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Abstract

Given a metric measure space (X, d, µ), a weight w defined on
(0,∞) and a kernel kw(x, y) satisfying the standard fractional integral
type estimates, we study the boundedness of the operators Kwf(x) =∫
X kw(x, y)f(y)dµ(y) and K̃wf(x) =

∫
X

(
kw(x, y)−kw(x0, y)

)
f(y)dµ(y)

on Lebesgue spaces Lp(µ) and generalized Lipschitz spaces Lipφ, re-
spectively, for certain range of the parameters depending on the n-
dimension of µ and some indices associated to the weight w.

AMS Subj. Class: 42B20, 26A33, 47B38,47G10
Key words: fractional integrals, weights, Lipschitz spaces, non-doubling

measures

1 Introduction.

It is well known that a basic assumption in the classical Calderón-Zygmung
theory in Rn is the doubling property of the underlying measure space, i.e.
µ(B(x, 2r)) ≤ Cµ(B(x, r)) for all x ∈ Rn and r > 0. However, it has been
recently shown that many results of the theory still hold for general metric
spaces X assuming only that µ(B(x, r)) ≤ Crn for all x ∈ X and r > 0. The
reader is referred to [6, 7, 15] for results on vector-valued inequalities and
weights and to [8, 13, 21, 22] for results on classical spaces such as H1 and
BMO in the setting of non-doubling measures.

∗The first and third authors were partially supported by Proyecto MTN2005-08350-
C03-03
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The aim of this note is to analyze the boundedness of the fractional
integral-type operators defined on non-doubling measure spaces acting on
Lebesgue spaces and generalized Lipschitz spaces. This study was initiated
in the work of J. Garćıa-Cuerva and A.E. Gatto (see [4, 5]) for the classical
fractional integral operators and Lipschitz spaces. In this paper we are able
to extend some of their results, including weights more general than the
potential ones, and to see that a similar theory can be applied to operators
defined with kernels more general than the fractional integral ones.

The action of the fractional integral operator on Hölder spaces goes back
to the work of Hardy-Littlewood in [9]. Since then, many different exten-
sions have been considered. Similar results for power weights were proved
in [16, 17] and later, extended to other classes of weights, including power-
logarithmic type ones, in [14]. On a different direction some development
of the theory in the setting of generalized Lipschitz spaces and spaces of
homogeneous type was initiated in [11, 12].

Throughout the paper (X, d, µ) will be a metric measure space, that is a
metric space (X, d) equipped with a Borel measure µ such that

µ(B(x, r)) ≤ Crn (1)

for every ball B(x, r) = {y ∈ X : d(x, y) < r}, where n > 0 is some fixed
constant and C is independent of of x and r. We shall deal, for simplicity,
only with the case diam(X) = ∞.

For us a weight w on an interval I ⊂ (0,∞) will always be a continuous
function w : I → (0,∞). We shall use weights defined on (0,∞) but we
shall relate them with the known theory for weights defined on (0, 1]. Given
w : (0,∞) → (0,∞) we denote by w0(t) = w(t) and w∞(t) = w(1/t) for
0 < t ≤ 1.

We consider the indices m(w), M(w), m∞(w) and M∞(w) introduced
by N.G. Samko in the case of weights defined on the finite interval (0, 1]
(see [18]) or by N.G. et al. in the case [1,∞) (see [19]) and we shall also
work in the class of weights W̃ such that there exists a, b ∈ R such that
taw(t) is almost increasing in (0, 1], tbw(t) is almost decreasing in [1,∞) and
−∞ < M(w),m∞(w) < +∞.

In the paper we shall consider B(X) × B(X)-measurable functions kw :
X ×X → C that satisfy the following conditions:

|kw(x, y)| ≤ C
w(d(x, y))

d(x, y)n
, x, y ∈ X, x 6= y (2)
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and there exists ε > 0 such that

|kw(x, z)− kw(y, z)| ≤ C
(d(x, y)
d(x, z)

)εw(d(x, y))

d(x, z)n
, d(x, z) ≥ 2d(x, y) > 0.

(3)
For such kernels we define the operators

Kwf(x) =

∫
X

kw(x, y)f(y)dµ(y)

and

K̃wf(x) =

∫
X

(
kw(x, y)− k(x0, y)

)
f(y)dµ(y)

and study their boundedness on Lebesgue spaces and generalized Lipschitz
spaces.

Our considerations are inspired by those developed in the case w(t) = tα

corresponding to the classical fractional integrals. However we will explore
the connections between the weight w and the measure µ that still allow the
operators Kw and K̃w to be well defined for functions in Lp(µ) and will find
the dependence between their boundedness on some spaces and the indices
the weight w. We shall find a Hardy-Littlewood-Sobolev type inequality for
Kw in our setting in Theorem 3.3. We will study the boundedness of K̃w

from Lp(µ) into Lipφ for φ(t) = t−n/pw(t) in Theorem 4.3 and from Lipφ into
Lipψ, where ψ depends on φ and w in some special fashion, in Theorem 4.5.
Our results recover those obtained in [4] for the fractional integral operator
(corresponding to w(t) = tα) and classical Lipschitz classes (corresponding
to φ(t) = tβ).

The paper is divided into three sections. In the first one we prove the
basic lemmas on weights to be used in the paper. Section 3 is devoted to
get conditions on the weights for the operator Kw to be defined on Lp(µ) for
some values on p. Section 4 contains the results on K̃w and its boundedness
on the generalized Lipschitz classes.

As usual A ≈ B means thatK−1A ≤ B ≤ KA for someK > 1, C denotes
a constant that may vary from line to line and p′ stands for the conjugate
exponent, 1/p+ 1/p′ = 1.

2 Admisible weights.

In what follows we shall use the following indices introduced by N.G. Samko
for weights defined on (0, 1] (see [18, Def. 2.3]) or by N.G. Samko et al. for
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weights defined on [1,∞) (see [19, Pag. 566]). We write

m(w) = sup
x>1

log(limh→0
w(xh)
w(h)

)

log x
,M(w) = inf

x>1

log(limh→0
w(xh)
w(h)

)

log x
, (4)

m∞(w) = sup
x>1

log(limh→∞
w(xh)
w(h)

)

log x
,M∞(w) = inf

x>1

log(limh→∞
w(xh)
w(h)

)

log x
. (5)

Definition 2.1 We shall say that a weight on (0,∞) belongs to the class W̃
if there exist a, b ∈ R such that taw(t) is almost increasing in (0, 1] (i.e. there
exists C ≥ 1 such that taw(t) ≤ Csaw(s) for 0 < t ≤ s ≤ 1), tbw(t) is almost
decreasing in [1,∞) (i.e. there exists C ≥ 1 such that sbw(s) ≤ Ctbw(t) for
1 ≤ t ≤ s <∞) and −∞ < M(w),m∞(w) < +∞.

For a weight w ∈ W̃ , we use the notation mw = min{m(w),m∞(w)} and
Mw = max{M(w),M∞(w)}.

Definition 2.2 Given −∞ < σ1, σ2 <∞, we say that a weight w on (0,∞)
belongs to ∆(σ1, σ2) if tσ1w(t) is almost increasing in (0,∞) and tσ2w(t) is
almost decreasing in (0,∞).

Remark 2.1 Observe that if w ∈ ∆(σ1, σ2) then there exists C ≥ 1 such
that, for 0 < s <∞,

C−1x−σ2w(s) ≤ w(xs) ≤ Cx−σ1w(s), 0 < x ≤ 1, (6)

C−1x−σ1w(s) ≤ w(xs) ≤ Cx−σ2w(s), 1 ≤ x. (7)

Hence it follows immediately that if w ∈ ∆(σ1, σ2) then σ2 ≤ σ1.

Our first objective is to show that the class W̃ can be described as W̃ =
∪σ1,σ2∆(σ1, σ2).

To such a purpose, let us first recall some classical weights considered
by Zygmund, Bari and Stechkin (see [1]) which play an important role in
extending results valid for w(t) = tα to more general weights and that will
be connected with our class of weights.

Let −∞ < β, γ <∞ and let w be a weight on (0, 1]. w is said to belong
to Zβ([0, 1]) if there exists C > 0 such that∫ h

0

w(t)

t1+β
dt ≤ C

w(h)

hβ
, h < 1. (8)
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w is said to belong to Zγ([0, 1]) if there exists C > 0 such that∫ 1

h

w(t)

t1+γ
dt ≤ C

w(h)

hγ
, h ≤ 1. (9)

w is said to belong to W̃0([0, 1]) if there exists a ∈ R such that

tau(t)is almost increasing. (10)

The class of weights in Zβ([0, 1]) ∩ Zγ([0, 1]) ∩ W̃0([0, 1]) is called the
generalized Zygmund-Bari-Stechkin class in [10]. These classes of weights
have been used by many authors and under different names (see [2, 3] for the
notation dε and bδ and references therein).

We have the following connection between the Zygmund-Bari-Steckin
classes and the former indices (see [18, Pg 125], [10, Thm 3.1 and Thm
3.2], [19, Thm 2.4]).

Theorem 2.3 Let w ∈ W̃0([0, 1]) and −∞ < β, γ < ∞. The following are
equivalent.

(a) w ∈ Zβ([0, 1]) (resp. w ∈ Zγ([0, 1])).

(b) m(w) > β (resp. M(w) < γ).

(c) For all m(w) > δ > β one has w(t)
tδ

is almost increasing in (0, 1] (resp.

for all M(w) < δ < γ such that w(t)
tδ

is almost decreasing in (0, 1]).

By using this theorem it is easily seen that m(w) ≤ M(w) when w ∈
W̃0([0, 1]).

Next we prove our claim: W̃ = ∪σ1,σ2∆(σ1, σ2).

Theorem 2.4 Let w be a weight on (0,∞). The following are equivalent.
(i) w ∈ ∪σ1,σ2∆(σ1, σ2).
(ii) w ∈ W̃ .
(iii) There exist u, v ∈ W̃0([0, 1]) such that u(1) = v(1), M(u),M(v) ∈ R

and

w(t) =

{
u(t), 0 < t ≤ 1;
v(1/t), 1 ≤ t <∞.

PROOF.
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(i) =⇒ (ii). Assume w ∈ ∆(σ1, σ2). From (6) and (7) it follows that

−σ1 ≤ m(w),M(w),m∞(w),M∞(w) ≤ −σ2.

(ii) =⇒ (iii). Let w ∈ W̃ and define

u(t) = w(t), t ∈ (0, 1], v(t) = w(
1

t
), t ∈ (0, 1].

Clearly u, v ∈ W̃0([0, 1]) and M(u) = M(w). On the other hand

m∞(w) = sup
x>1

− log(limh→∞
w(h)
w(xh)

)

log x

= − inf
x>1

log(limh→∞
v(1/h)
v(1/xh)

)

log x

= − inf
x>1

log(limh→0+
v(h)
v(h/x)

)

log x

= − inf
x>1

log(limh→0+
v(xh)
v(h)

)

log x
= −M(v).

This concludes the implication.
(iii) =⇒ (i). Let a1, b1 ∈ R such that ta1u(t) and tb1v(t) are almost

increasing in (0, 1]. From Theorem 2.3 we also have that ta2u(t) and tb2v(t)
are almost decreasing in (0, 1] for some a2, b2 ∈ R . This gives that

ta1
1 w(t1) ≤ Cta1

2 w(t2), t1 < t2 ≤ 1,

ta2
2 w(t2) ≤ Cta2

1 w(t1), t1 < t2 ≤ 1,

t−b21 w(t1) ≤ Ct−b22 w(t2), 1 ≤ t1 < t2,

t−b12 w(t2) ≤ Ct−b11 w(t1), 1 ≤ t1 < t2,

for some constant C ≥ 1. In particular, combining the previous estimates,
we also have

ta1
1 w(t1) ≤ Ct−b22 w(t2), t1 < 1 < t2,

t−b12 w(t2) ≤ Cta2
1 w(t1), t1 < 1 < t2.

Multiplying by tγ we may assume that a = a1 = b1 > 0 and a2 = b2 =
−a < 0. This allows to see that taw(t) is almost increasing and t−aw(t) is
almost decreasing. Hence w ∈ ∆(a,−a). �
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Example 2.1 Let α, β ∈ R and define

wα,β(t) =

{
tα logβ( e

t
), 0 < t ≤ 1;

tα log−β(et), 1 ≤ t <∞.

Note that m(wα,β) = M(wα,β) = m∞(wα,β) = M∞(wα,β) = α.
Of course for β = 0 we have wα,0 ∈ ∆(−α,−α). Let us see that wα,β ∈

∆(σ1,−α) for any σ1 > −α and β > 0 and wα,β ∈ ∆(−α, σ2) for any
σ2 < −α and β < 0.

Due to the facts that w ∈ ∆(σ1, σ2) implies w−1 ∈ ∆(−σ2,−σ1) and
wγ ∈ ∆(γσ1, γσ2) for γ > 0, it suffices to see that wδ,1 ∈ ∆(δ1,−δ) for all
δ1 > −δ.

This now follows since log( e
t
)χ(0,1](t) + log−1(et)χ(1,∞)(t)) is decreasing

and tε
(

log( e
t
)χ(0,1](t) + log−1(et)χ(1,∞)(t))

)
is almost increasing for ε > 0.

In particular we have that wα,β ∈ ∆(σ1, σ2) whenever σ2 < −α < σ1 and
β ∈ R.

Let us mention the following useful result given in terms of the indices
previously defined.

Theorem 2.5 Let w ∈ W̃ and β < mw ≤ Mw < γ. Then w ∈ ∆(−β1,−γ1)
for any β < β1 < mw and Mw < γ1 < γ.

Proof. Using Theorem 2.3 applied to w0 and w∞, since m(w0) = m(w) > α
and M(w∞) = −m∞(w) < −α, we have t−β1w(t) and tβ1w∞(t) are almost
increasing and decreasing in (0, 1] respectively. This shows that t−β1w(t) is
almost increasing in (0,∞).

Similarly we get the corresponding result for γ1.
We shall start by proving a couple of basic lemmas that will be used in

the sequel.

Lemma 2.6 Let w ∈ W̃ and ε ∈ R. Then there exists C > 0 such that, for
all x ∈ X and r > 0,∫

B(x,r)

w(d(x, y))

d(x, y)n−ε
dµ(y) ≤ C

∫ r

0

tεw(t)
dt

t
. (11)

PROOF. Assume w ∈ ∆(σ1, σ2). Define, for j = 0, 1, ...,

Bj = {y ∈ B(x, r) : 2−(j+1)r ≤ d(x, y) < 2−jr}.
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Note that (6) gives that

C−1w(2−jr) ≤ w(d(x, y)) ≤ Cw(2−jr), y ∈ Bj. (12)

Observe that ∪jBj = B(x, r)\{x} and µ({x}) = 0. Now, using condition
(1), we have∫

B(x,r)

w(d(x, y))

d(x, y)n−ε
dµ(y) =

∞∑
j=0

∫
Bj

w(d(x, y))

d(x, y)n−ε
dµ(y)

≈
∞∑
j=0

w(2−jr)(2−jr)ε−n
∫
Bj

dµ(y)

≤ C

∞∑
j=0

w(2−jr)(2−jr)ε−nµ(B(x, 2−jr))

≤ C
∞∑
j=0

(2−jr)εw(2−jr)

≤ C
∞∑
j=0

(2−jr)ε
∫ 2−jr

2−(j+1)r

w(t)
dt

t

≤ C
∞∑
j=0

∫ 2−jr

2−(j+1)r

tεw(t)
dt

t

= C

∫ r

0

tεw(t)
dt

t
.

�

Corollary 2.7 Let w ∈ W̃ and −ε < mw. Then there exists C > 0 such
that, for all x ∈ X and r > 0,∫

B(x,r)

w(d(x, y))

d(x, y)n−ε
dµ(y) ≤ Crεw(r). (13)

PROOF. From Proposition 2.5 one obtains w ∈ ∆(σ1, σ2) for some ε > σ1.
Invoking Lemma 2.6 and using (6) we have∫ r

0

tεw(t)
dt

t
= rε

∫ 1

0

sεw(rs)
ds

s
≤ Crεw(r)

∫ 1

0

sε−σ1
ds

s
≤ Crεw(r).

�
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Remark 2.2 If γ > 0 and β ∈ R then (see [4, Lemma 2.1] for β = 0)∫
B(x,r)

(
1 + | log(d(x, y)|

)β
d(x, y)n−γ

dµ(y) ≤ Crγ(1 + | log r|)β, 0 < r <∞. (14)

To obtain (14) for 0 < r ≤ 1 apply Corollary 2.7 for ε = 0 to w(t) =
wγ,β(t) which belongs to ∆(σ1, σ2) whenever −σ1 < γ < −σ2. The case r > 1
follows similarly using wγ,−β.

Lemma 2.8 Let w ∈ W̃ and δ ∈ R. Then there exists C > 0 such that, for
all x ∈ X and r > 0,∫

X\B(x,r)

w(d(x, y))

d(x, y)n+δ
dµ(y) ≤ C

∫ ∞

r

w(t)

tδ
dt

t
. (15)

PROOF. Assume again w ∈ ∆(σ1, σ2) and now consider for j = 0, 1, ...

Aj = {y ∈ X : 2jr ≤ d(x, y) < 2j+1r}.

As above

C−1w(2jr) ≤ w(d(x, y)) ≤ Cw(2jr), y ∈ Aj. (16)

Using again (1) we have∫
X\B(x,r)

w(d(x, y))

d(x, y)n+δ
dµ(y) =

∞∑
j=0

∫
Aj

w(d(x, y))

d(x, y)n+δ
dµ(y)

≈ C
∞∑
j=0

(2jr)−δ−nw(2jr)

∫
Aj

dµ(y)

≤ C
∞∑
j=0

(2jr)−δ−nw(2jr)µ(B(x, 2j+1r))

≤ C

∞∑
j=0

(2jr)−δw(2jr)

≈ C

∞∑
j=0

(2jr)−δ
∫ 2j+1r

2jr

w(t)
dt

t

≤ C

∞∑
j=0

∫ 2j+1r

2jr

w(t)

tδ
dt

t
= C

∫ ∞

r

w(t)

tδ
dt

t
.

�
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Corollary 2.9 Let w ∈ W̃ and Mw < δ. Then there exists C > 0 such that,
for all x ∈ X and r > 0,∫

X\B(x,r)

w(d(x, y))

d(x, y)n+δ
dµ(y) ≤ C

w(r)

rδ
. (17)

PROOF. From Proposition 2.5 one obtains w ∈ ∆(σ1, σ2) for some δ > −σ2

Invoking Lemma 2.8 and (7) we get the estimate∫ ∞

r

w(t)

tδ
dt

t
=

1

rδ

∫ ∞

1

w(rs)

sδ
ds

s
≤ C

w(r)

rδ

∫ ∞

1

s−σ2−δ ds

s
≤ C

w(r)

rδ
.

�

Remark 2.3 If γ > 0 and β ∈ R then (see [4, Lemma 2.2] for β = 0)∫
X\B(x,r)

(
1 + | log(d(x, y)|

)β
d(x, y)n+γ

dµ(y) ≤ C
1

rγ
(1 + | log r|)β, 0 < r <∞, (18)

To obtain (18) for 0 < r ≤ 1 we use Corollary 2.9 with δ = 0 applied to
w−γ,β, which belongs to ∆(σ1, σ2) for σ2 < γ < σ1. The case r > 1 follows
similarly using the weight w−γ,−β.

3 The weighted fractional kernels

Definition 3.1 Let w ∈ W̃ . A B(X) × B(X)-measurable function kw :
X ×X → C is said to be a fractional kernel of weight w if

|kw(x, y)| ≤ C
w(d(x, y))

d(x, y)n
, x, y ∈ X, x 6= y. (19)

Denote by Kw the operator given by

Kwf(x) =

∫
X

kw(x, y)f(y)dµ(y), x ∈ X.

Note that if
∫ 1

0
w(t)
t
<∞, in particular if w ∈ ∆(σ1, σ2) with σ1 < 0, then

Kw is well defined on bounded functions f with bounded support (due to
Lemma 2.6), or if w ∈ W̃ and w(t) ≤ Ctn for 0 < t < ∞ then Kw is well
defined on integrable functions f .

Let us extend the definition of such operator to more general functions
depending on the properties of w.
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Theorem 3.2 Let w ∈ W̃ , 1 < p < ∞ and let kw be a fractional kernel of
weight w. Assume that

M∞(w) < n/p and m(w) > 0. (20)

Then Kw defines a bounded operator from Lp(µ) → Lp(µ) + L∞(µ).

PROOF. Let f ∈ Lp(µ). We shall see first that∫
B(x,1)

|Kw(x, y)||f(y)|dµ(y) +

∫
X\B(x,1)

|Kw(x, y)||f(y)|dµ(y) <∞, µ− a.e.

On the one hand, using that wp
′ ∈ W̃ , Lemma 2.8 gives

II(f, x) =

∫
X\B(x,1)

|Kw(x, y)||f(y)|dµ(y)

≤ C

∫
X\B(x,1)

w(d(x, y))

d(x, y)n
|f(y)|dµ(y)

≤ C(

∫
X\B(x,1)

|f(y)|pdµ(y))1/p(

∫
X\B(x,1)

wp
′
(d(x, y))

d(x, y)np′
dµ(y))1/p′

≤ C(

∫ ∞

1

wp
′
(t)

tn(p′−1)

dt

t
)1/p′(

∫
X\B(x,1)

|f(y)|pdµ(y))1/p

= C(

∫ 1

0

wp
′
∞(t)

tn(1−p′)
dt

t
)1/p′(

∫
X\B(x,1)

|f(y)|pdµ(y))1/p

Since m(wp
′
∞) = p′m(w∞) = −p′M∞(w) and n(1 − p′) < p′m(w∞), The-

orem 2.3 gives that wp
′
∞ ∈ Zn(1−p′)([0, 1]). In particular

∫ 1

0
wp′
∞(t)

tn(1−p′)
dt
t
< ∞,

and therefore
∫
X\B(x,1)

kw(x, y)f(y)dµ(y) ∈ L∞(µ) and with norm bounded

by C‖f‖Lp(µ).
On the other hand, using Hölder’s inequality and Lemma 2.6, we have

I(f, x) =

∫
B(x,1)

|Kw(x, y)||f(y)|dµ(y)

≤ C

∫
B(x,1)

w(d(x, y))

d(x, y)n
|f(y)|dµ(y)

≤ C(

∫
B(x,1)

w(d(x, y))

d(x, y)n
|f(y)|pdµ(y))1/p(

∫
B(x,1)

w(d(x, y))

d(x, y)n
dµ(y))1/p′

≤ C(

∫ 1

0

w(t)

t
dt)1/p′(

∫
B(x,1)

w(d(x, y))

d(x, y)n
|f(y)|pdµ(y))1/p
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Now the assumptionm(w0) = m(w) > 0 and Theorem 2.3 give
∫ 1

0
w(t)
t
dt =

A <∞.
Now integrating Ip(f, x) we have∫
X

I(f, x)pdµ(x) ≤ CAp/p
′
∫
X

( ∫
B(y,1)

w(d(x, y))

d(x, y)n
dµ(x)

)
|f(y)|pdµ(y)

≤ CAp/p
′
(

∫ 1

0

w(t)

t
dt)

∫
X

|f(y)|pdµ(y) ≤ C‖f‖pLp(µ).

Therefore I(f, x) <∞ µ-a.e. and, in particular,
∫
B(x,1)

kw(x, y)f(y)dµ(y)

is well defined µ-a.e. We conclude now that Kwf(x) ∈ Lp(µ) + L∞(µ) and
‖Kwf‖Lp(µ)+L∞(µ) ≤ C‖f‖Lp(µ). �

In [4, Theorem 3.2] it was shown that for w(t) = tα and 1 ≤ p < n/α the
operator Kα maps Lp(µ) into Lq,∞(µ) for 1/q = 1/p− α/n extending to the
non-doubling setting the Hardy-Littlewood-Sobolev inequality which holds
for Rn and the Lebesgue measure (see [20]).

Theorem 3.3 Let w ∈ W̃ with 0 < mw ≤Mw < n and let kw be a fractional
kernel of weight w. If 1 ≤ p < n/Mw, 0 < ε < mw and 0 < δ < n −Mw

then there exists A > 0 such that, for 1/q1 = 1/p − (mw − ε)/n and 1/q2 =
1/p− (Mw + δ)/n, we have for every f with ‖f‖Lp(µ) = 1

µ{x : |Kw(f)(x)| > λ} ≤ C

λq2
, 0 < λ ≤ A, (21)

µ{x : |Kw(f)(x)| > λ} ≤ C

λq1
, λ ≥ A (22)

PROOF. From Proposition 2.5 we have w ∈ ∆(σ1, σ2) for all 0 < −σ1 <
mw ≤ Mw < −σ2 < n. Put σ1 = ε − mw and σ2 = −Mw − δ. Now, let
1 < p < n/Mw, f ∈ Lp(µ) and r > 0 and define

Ir(f, x) =

∫
B(x,r)

|Kw(x, y)||f(y)|dµ(y), x ∈ X,

IIr(f, x) =

∫
X\B(x,r)

|Kw(x, y)||f(y)|dµ(y), x ∈ X.
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Arguing as in Theorem 3.2 and using that mw > 0 in Corollary 2.7, we
obtain

Ir(f, x) ≤ Cw(r)1/p′(

∫
B(x,r)

w(d(x, y))

d(x, y)n
|f(y)|pdµ(y))1/p (23)

Now, using Fubini’s theorem and Corollary 2.7 again, we have∫
X

Ir(f, x)
pdµ(x) ≤ Cw(r)p/p

′
∫
X

( ∫
B(y,r)

w(d(x, y))

d(x, y)n
dµ(x)

)
|f(y)|pdµ(y)

≤ Cw(r)p
∫
X

|f(y)|pdµ(y).

On the other hand

IIr(f, x) ≤ C(

∫
X\B(x,r)

|f(y)|pdµ(y))1/p(

∫
X\B(x,r)

wp
′
(d(x, y))

d(x, y)np′
dµ(y))1/p′

and now using that Mwp′ = p′Mw < (p′ − 1)n and Corollary 2.9, we have

IIr(f, x) ≤ Cr−n/pw(r)(

∫
X\B(x,r)

|f(y)|pdµ(y))1/p.

Now, for each ‖f‖p = 1, the estimates (6) and (7) allow us to write

IIr(f, x) ≤ C0r
−n/p max{r−σ1 , r−σ2} = φ(r).

Denoting

φ(r) =

{
C0r

−n/p−σ1 , 0 < r ≤ 1;
C0r

−n/p−σ2 , 1 ≤ r <∞,

we have that φ is continuous, decreasing in (0,∞), limr→0 φ(r) = ∞ and
limr→∞ φ(r) = 0. Hence for any λ > 0 there is a unique 0 < r < ∞ such
that φ(r) = λ/2 and IIr(f, x) ≤ λ/2 for all x ∈ X. Hence we have

µ{x : |Kw(f)(x)| > λ} ≤ µ{x : Ir(f, x) > λ/2}
≤ Cλ−p‖Ir(f, .)‖pp
≤ Cλ−pw(r)p

≤ Cλ−prnφ(r)p

= C[φ−1(λ/2)]n.

To finish the proof observe that if λ ≥ 2C0 then φ−1(λ/2) = C1λ
−q1/n where

n/q1 = n/p + σ1 and that if 0 < λ ≤ 2C0 then φ−1(λ/2) = C2λ
−q2/n where

n/q2 = n/p+ σ2.
The case p = 1 is similar with the obvious modifications. �
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Corollary 3.4 (see [4, Theorem 3.2] Let w ∈ W̃ with m(w) = M(w) =
m∞(w) = M∞(w) = α and kw is a fractional kernel of weight w. Then for
each 1 < p < n

α
and 1/q = 1/p− α/n we have that Kw extends to a bounded

operator from Lp(µ) into Lq(µ).

4 Boundedness in Lipschitz spaces

Definition 4.1 Let φ : (0,∞) → (0,∞) be a continuous function. A func-
tion f : X → C is said to satisfy a Lipschitz condition of order φ if

|f(x)− f(y)| ≤ Cφ(d(x, y)), x, y ∈ X, x 6= y. (24)

The smallest constant satisfying (24) will be denoted ‖f‖Lip(φ). It is easy to
see that ‖ · ‖Lip(φ) is a norm on the linear space of all Lipschitz functions of
weight w, modulo constants, and Lip(φ) is complete under this norm.

Remark 4.1 If limt→0+ φ(t) = 0 then functions in Lipφ are continuous.

Remark 4.2 Assume that there exist constants C > 1 and K > 1 so that
K−1φ(t) ≤ φ(s) ≤ Kφ(t) whenever C−1t ≤ s ≤ Ct. In this case Lip(φ)
defines the same space for all equivalent distances in X and with equivalent
norms.

Definition 4.2 Let kw be a fractional kernel of weight w. We say that kw
has regularity ε > 0 if it satisfies

|kw(x, z)− kw(y, z)| ≤ C
(d(x, y)
d(x, z)

)εw(d(x, y))

d(x, z)n
, d(x, z) ≥ 2d(x, y) > 0. (25)

For a given x0 ∈ X define

K̃wf(x) =

∫
X

(
kw(x, y)− kw(x0, y)

)
f(y)dµ(y). (26)

Note that, from Lemma 2.8, if f is bounded with supp(f)∩B(x0, 2R) = ∅
then Kwf(x) is well defined for any x ∈ B(x0, R).

Example 4.1 Let kw(x, y) = w(d(x,y))
d(x,y)n where w ∈ W̃ is derivable and

sup
t>0

∣∣∣tw′(t)
w(t)

− n
∣∣∣ <∞.

Then kw has regularity 1.
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PROOF. Consider w1(t) = w(t)
tn

. By the mean value theorem

|w1(t)− w1(s)| ≤ |w′1((1− θ)s+ θt)||t− s|.

Hence, setting t(θ, x, y, z) = t0 = (1− θ)d(x, z) + θd(y, z) then

|kw(x, z)− kw(y, z)| ≤ |w′1(t0)||d(x, z)− d(y, z)|

≤ |t0w′(t0)− nw(t0)|
tn+1
0

d(x, y)

≤ C
w(t0)

tn+1
0

d(x, y).

Let x, y, z ∈ X such that d(x, z) ≥ 2d(x, y), i.e. d(x, z)−d(x, y) ≥ d(x, y).
It is elementary to see that

3

2
d(x, z) ≥ d(y, z) ≥ 1

2
d(x, z) ≥ d(x, y).

This shows that
1

2
d(x, z) ≤ t(θ, x, y, z) ≤ 3

2
d(x, z),

and allows to conclude that

|kw(x, z)− kw(y, z)| ≤ C
w(d(x, z))

d(x, z)n+1
d(x, y).

�

Theorem 4.3 Let w ∈ W̃ with mw > 0. Assume that kw be a fractional
kernel with regularity 0 < ε < Mw and

max{n/mw, 1} < p < n/(Mw − ε).

Then K̃w is bounded from Lp(µ) to Lip(φ) for φ(t) = t−n/pw(t).

PROOF. We have n/p < mw ≤ Mw < n/p + ε. Let f ∈ Lp(µ) for p 6= ∞,
x, y ∈ X with x 6= y and r = d(x, y). Then

|K̃wf(x)− K̃wf(y)| ≤
∫
X

|kw(x, z)− kw(y, z)||f(z)|dµ(z)

≤
∫
B(x,2r)

|kw(x, z)||f(z)|dµ(z) +

∫
B(x,2r)

|kw(y, z)||f(z)|dµ(z)

+

∫
X\B(x,2r)

|kw(x, z)− kw(y, z)||f(z)|dµ(z).
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First, using Hölder’s inequality and Corollary 2.7 (because mwp′ = p′mw >
n(p′ − 1)), we estimate∫

B(x,2r)

|kw(x, z)||f(z)|dµ(z)

≤ C

∫
B(x,2r)

w(d(x, z))

d(x, z)n
|f(z)|dµ(z)

≤ C
( ∫

B(x,2r)

wp
′
(d(x, z))

d(x, z)np′
dµ(z)

)1/p′( ∫
B(x,2r)

|f(z)|pdµ(z)
)1/p

≤ C
w(2r)

rn/p
‖f‖Lp(µ).

The second term is estimated similarly using B(x, 2r) ⊂ B(y, 3r),∫
B(x,2r)

|kw(y, z)||f(z)|dµ(z) ≤ C
w(3r)

rn/p
‖f‖Lp(µ).

Finally we use (25) and Corollary 2.9 (sinceMwp′ = p′Mw < n(p′−1)+εp′)
to obtain∫

X\B(x,2r)

|kw(x, z)− kw(y, z)||f(z)|dµ(z)

≤ Cd(x, y)ε
∫
X\B(x,2r)

w(d(x, z))

d(x, z)n+ε
|f(z)|dµ(z)

≤ Cd(x, y)ε
( ∫

X\B(x,2r)

wp
′
(d(x, z))

d(x, z)(n+ε)p′
dµ(z)

)1/p′( ∫
X\B(x,2r)

|f(z)|pdµ(z)
)1/p

≤ C
w(2r)

rn/p
‖f‖Lp(µ).

Therefore, using that w(r) ≈ w(2r) ≈ w(3r) and r = d(x, y) one gets

|K̃wf(x)− K̃w(y)| ≤ C
w(d(x, y))

d(x, y)n/p
‖f‖p.

Analogue, but easier, proof works in p = ∞. �
We write kα for kw in the case w = tα.

Corollary 4.4 (see [4, Theorem 5.2 ]) Let 0 < α < n and kα be a fractional
kernel with regularity ε > 0. If n/α < p ≤ ∞ and α − n/p < ε, then K̃α

maps boundedly Lp(µ) into Lip(α− n/p).
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Let us now analyze the boundedness of K̃w on Lipschitz spaces.

Theorem 4.5 Let kw be a fractional kernel with weight w ∈ W̃ with regu-
larity ε such that mw > 0. Assume that u ∈ W̃ with mu > 0 and Muw < ε.
Then K̃w(1) = 0 if and only if K̃w maps continuously Lip(u) into Lip(uw).

PROOF. Assume K̃w(1) = 0. Equivalently∫
X

(kw(x, z)− kw(y, z))dµ(z) = 0, x, y ∈ X.

If f ∈ Lip(u), x 6= y and r = d(x, y) then we can write

|K̃wf(x)− K̃w(y)| = |
∫
X

(kw(x, z)− kw(y, z))(f(z)− f(x))dµ(z)|

≤
∫
B(x,2r)

|kw(x, z)||f(z)− f(x)|dµ(z)

+

∫
B(x,2r)

|kw(y, z)||f(z)− f(x)|dµ(z)

+

∫
X\B(x,2r)

|kw(x, z)− kw(y, z)||f(z)− f(x)|dµ(z).

Now, since muw > 0 (see Theorem 2.5), one gets∫
B(x,2r)

|kw(x, z)||f(z)− f(x)|dµ(z) ≤ C

∫
B(x,2r)

w(d(x, z)

d(x, z)n
u(d(x, z))dµ(z)

≤ Cu(2r)w(2r)

by virtue of Corollary 2.9.
Using, as above, B(x, 2r) ⊂ B(y, 3r) one also gets

∫
B(x,2r)

|kw(y, z)||f(z)− f(x)|dµ(z)

≤
∫
B(y,3r)

|kw(y, z)|(|f(z)− f(y)|+ |f(y)− f(x)|)dµ(z)

≤ C

∫
B(y,3r)

w(d(y, z))

d(y, z)n
u(d(y, z))dµ(z) + Cu(d(x, y))

∫
B(y,3r)

w(d(y, z))

d(y, z)n
dµ(z).
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Since w(3t) ≈ w(2t) ≈ w(t) and u(3t) ≈ u(2t) ≈ u(t), Corollary 2.7
implies that∫
B(y,3r)

w(d(y, z))u(d(y, z))

d(y, z)n
dµ(z)+u(d(x, y))

∫
B(y,3r)

w(d(y, z))

d(y, z)n
dµ(z) ≤ Cu(r)w(r).

Finally, we have ∫
X\B(x,2r)

|kw(x, z)− kw(y, z)||f(z)− f(x)|dµ(z)

≤ Cd(x, y)ε
∫
X\B(x,2r)

w(d(x, z))

d(x, z)n+ε
u(d(x, z))dµ(z).

Also using Corollary 2.9 we have
∫
X\B(x,2r)

w(d(x,z))u(d(x,z))
d(x,z)n+ε dµ(z) ≤ C w(2r)u(2r)

rε .

Hence, the previous estimates imply

|K̃wf(x)− K̃wf(x)| ≤ Cu(r)w(r).

Conversely, if we assume that K̃w is bounded from Lip(u) to Lip(uw)
then K̃(1) should have norm zero in Lip(uw), that is K̃(1) is constant, but
since K̃w(1)(x0) = 0 the constant should be zero. �

Applying the previous result for w(t) = tα and u(t) = tβ we recover the
following theorem.

Corollary 4.6 (see [4, Theorem 5.3 ]) Let α, β > 0 and kα be a fractional
kernel with regularity ε > 0 with α+β < ε. Then K̃α maps boundedly Lip(β)
into Lip(α+ β) if and only if K̃α(1) = 0.
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