|y|^{n}} \psi_{n}(|y|) d y \\
& =n v_{n}\left(\int_{0}^{\infty} \frac{\psi_{n}(r)}{r} d r\right)\left(\int_{\Sigma_{n-1}} H(f, g)(x, u) \Omega(u) d \sigma(u)\right) \\
& =\frac{2\left\|\psi_{n}\right\|_{L^{1}\left(\mathbb{R}^{+}, \frac{d r}{r}\right)}^{\pi b_{n}(\Omega)} B_{\Omega}(f, g)(x) .}{} .
\end{aligned}
$$

Let us mention the transference result we shall need later on. Let G be a l.c.a group with Haar measure m, let $R: G \rightarrow \mathcal{L}\left(L^{p}(\mu), L^{p}(\mu)\right)$ be a representation of G into the space of bounded linear operators on $L^{p}(\mu)$ for some measure space (Ω, Σ, μ), i.e. $t \rightarrow R_{t}$ verifies $R_{t} R_{s}=R_{t+s}$ for $t, s \in G$, $\lim _{t \rightarrow 0} R_{t} f=f$ for $f \in L^{p}(\mu)$ and $\sup _{t \in G}\left\|R_{t}\right\|<\infty$. For a given $K \in L^{1}(G)$ with compact support we denote

$$
C_{K}(\phi, \psi)(s)=\int_{G} \phi(s-t) \psi(s+t) K(t) d m(t)
$$

(defined for nice functions ϕ, ψ defined on G). We consider the transferred operator by the formula

$$
T_{K}(f, g)(w)=\int_{G} R_{-t} f(w) R_{t} g(w) K(t) d m(t)
$$

where f and g are functions defined on Ω.
Theorem 1.8 (see [4]) Let $1 \leq p_{1}, p_{2}<\infty$ and $1 / p_{3}=1 / p_{1}+1 / p_{2}$ and let R be a representation of \mathbb{R} on acting $L^{p_{i}}(\mu)$ for $i=1,2$. Assume that there exists a map $S: \mathbb{R} \rightarrow \mathcal{L}\left(L^{p_{3}}(\mu), L^{p_{3}}(\mu)\right)$ given by $t \rightarrow S_{t}$ such that S_{t} are invertible with $\sup _{t \in \mathbb{R}}\left\|S_{t}\right\|=1$ and

$$
S_{s}\left(\left(R_{-t} f\right)\left(R_{t} g\right)\right)=\left(R_{s-t} f\right)\left(R_{s+t} g\right)
$$

for $s, t \in \mathbb{R}, f \in L^{p_{1}}(\mu)$ and $g \in L^{p_{2}}(\mu)$.
If $K \in L^{1}(G)$ has compact support and the bilinear operator C_{K} is bounded from $L^{p_{1}}(G) \times L^{p_{2}}(G)$ into $L^{p_{3}}(G)$ with "norm" $N_{p_{1}, p_{2}}\left(C_{K}\right)$ then T_{K} is also bounded from $L^{p_{1}}(\mu) \times L^{p_{2}}(\mu)$ to $L^{p_{3}}(\mu)$ and with norm bounded by $C N_{p_{1}, p_{2}}\left(C_{K}\right)$.

For each $u \in \Sigma_{n-1}$ we can use the representation $R^{u}: \mathbb{R} \rightarrow \mathcal{L}\left(L^{p}\left(\mathbb{R}^{n}\right), L^{p}\left(\mathbb{R}^{n}\right)\right)$ given by $R_{t}^{u} f(x)=f(x-t u)$. Hence Theorem 1.8 can be applied, using $S_{t}=R_{t}^{u}$ together with Fubini's theorem, to obtain the following result.

Corollary 1.9 Let $1<p_{1}, p_{2}<\infty, p_{3}>2 / 3$ and $1 / p_{3}=1 / p_{1}+1 / p_{2}$. Let $\psi \in L^{p_{3}}\left(\mathbb{R}^{n}\right)$ with $\|\psi\|_{p_{3}}=1$ and

$$
H_{\psi}(f, g)(x, y)=H(f, g)(x, y) \psi(y) \quad y \in \mathbb{R}^{n} \backslash\{0\} .
$$

Then $H_{\psi}: L^{p_{1}}\left(\mathbb{R}^{n}\right) \times L^{p_{2}}\left(\mathbb{R}^{n}\right) \rightarrow L^{p_{3}}\left(\mathbb{R}^{2 n}\right)$ is bounded with norm independent of n.

An application of Minkowski's inequality in Theorem 1.7, combined with Theorem 1.8, allows us to conclude the following boundedness result.

Theorem 1.10 Let Ω be an odd kernel, homogeneous of degree 0, and let $1<p_{1}, p_{2}<\infty, p_{3} \geq 1$ and $1 / p_{3}=1 / p_{1}+1 / p_{2}$. Then $B_{\Omega}: L^{p_{1}}\left(\mathbb{R}^{n}\right) \times L^{p_{2}}\left(\mathbb{R}^{n}\right)$ to $L^{p_{3}}\left(\mathbb{R}^{n}\right)$ with

$$
\left\|B_{\Omega}\right\|_{L^{p_{1} \times L^{p_{2}} \rightarrow L^{p_{3}}}} \leq \frac{\pi}{2}\|H\|_{L^{p_{1} \times L^{p_{2}} \rightarrow L^{p_{3}}}} n v_{n} b_{n}(\Omega)\|\Omega\|_{L^{1}\left(\Sigma_{n-1}\right)} .
$$

Finally combining Theorem 1.10, Proposition 1.3 and (7) one obtains our main result.

Corollary 1.11 Let $|a|=1,1<p_{1}, p_{2}<\infty, p_{3} \geq 1$ and $1 / p_{3}=1 / p_{1}+1 / p_{2}$. Then $\sum_{k=1}^{n} a_{k} R_{k}$ is bounded from $L^{p_{1}}\left(\mathbb{R}^{n}\right) \times L^{p_{2}}\left(\mathbb{R}^{n}\right)$ to $L^{p_{3}}\left(\mathbb{R}^{n}\right)$ with norm independent of the dimension.

Remark 1.2 Observe that Theorems 1.7 and 1.10 are valid for vector-valued kernels. We can consider $\bar{\Omega}(x)=\left(\Omega_{1}(x), \ldots, \Omega_{n}(x)\right)=\frac{x}{|x|}$ as a ℓ_{2}^{n}-valued kernel, where $\Omega_{i}=\Omega_{e_{i}}$.

Defining

$$
B_{\bar{\Omega}}(f, g)=\left(R_{1}(f, g), \ldots, R_{n}(f, g)\right)=b_{n} \int_{\mathbb{R}^{n}} f(x-y) g(x+y) \frac{y}{|y|} d y,
$$

the previous method does not give the analogue of (3). Note that $\|\bar{\Omega}(x)\|_{\ell_{2}^{n}}=1$ for each $x \in \mathbb{R}^{n}$ gives

$$
\|\bar{\Omega}\|_{L^{1}\left(\Sigma_{n-1}, \ell_{2}^{n}\right)}=1
$$

and now, using $b_{n} \leq c_{n}$, one can only estimate $\frac{4 \pi^{\frac{n}{2}} b_{n}(\bar{\Omega})}{\Gamma\left(\frac{n}{2}\right)}\|\bar{\Omega}\|_{L^{1}\left(\Sigma_{n-1}, \ell^{2}\right)} \leq C \sqrt{n}$.
Our aim is now to show that in spite of this observation, also the norm for the ℓ_{2}^{n}-valued formulation of the bilinear Riesz transform, at least for $p_{3}>1$, is independent of the dimension.

Let us select $\psi_{n}(r)=(2 \pi)^{-\frac{n}{2}} r^{n+1} e^{-\frac{r^{2}}{2}}$ and $\Omega(x)=\Omega_{a}(x),|a|=1$, in Theorem 1.7. Observe that

$$
\left\|\psi_{n}\right\|_{L^{1}\left(\frac{d r}{r}\right)}=(2 \pi)^{-\frac{n}{2}} \int_{0}^{\infty} r^{n} e^{-\frac{r^{2}}{2}} d r=(2 \pi)^{-\frac{n}{2}} 2^{\frac{n-1}{2}} \Gamma\left(\frac{n+1}{2}\right)=\sqrt{\frac{\pi}{2}} c_{n}
$$

which gives

$$
\frac{2\left\|\psi_{n}\right\|_{L^{1}\left(\frac{d r}{r}\right)}}{\pi b_{n}(\Omega)}=\sqrt{\frac{2}{\pi}} \frac{c_{n}}{b_{n}} .
$$

In particular, denoting by $d \gamma_{n}(y)=(2 \pi)^{-\frac{n}{2}} e^{-\frac{|y|^{2}}{2}} d y$ the Gaussian measure our formula (11) becomes

$$
\begin{equation*}
\langle H(f, g)(x, \cdot),\langle a, \cdot\rangle\rangle_{\gamma_{n}}=\sqrt{\frac{2}{\pi}} \frac{c_{n}}{b_{n}} B_{\Omega_{a}}(f, g)(x) . \tag{12}
\end{equation*}
$$

Observing that the coordinate functions y_{k} are an orthonormal system in $L^{2}\left(\gamma_{n}\right)$ and following G. Pisier ([12]) we define \mathcal{A}_{n} to be the subspace generated by $\left\{y_{1}, \ldots, y_{n}\right\}$ in $L^{2}\left(\gamma_{n}\right)$ and by $Q: L^{2}\left(\gamma_{n}\right) \rightarrow \mathcal{A}_{n}$ the orthogonal projection, that is

$$
\begin{equation*}
Q(f)(y)=\sum_{k=1}^{n}\left(\int_{\mathbb{R}^{n}} f(y) y_{k} d \gamma_{n}(y)\right) y_{k} \tag{13}
\end{equation*}
$$

Hence applying (12) to this particular case one gets the following analogue to the result given in [12]

$$
\begin{equation*}
Q(H(f, g))(x, y)=\sqrt{\frac{2}{\pi}} \frac{c_{n}}{b_{n}} \sum_{k=1}^{n} y_{k} R_{k}(f, g)(x) . \tag{14}
\end{equation*}
$$

This allows us to repeat Pisier's argument ([12]) and get the following analogue of (3).

Theorem 1.12 Let $1<p_{1}, p_{2}<\infty, 1 / p_{3}=1 / p_{1}+1 / p_{2}, p_{3}>1$. There exists C independent of n such that

$$
\begin{equation*}
\left\|\left(\sum_{k=1}^{n}\left|R_{k}(f, g)\right|^{2}\right)^{1 / 2}\right\|_{L^{p_{3}}\left(\mathbb{R}^{n}\right)} \leq C\|f\|_{L^{p_{1}}\left(\mathbb{R}^{n}\right)}\|g\|_{L^{p_{2}}\left(\mathbb{R}^{n}\right)} \tag{15}
\end{equation*}
$$

Proof. Following Pisier's proof one first uses the fact that

$$
\begin{equation*}
\left\|\sum_{k=1}^{n} \lambda_{k} y_{k}\right\|_{L^{p}\left(\gamma_{n}\right)}=\left(\sum_{k=1}^{n}\left|\lambda_{k}\right|^{2}\right)^{1 / 2} \gamma(p) \tag{16}
\end{equation*}
$$

where $\gamma(p)=\left(\int_{\mathbb{R}}|t|^{p} e^{-\frac{t^{2}}{2}} \frac{d t}{\sqrt{2 \pi}}\right)^{1 / p}$.

$$
\begin{aligned}
& \left\|\left(\sum_{k=1}^{n}\left|R_{k}(f, g)\right|^{2}\right)^{1 / 2}\right\|_{L^{p_{3}}\left(\mathbb{R}^{n}\right)}^{p_{3}} \\
= & \gamma\left(p_{3}\right)^{-p_{3}}\left\|\sum_{k=1}^{n} y_{k} R_{k}(f, g)\right\|_{L^{p_{3}}\left(\mathbb{R}^{n} \times \gamma_{n}\right)}^{p_{3}} \\
\leq & C \frac{b_{n}}{c_{n}}\|Q(H(f, g))\|_{L^{p_{3}}}^{p_{3}} \mathbb{R}^{\left.p^{n} \times \gamma_{n}\right)} \\
\leq & C\|Q\|_{L^{p_{3}}\left(\gamma_{n}\right) \rightarrow L^{p_{3}\left(\gamma_{n}\right)}}^{p_{3}}\|H(f, g)\|_{L^{p_{3}}\left(\mathbb{R}^{n} \times \gamma_{n}\right)}^{p_{3}} . \\
\leq & C\|Q\|_{L^{p_{3}}\left(\gamma_{n}\right) \rightarrow L^{p_{3}}\left(\gamma_{n}\right)}^{p_{n}}\|f\|_{L^{p_{1}}\left(\mathbb{R}^{n}\right)}^{p_{2}}\|g\|_{L^{p_{2}}\left(\mathbb{R}^{n}\right)}^{p_{0}} .
\end{aligned}
$$

References

[1] Aucher, P., Carro, M. J., Transference for radial multipliers and dimension free estimates. Trans. Amer. Math. Soc. 342 [1994] pp. 575-593.
[2] Blasco,O., Berkson, E., Carro, M.J., Gillespie, A. Discretization versus transference for bilinear operators. Banach Spaces and their Applications in Analysis, De Gruyter [2007],11-30 .
[3] Blasco,O., Berkson, E., Carro, M.J., Gillespie, A. Discretization and transference of bisublinear maximal operators . J. Fourier Anal and Appl. 12, [2006], 447-481.
[4] Blasco,O., Carro, M.J., Gillespie, A. Bilinear Hilbert transform on measure spaces. J. Fourier Anal and Appl. 4 n. 2, [2005], 449-470.
[5] Coifman R.R., Weiss W. Transference Methods in Analysis. Memoirs A.M.S. 31 (1977)
[6] Duoandikoetxea, J., Rubio de Francia, J.L. Estimations indépendantes de la dimension pour les transformées de Riesz. C.R. Acad. Sci. Serie I 300 [1985], 193-196.
[7] Gillespie, T.A., Torrea, J.L., Weighted ergodic theory and dimension free estimates Quart. J. Math. 54 [2003], pp. 257-280
[8] Gillespie, T. A.; Torrea, Jos L. Dimension free estimates for the oscillation of Riesz transforms. Israel J. Math. 141 [2004], 125-144.
[9] Gillespie, T. A.; Torrea, J. L. Transference of a Littlewood-Paley-Rubio inequality and dimension free estimates. Rev. Un. Mat. Argentina 45 no. 1, [2005], 1-6.
[10] Lacey M., Thiele C., L ${ }^{p}$ bounds on the bilinear Hilbert transform for $2<p<\infty$ Ann. Math. 146, [1997], pp. 693-724.
[11] Lacey, M., Thiele, C., On Calderón's conjecture. Ann. Math. 1492 [1999] pp. 475-496
[12] Pisier, G. Riesz transform: A simpler analytic proof of P.A. Meyer's inequality, Lecture Notes in Math. 1321, Springer, Berlin, [1988], 485501.
[13] Rubio de Francia, J.L. Transference principles for radial multipliers. Duke Math. J. 58 [1989] pp. 1-18.
[14] Stein, E. M., Singular Integrals and Differentiability Properties of Functions, Princeton Univ. Press, Princeton, [1970].
[15] Stein, E. M., Some results in Harmonic Analysis in \mathbb{R}^{n} for $n \rightarrow \infty$, Bull. Amer. Marh. Soc. 9, [1983], 71-73.
[16] Stein, E. M., Harmonic Analysis: real-variable methods, orthogonality and oscillatory integrals, Princeton Univ. Press, [1993].
[17] Stein, E. M., Stromberg, J.O. Behaviour of maximal functions in \mathbb{R}^{n} for large n, Ark. Mat. 21 [1983], 259-269.
[18] Stein, E. M. and Weiss, G., Introduction to Fourier Analysis on Euclidean Spaces, Princeton Univ. Press, [1971].

Departamento de Análisis Matemático
Universitad de Valencia, Burjassot, 46100-Valencia, (SPAIN)
E-mail: oscar.blasco@uv.es
School of Mathematics and Maxwell Institute for Mathematical Sciences
University of Edinburgh, Edinburgh EH9 3JZ, (SCOTLAND)
E-mail: t.a.gillespie@ed.ac.uk

[^0]: *Partially supported by the Spanish grant Proyecto MTM 2005-08350-C03-03

