A space of projections on the Bergman space

Oscar Blasco*and Salvador Pérez-Esteva ${ }^{\dagger}$

September 2, 2008

Abstract

We define a set of projections on the Bergman space A^{2} parameterized by an affine closed space of a Banach space. This family is defined from an affine space of a Banach space of holomorphic functions in the disk and includes the classical Forelli-Rudin projections.

2000 Mathematics Subject Classification 46E20.

1 Introduction

Recall that the Bergman projection of $L^{2}(\mathbb{D})$ onto the holomorphic Bergman space $A^{2}=L^{2}(\mathbb{D}) \cap \mathcal{H}(\mathbb{D})$, where $\mathcal{H}(\mathbb{D})$ denotes the space of holomorphic functions in the unit disk, is given by

$$
P \varphi(z)=\int_{\mathbb{D}} \frac{\varphi(w)}{(1-z \bar{w})^{2}} d A(w)
$$

where $d A$ is the normalized Lebesgue measure in the disk. Recall also the family of Forelli-Rudin projections parameterized by $\alpha>-1$

$$
P_{\alpha} \varphi(z)=\int_{\mathbb{D}}(\alpha+1)\left(\frac{1-|w|^{2}}{1-z \bar{w}}\right)^{\alpha} \frac{\varphi(w)}{(1-z \bar{w})^{2}} d A(w)
$$

[^0]which are the orthogonal projection of the weighted $L^{2}\left(\mathbb{D},(1-|w|)^{\alpha} d A(w)\right)$ onto $\mathcal{H}(\mathbb{D}) \cap L^{2}\left(\mathbb{D},(1-|w|)^{\alpha} d A(w)\right)$. It is well known (see [6, Th. 7.1.4]) that P_{α} is a continuous projection of $L^{2}(\mathbb{D})$ onto A^{2}, for each $\alpha>-1 / 2$.

Since

$$
\left\{\frac{1-|w|^{2}}{1-z \bar{w}}, z, w \in \mathbb{D}\right\} \subset \mathbb{D}_{1}
$$

where $\mathbb{D}_{1}=\{z:|z-1|<1\}$, we may replace the function $g_{\alpha}(\zeta)=(\alpha+1) \zeta^{\alpha}$ in the definition of P_{α} by any holomorphic function g on \mathbb{D}_{1} to obtain an operator T_{g} mapping the space $C_{c}(\mathbb{D})$ of compactly supported continuous functions defined on \mathbb{D} into A^{2}. An equivalent formulation of the operators defined this way was given by Bonet, Engliš and Taskinen in [1] to construct continuous projections in weighted L^{∞} spaces of \mathbb{D} into $\mathcal{H}(\mathbb{D})$. The purpose of this paper is to study the space \mathcal{P} of all holomorphic functions $g \in \mathbb{D}_{1}$, for which the corresponding operator T_{g} can be extended continuously to $L^{2}(\mathbb{D})$. In particular we study the set \mathcal{P}_{0} of those functions $g \in \mathcal{P}$ that define continuous projections on A^{2}. For convenience in the notation we will translate the functions in \mathcal{P} to the unit disk \mathbb{D}.

We will prove that \mathcal{P} is a Banach space when we define the norm of $g \in \mathcal{P}$ as the operator norm of the operator T_{g} and that $\Phi(g)=\int_{0}^{1} g(r) d r$ defines a bounded linear functional in \mathcal{P}^{*}. We give an analytic description of the elements of \mathcal{P} and show that if $g \in \mathcal{P}$ then either T_{g} is identically zero on A^{2} or it is a multiple of a continuous projection onto A^{2}, implying that $\mathcal{P}_{0}=\Phi^{-1}(\{1\})$ is a closed affine subspace of \mathcal{P}.

As usual, for each $z \in \mathbb{D}$, ϕ_{z} will denote by ϕ_{z} the Möbius transform $\phi_{z}(w)=\frac{z-w}{1-\bar{z} w}$ which satisfies $\left(\phi_{z}\right)^{-1}=\phi_{z}$ and $\phi_{z}^{\prime}(w)=-\frac{1-|z|^{2}}{(1-\bar{z} w)^{2}}$. Throughout this paper we will write

$$
\psi_{z}(w)=\frac{1-|w|^{2}}{1-z \bar{w}}
$$

and

$$
\mathbb{H}=\{z \in \mathbb{C}: \operatorname{Re}(z)>1 / 2\}
$$

Clearly the mapping $z \rightarrow \frac{1}{1-z}$ is a bijection of \mathbb{D} onto \mathbb{H}, and

$$
\begin{equation*}
\psi_{z}(w)=1-\bar{w} \phi_{w}(z) . \tag{1}
\end{equation*}
$$

2 A space of projections on A^{2}

Let us start by presenting our new definitions and spaces of projections.

Definition 1 Let g be holomorphic in \mathbb{D}. We define

$$
T_{g} \varphi(z)=\int_{\mathbb{D}} g\left(\bar{w} \phi_{w}(z)\right) \varphi(w) \frac{d A(w)}{(1-z \bar{w})^{2}}
$$

for any $\varphi \in C_{c}(\mathbb{D})$.
We denote by \mathcal{P} (respect. \mathcal{P}_{0}) the space of holomorphic functions $g \in$ $\mathcal{H}(\mathbb{D})$ such that T_{g} extends continuously to $L^{2}(\mathbb{D})$ (respect. T_{g} is a projection on the Bergman space A^{2}).

We provide the space \mathcal{P} with the norm $\|g\|_{\mathcal{P}}=\left\|T_{g}\right\|_{L^{2}(\mathbb{D}) \rightarrow L^{2}(\mathbb{D})}$.
Remark 2 In [1] it was introduced, for each F holomorphic in \mathbb{H} the operator

$$
S_{F} \varphi(z)=\int_{D} F\left(\frac{1-z \bar{w}}{1-|w|^{2}}\right) \varphi(w) \frac{d A(w)}{\left(1-|w|^{2}\right)^{2}}
$$

We have that $T_{g}=S_{F}$, with $F(\eta)=\frac{1}{\eta^{2}} g\left(1-\frac{1}{\eta}\right)$. We will say that such $F \in \mathcal{P}$ (respect. \mathcal{P}_{0}) if $g \in \mathcal{P}$ (respect. \mathcal{P}_{0}).

Example 3 Let $g_{\alpha}(z)=(\alpha+1)(1-z)^{\alpha}$ for every $\alpha>-1$. Then $g_{\alpha} \in \mathcal{P}_{0}$ for $\alpha>-1 / 2$. In fact by (1) we have that $T_{g_{\alpha}}=P_{\alpha}$, which is a bounded projection from $L^{2}(\mathbb{D})$ into A^{2} if and only if $\alpha>-1 / 2$.

Example 4 If $P(z)=\sum_{k=0}^{N} a_{k} z^{k}$ is a polynomial then $P \in \mathcal{P}$.
Moreover $P \in \mathcal{P}_{0}$ if and only if $\sum_{k=0}^{N} \frac{a_{k}}{(k+1)}=\int_{0}^{1} P(r) d r=1$.
Proof. Write $P(z)=\sum_{k=0}^{N} b_{k}(1-z)^{k}$ where $b_{k}=(-1)^{k} \frac{P^{(k)}(1)}{k!}$. Hence

$$
T_{P}=\sum_{k=0}^{N} \frac{b_{k}}{(k+1)} P_{k}
$$

This shows that $T_{P} \in \mathcal{P}$ and $\|P\|_{\mathcal{P}} \leq \sum_{k=0}^{N} \frac{\left|b_{k}\right|}{(k+1)}\left\|P_{k}\right\|$. On the other hand $T_{P} \in \mathcal{P}_{0}$ if and only if $\sum_{k=0}^{N} \frac{b_{k}}{(k+1)}=1$. Notice now that $\sum_{k=0}^{N} \frac{b_{k}}{(k+1)}=$ $\int_{0}^{1} P(r) d r$ to conclude the proof.

Example 5 If $g \in \mathcal{H}(\mathbb{D})$ is such that $(1-z)^{\alpha} g(z)$ is bounded for some $\alpha>-1 / 2$ then $g \in \mathcal{P}$ and $\|g\|_{\mathcal{P}} \leq C \sup _{|z|<1}\left|(1-z)^{\alpha} g(z)\right|$. In particular the space of bounded holomorphic functions $H^{\infty}(\mathbb{D})$ is contained in \mathcal{P} and $\|f\|_{\mathcal{P}} \leq C\|f\|_{\infty}$.

Proof. Use that $P_{\alpha}^{*} \varphi(z)=\int_{D} \frac{\left(1-|w|^{2}\right)^{\alpha}}{|1-\bar{w} z|{ }^{2+\alpha}} \varphi(w) d A(w)$ also defines a bounded operator on $L^{2}(\mathbb{D})$ (see [5, Theorem 1.9]).

Proposition 6 Let $g:\{z:|z-1|<2\} \rightarrow \mathbb{C}$ be holomorphic such that $g(z)=\sum_{n=1}^{\infty} a_{n}(1-z)^{n}$ for $|z-1|<2$.

If $\sum_{n=0}^{\infty} \frac{2^{n}\left|a_{n}\right|}{(n+1)^{5 / 4}}<\infty$ then $g \in \mathcal{P}$ and

$$
\|g\|_{\mathcal{P}} \leq C \sum_{n=0}^{\infty} \frac{2^{n}\left|a_{n}\right|}{(n+1)^{5 / 4}}
$$

Moreover, $g \in \mathcal{P}_{0}$ if and only if $\sum_{n=0}^{\infty} \frac{a_{n}}{n+1}=1$.
Proof. Indeed, the norm $\left\|P_{n}\right\|=\frac{\sqrt{(2 n)!}}{n!}($ see $[2,3])$. Then for $\varphi \in C_{c}(\mathbb{D})$

$$
T_{g} \varphi(z)=\sum_{n=1}^{\infty} \frac{a_{n}}{(n+1)} P_{n} \varphi(z)
$$

and

$$
\|g\|_{\mathcal{P}} \leq \sum_{n=0}^{\infty} \frac{\left|a_{n}\right| \sqrt{(2 n)!}}{(n+1) n!}
$$

Finally observe that, from Stirling's formula, $\frac{\sqrt{(2 n)!}}{(n+1) n!} \sim \frac{2^{n}}{(n+1)^{1 / 4}}$.
To conclude the result note that $\sum_{n=0}^{\infty} \frac{\left|a_{n}\right|}{n+1}<\infty$ and

$$
T_{g} \varphi(z)=\left(\sum_{n=1}^{\infty} \frac{a_{n}}{(n+1)}\right) \varphi(z)
$$

for $\varphi \in A^{2}$.
Example 7 Let $^{2}(z)=A_{\beta}(1+z)^{-\beta}$ for $\beta>0$ where $A_{\beta}=\frac{1-\beta}{2^{-\beta+1}-1}$ if $\beta \neq 1$ and $A_{1}=(\log 2)^{-1}$. Then $h_{\beta} \in \mathcal{P}_{0}$ for $0<\beta<5 / 4$.

Proof. Since, for $\beta>0, \frac{1}{(1-w)^{\beta}}=\sum_{n=0}^{\infty} \beta_{n} w^{n}$ for $|w|<1$, where $\beta_{n} \sim$ $(n+1)^{\beta-1}$, we have that

$$
h_{\beta}(z)=\frac{A_{\beta}}{2^{\beta}(1-(1-z) / 2)^{\beta}}=\sum_{n=0}^{\infty} A_{\beta} 2^{-(n+\beta)} \beta_{n}(1-z)^{n} .
$$

Now Proposition 6 implies that $h_{\beta} \in \mathcal{P}$.
Note that

$$
1=\int_{1}^{2} A_{\beta} s^{-\beta} d s=\int_{0}^{1} h_{\beta}(r) d r=\sum_{n=0}^{\infty} \frac{A_{\beta} 2^{-(n+1)} \beta_{n}}{n+1}
$$

Apply again Proposition 6 to finish the proof.
Let us now give some necessary conditions that functions g in \mathcal{P} should satisfy.

Theorem 8 If $g \in \mathcal{P}$ then

$$
\begin{gather*}
\sup _{z \in \mathbb{D}}\left\{\int_{\mathbb{D}}\left|g\left(\bar{w} \phi_{w}(z)\right)\right|^{2} d A(w)\right\}^{1 / 2} \leq 2\|g\|_{\mathcal{P}} \tag{2}\\
\left(\int_{0}^{1}|g(r)|^{2} d r\right)^{1 / 2} \leq 2\|g\|_{\mathcal{P}} \tag{3}\\
\left(\int_{0}^{1}\left(\int_{\mathbb{D}} \frac{\mid g(r u))\left.\right|^{2}}{|1-r u|^{4}} d A(u)\right)\left(1-r^{2}\right)^{2} r d r\right)^{1 / 2} \leq 2\|g\|_{\mathcal{P}} \tag{4}
\end{gather*}
$$

Proof. If $g \in \mathcal{P}$ and $\varphi \in C_{c}(\mathbb{D})$ one has $T_{g} \varphi \in A^{2}$. Hence for each $z \in \mathbb{D}$

$$
\left|T_{g} \varphi(z)\right| \leq \frac{\left\|T_{g} \varphi\right\|_{2}}{(1-|z|)} \leq \frac{\|g\|_{\mathcal{P}}\|\varphi\|_{2}}{(1-|z|)} .
$$

Therefore

$$
\left|\int_{\mathbb{D}} g\left(\bar{w} \phi_{w}(z)\right) \varphi(w) \frac{d A(w)}{(1-z \bar{w})^{2}}\right| \leq \frac{\|g\|_{\mathcal{P}}\|\varphi\|_{2}}{(1-|z|)} .
$$

Then by duality,

$$
\begin{equation*}
\left\{\int_{\mathbb{D}}\left|g\left(\bar{w} \phi_{w}(z)\right)\right|^{2} \frac{d A(w)}{|1-z \bar{w}|^{4}}\right\}^{1 / 2} \leq \frac{\|g\|_{\mathcal{P}}}{(1-|z|)} \leq 2 \frac{\|g\|_{\mathcal{P}}}{\left(1-|z|^{2}\right)} \tag{5}
\end{equation*}
$$

Let us show the following formula:

$$
\begin{equation*}
\overline{\phi_{z}(u)} \phi_{\phi_{z}(u)}(z)=u \overline{\phi_{u}(z)} . \tag{6}
\end{equation*}
$$

Indeed, since

$$
1-\left|\phi_{z}(u)\right|^{2}=\frac{\left(1-|z|^{2}\right)\left(1-|u|^{2}\right)}{|1-\bar{z} u|^{2}},
$$

then

$$
\begin{equation*}
\psi_{z}\left(\phi_{z}(u)\right)=\frac{1-\left|\phi_{z}(u)\right|^{2}}{1-\overline{\phi_{z}(u)} z}=\frac{\left(1-|u|^{2}\right)}{(1-\bar{z} u)}=\overline{\psi_{z}(u)} . \tag{7}
\end{equation*}
$$

Now (6) follows from (1) and (7)

$$
\begin{equation*}
\overline{\phi_{z}(u)} \phi_{\phi_{z}(u)}(z)=1-\psi_{z}\left(\phi_{z}(u)\right)=u \overline{\phi_{u}(z)} . \tag{8}
\end{equation*}
$$

Changing the variable $u=\phi_{z}(w)$ in (5) and using (6) we obtain

$$
\left\{\int_{\mathbb{D}}\left|g\left(u \overline{\phi_{u}(z)}\right)\right|^{2} d A(u)\right\}^{1 / 2} \leq 2\|f\|_{\mathcal{P}}
$$

Now replacing u and \bar{z} by \bar{w} and z respectively the inequality (2) is achieved.

Part (3) follows selecting $z=0$ in (2).
Part (4) follows from (2) replacing the supremum by an integral over \mathbb{D} and changing the variable $u=\phi_{w}(z)$,

$$
\begin{aligned}
\int_{\mathbb{D}} \int_{\mathbb{D}}\left|g\left(\bar{w} \phi_{w}(z)\right)\right|^{2} d A(w) d A(z) & =\int_{\mathbb{D}}\left(\int_{\mathbb{D}} \frac{\mid g(\bar{w} u))\left.\right|^{2}}{|1-\bar{w} u|^{4}} d A(u)\right)\left(1-|w|^{2}\right)^{2} d A(w) \\
& =\int_{\mathbb{D}}\left(\int_{\mathbb{D}} \frac{\mid g(|w| u))\left.\right|^{2}}{|1-|w| u|^{4}} d A(u)\right)\left(1-|w|^{2}\right)^{2} d A(w) \\
& =\int_{0}^{1}\left(\int_{\mathbb{D}} \frac{\mid g(r u))\left.\right|^{2}}{|1-r u|^{4}} d A(u)\right)\left(1-r^{2}\right)^{2} r d r .
\end{aligned}
$$

Remark $9\left(\mathcal{P},\|\cdot\|_{\mathcal{P}}\right)$ is a normed space and $\Phi(g)=\int_{0}^{1} g(r) d r \in \mathcal{P}^{*}$.
Indeed, the only condition which needs a proof is the fact that $\|g\|_{\mathcal{P}}=0$ implies that $g=0$. It follows from (3) that if $\|g\|_{\mathcal{P}}=0$, then $g(r)=0$ for $0<r<1$. Hence by analytic continuation, $g(z)=0$ for $z \in \mathbb{D}$.

Notice also that (3) implies that $\|\Phi\| \leq 2$.

Remark 10 The space \mathcal{P} is not invariant under under rotations. Given $\theta \in[0,2 \pi)$ denote $R_{\theta}(f)(z)=f\left(e^{i \theta} z\right)$ for $f \in \mathcal{H}(\mathbb{D})$. Observe that $R_{\theta} T_{g}(\varphi)=$ $T_{g}\left(R_{\theta} \varphi\right)$. However, that T_{g} is bounded in $L^{2}(\mathbb{D})$ does not imply that $T_{R_{\theta} g}$ is bounded in $L^{2}(\mathbb{D})$. For instance, the function $g(z)=(1+z)^{-1 / 2}$ belongs to \mathcal{P}, but by (3), its reflection $g(z)=(1-z)^{-1 / 2} \notin \mathcal{P}$.

Let us now also give some necessary conditions to belong to the class \mathcal{P}_{0}.
Theorem 11 If $g \in \mathcal{P}_{0}$ then

$$
\begin{equation*}
\int_{\mathbb{D}} g\left(u \overline{\phi_{u}(z)}\right) \psi(u) d A(u)=\psi(0) \tag{9}
\end{equation*}
$$

for all $\psi \in A_{2}$ and $z \in \mathbb{D}$.
In particular,
(i) If $g \in \mathcal{P}_{0}$ then $\int_{0}^{1} g(r) d r=1$.
(ii) Let $S_{2}=\left\{\bar{z}\left(1-|z|^{2}\right) \varphi(\bar{z}): \varphi \in A^{2}\right\}$. If $g \in \mathcal{P}_{0}$ and $g^{\prime} \in \mathcal{P}$ then $S_{2} \subset \operatorname{Ker}\left(T_{g^{\prime}}\right)$.

Proof. Assume

$$
\int_{\mathbb{D}} g\left(\bar{w} \phi_{w}(z)\right) \frac{\varphi(w)}{(1-\bar{w} z)^{2}} d A(w)=\varphi(z)
$$

for all $\varphi \in A^{2}$.
Given $\psi \in A^{2}$ and $z \in D$, consider $\varphi(w)=\psi\left(\phi_{z}(w)\right) \frac{\left(1-|z|^{2}\right)^{2}}{(1-\bar{z} w)^{2}}$. Clearly $\varphi \in A_{2}$ and $\|\varphi\|_{2}=\left(1-|z|^{2}\right)\|\psi\|_{2}$. From the assumption,

$$
\int_{\mathbb{D}} g\left(\bar{w} \phi_{w}(z)\right) \psi\left(\phi_{z}(w)\right) \frac{\left(1-|z|^{2}\right)^{2}}{|1-\bar{w} z|^{4}} d A(w)=\psi(0)
$$

for all $\psi \in A^{2}$ and $z \in \mathbb{D}$.
Now changing the variable $u=\phi_{z}(w)$, and using (6), one gets

$$
\int_{\mathbb{D}} g\left(u \overline{\phi_{u}(z)}\right) \psi(u) d A(u)=\psi(0)
$$

for all $\psi \in A_{2}$ and $z \in \mathbb{D}$. Finally changing u by \bar{w} one obtains

$$
\begin{equation*}
\int_{\mathbb{D}} g\left(\bar{w} \phi_{w}(z)\right) \psi(\bar{w}) d A(w)=\psi(0) \tag{10}
\end{equation*}
$$

for all $\psi \in A_{2}$ and $z \in \mathbb{D}$.
(i) follows selecting $\psi=1$ and $z=0$ in (10).

Differentiating in (10) with respect to z one obtains

$$
\int_{\mathbb{D}} g^{\prime}\left(\bar{w} \phi_{w}(z)\right) \frac{-\bar{w}\left(1-|w|^{2}\right)}{(1-\bar{w} z)^{2}} \psi(\bar{w}) d A(u)=T_{g^{\prime}}\left(\psi_{1}\right)=0
$$

where $\varphi_{1}(u)=-\bar{u}\left(1-|u|^{2}\right) \varphi(\bar{u})$. Hence (ii) is finished.
Let us now show that $\left(\mathcal{P},\|\cdot\|_{\mathcal{P}}\right)$ is complete. For such a purpose, let us define $h_{z}: \mathbb{D} \rightarrow \mathbb{H}$ by

$$
h_{z}(w)=\frac{1}{\psi_{z}(w)}=\frac{1-z \bar{w}}{1-|w|^{2}},
$$

and let us mention that

$$
\mathbb{D}_{1}=\left\{\frac{1-|w|^{2}}{1-z \bar{w}}: z, w \in \mathbb{D}\right\}=\left\{\psi_{z}(w): z, w \in \mathbb{D}\right\} .
$$

Lemma 12 For every $\xi \in \mathbb{H}$, there exist $0 \leq \alpha<1$ and $w \in \mathbb{D}$ such that $\xi=h_{\alpha}(w)$ and h_{α} is an diffeomorfism of a neighborhood U of w onto an open neighborhood of ξ.

Proof. For $0 \leq r, \alpha<1$ fixed,

$$
\begin{equation*}
h_{\alpha}\left(r e^{i \theta}\right)=\frac{1}{1-r^{2}}-\frac{r \alpha}{1-r^{2}} e^{-i \theta} \tag{11}
\end{equation*}
$$

describes the circle $C_{r, \alpha}$ centered at the complex number $\frac{1}{1-r^{2}}$ with radius $\frac{r \alpha}{1-r^{2}}$.

Let $\xi \in \mathbb{H}$. To prove that $\xi \in h_{\alpha}(\mathbb{D})$ it is enough to see that $\xi \in C_{r, \alpha}$ for some $0 \leq r, \alpha<1$.

Let

$$
\begin{equation*}
\beta=\frac{1}{r^{2}}\left[\left(1-r^{2}\right)^{2}|\xi|^{2}+1-2\left(1-r^{2}\right) \operatorname{Re} \xi\right]=\frac{\left|\left(1-r^{2}\right) \xi-1\right|^{2}}{r^{2}} . \tag{12}
\end{equation*}
$$

It is clear that $\beta \geq 0$ and

$$
\beta<1 \Leftrightarrow\left(1-r^{2}\right)|\xi|^{2}+1<2 \operatorname{Re} \xi .
$$

Also, since $\xi \in \mathbb{H}$, we have for some $\varepsilon>0$ that $2 \operatorname{Re} \xi>1+\varepsilon$. Hence if $|\xi|^{2}<\frac{\varepsilon}{\left(1-r^{2}\right)}$ then $\beta<1$. We conclude that there exists r_{0} such that $0 \leq \beta<1$ provided $r_{0}<r<1$. Then if $r_{0}<r<1$ and we let $\alpha=\sqrt{\beta}$ we have $0 \leq \alpha<1$ and

$$
\left|\xi-\frac{1}{1-r^{2}}\right|=\frac{r \alpha}{1-r^{2}},
$$

that is $\xi \in C_{r, \alpha}$. Hence there exists θ_{r} and $0 \leq \alpha_{r}<1$ such that $h_{\alpha_{r}}\left(r e^{i \theta_{r}}\right)=\xi$.
To find θ_{r} explicitly, we let $\varphi_{r}=\pi-\theta_{r}$. From (11) we can write

$$
\xi=\frac{1}{1-r^{2}}+\frac{r \alpha_{r}}{1-r^{2}} e^{i \varphi_{r}} .
$$

Hence φ_{r} is the argument of ξ in polar coordinates centered at the complex number $\frac{1}{1-r^{2}}$. Then if $\frac{1}{1-r^{2}} \geq \operatorname{Re}(\xi)$,

$$
\begin{align*}
\sin \theta_{r} & =\sin \varphi_{r}=\frac{\operatorname{Im}(\xi)}{r \alpha_{r}}\left(1-r^{2}\right) \\
\cos \theta_{r} & =-\cos \varphi_{r}=\frac{\left(1-r^{2}\right)}{r \alpha_{r}}\left(\frac{1}{1-r^{2}}-\operatorname{Re}(\xi)\right) \tag{13}\\
& =\frac{1-\left(1-r^{2}\right) \operatorname{Re}(\xi)}{r \alpha_{r}} .
\end{align*}
$$

Now we will prove that possibly except for a finite number of values of $r \geq r_{0}$, the jacobian matrix $D h_{\alpha_{r}}\left(r e^{i \theta_{r}}\right)$ is not singular, where α_{r} and θ_{r} are chosen so that $h_{\alpha_{r}}\left(r e^{i \theta_{r}}\right)=\xi$ as before. To this end, it is enough to see that the set of values of r such that the vectors

$$
\begin{equation*}
\frac{\partial h_{a_{r}}}{\partial \rho}\left(\rho e^{i \theta_{r}}\right)_{\mid \rho=r} \text { and } \frac{1}{r} \frac{\partial h_{a_{r}}}{\partial \theta}\left(r e^{i \theta}\right)_{\mid \theta=\theta_{r}} \tag{14}
\end{equation*}
$$

are linearly dependent is finite.
We have

$$
\begin{aligned}
\frac{\partial h_{a}}{\partial \rho}\left(\rho e^{i \theta}\right) & =\left(\frac{2 \rho}{\left(1-\rho^{2}\right)^{2}}-\frac{\alpha\left(1+\rho^{2}\right)}{\left(1-\rho^{2}\right)^{2}} \cos \theta, \frac{\alpha\left(1+\rho^{2}\right)}{\left(1-\rho^{2}\right)^{2}} \sin \theta\right), \\
\frac{1}{\rho} \frac{\partial h_{a}}{\partial \theta}\left(\rho e^{i \theta}\right) & =\left(\frac{\alpha}{\left(1-\rho^{2}\right)} \sin \theta, \frac{\alpha}{\left(1-\rho^{2}\right)} \cos \theta\right),
\end{aligned}
$$

and the jacobian of h_{α}

$$
\begin{align*}
& J h_{\alpha}\left(\rho e^{i \theta}\right)=\operatorname{det}\left[\frac{\partial h_{a}}{\partial \rho}\left(\rho e^{i \theta}\right) \left\lvert\, \frac{1}{\rho} \frac{\partial h_{a}}{\partial \theta}\left(\rho e^{i \theta}\right)\right.\right] \\
& =\operatorname{det}\left[\begin{array}{cc}
\frac{2 \rho}{\left(1-\rho^{2}\right)^{2}}-\frac{\alpha\left(1+\rho^{2}\right)}{\left(1-\rho^{2}\right)^{2}} \cos \theta & \frac{\alpha\left(1+\rho^{2}\right)}{\left(1-\rho^{2}\right)^{2}} \sin \theta \\
\frac{\alpha}{\left(1-\rho^{2}\right)} \sin \theta & \frac{\alpha}{\left(1-\rho^{2}\right)} \cos \theta
\end{array}\right] \\
& =\frac{\alpha}{\left(1-\rho^{2}\right)^{3}}\left(2 \rho \cos \theta-\alpha\left(1+\rho^{2}\right)\right) \tag{15}
\end{align*}
$$

If $2 r \cos \theta_{r}-\alpha_{r}\left(1+r^{2}\right)=0$, then multiplying this equation by $\alpha_{r} r^{2}$ we obtain

$$
\begin{equation*}
2 r^{2} \alpha_{r} r \cos \theta_{r}-\alpha_{r}^{2} r^{2}\left(1+r^{2}\right)=0 \tag{16}
\end{equation*}
$$

However, from (12) and (13) we see that $2 r^{2} \alpha_{r} r \cos \theta_{r}-\alpha_{r}^{2} r^{2}\left(1+r^{2}\right)$ is a polynomial of degree 6 in the variable r. We conclude that the vectors in (14) are linearly dependent for six values of r at the most and the proof of the lemma is complete.

Theorem $13 \mathcal{P}$ is a Banach space
Proof. Let $g \in \mathcal{P}$ we have by Theorem 8 that

$$
\begin{equation*}
\sup _{z \in \mathbb{D}}\left\{\int_{\mathbb{D}}\left|g\left(\bar{w} \phi_{w}(z)\right)\right|^{2} d A(w)\right\}^{1 / 2} \leq 2\|g\|_{\mathcal{P}} \tag{17}
\end{equation*}
$$

Fix $\xi \in \mathbb{D}$. Since $\psi_{z}=1 / h_{z}$, then the local invertibility statement of Lemma 12 holds for the family of functions $1-\psi_{z}$ taking $\xi \in \mathbb{D}$, namely, there exist $\alpha \in(0,1), w_{\xi} \in \mathbb{D}$ and open neighborhoods U and V of ξ and w_{ξ} respectively, such that $1-\psi_{z}$ is a diffeomorphism of V into U.

Hence

$$
\begin{aligned}
\left\{\int_{U}|g(u)|^{2} d A(u)\right\}^{1 / 2} & =\left\{\int_{V}\left|g\left(1-\psi_{\alpha}(w)\right)\right|^{2}\left|J \psi_{\alpha}(w)\right| d A(w)\right\}^{1 / 2} \\
& \leq C(\xi)\left\{\int_{V}\left|g\left(\bar{w} \phi_{w}(\alpha)\right)\right|^{2} d A(w)\right\}^{1 / 2} \\
& \leq C(\xi)\|g\|_{\mathcal{P}}
\end{aligned}
$$

It follows that

$$
\left\{\int_{K}|g(u)|^{2} d A(u)\right\}^{1 / 2} \leq C_{K}\|g\|_{\mathcal{P}}
$$

for every compact set $K \subset \mathbb{D}$. This implies that

$$
\begin{equation*}
\sup _{u \in K}|g(u)| \leq\|g\|_{\mathcal{P}} C_{K}^{\prime} \tag{18}
\end{equation*}
$$

If $\left\{g_{n}\right\}$ is a Cauchy sequence in \mathcal{P}, we have by (18) that $\left\{g_{n}\right\}$ converges to uniformly on compact sets of \mathbb{D} to a holomorphic function g.

If $\varphi \in C_{c}(\mathbb{D})$, we have

$$
T_{g_{n}} \varphi(z) \rightarrow T_{g} \varphi(z),
$$

uniformly on \mathbb{D} in $L^{2}(\mathbb{D})$. Since $\left\|g_{n}\right\|_{\mathcal{P}}$ is a bounded sequence then by the Fatou lemma it follows that

$$
\left\|T_{g} \varphi\right\|_{2} \leq M\|g\|_{\mathcal{P}}
$$

and $g \in \mathcal{P}$. Also, from

$$
\left\|T_{g_{n}} \varphi-T_{g_{m}} \varphi\right\|_{2} \leq\left\|g_{n}-g_{m}\right\|_{\mathcal{P}}\|\varphi\|_{2}
$$

we conclude that $T_{g_{n}} \rightarrow T_{g}$, namely $g_{n} \rightarrow g$ in \mathcal{P}.

3 Main results

Let us now describe the norm in \mathcal{P} in a more explicit way. We shall use the formulation of the space given in [1].

Theorem 14 Let $g \in \mathcal{H}(\mathbb{D})$ and put $F(\xi)=\frac{1}{\xi^{2}} g\left(1-\frac{1}{\xi}\right)$.
Then $g \in \mathcal{P}$ if and only

$$
\sup _{j} \frac{1}{j!\sqrt{j+1}}\left(\int_{1}^{\infty}[(x-1) x]^{j}\left|x F^{(j)}(x)\right|^{2} d x\right)^{1 / 2}<\infty
$$

Proof. We use the expression

$$
T_{g} \varphi(z)=\int_{\mathbb{D}} F\left(\frac{1-z \bar{w}}{1-|w|^{2}}\right) \varphi(w) \frac{d A(w)}{\left(1-|w|^{2}\right)^{2}} .
$$

Consider the space M of functions of the form

$$
\varphi=\sum_{\text {finite }} \varphi_{j}(r) e^{i j \theta}
$$

with $\varphi_{j} \in L^{2}((0,1), r d r)$. Then M is a dense subspace of $L^{2}(\mathbb{D})$.
For $z \in \mathbb{D}$ and $0 \leq r<1$ fixed, let $f(\zeta)=F\left(\frac{1-r z \zeta}{1-r^{2}}\right)$, which is holomorphic on $\overline{\mathbb{D}}$. We have .

$$
f(\zeta)=F\left(\frac{1-r z \zeta}{1-r^{2}}\right)=\sum_{j \geq 0} \frac{1}{j!}\left(\frac{-r z}{1-r^{2}}\right)^{j} F^{(j)}\left(\frac{1}{1-r^{2}}\right) \zeta^{j},|\zeta| \leq 1
$$

Then for $g \in M$,

$$
\int_{0}^{2 \pi} f\left(r e^{-i \theta}\right) \varphi\left(r e^{i \theta}\right) \frac{d \theta}{2 \pi}=\sum_{j \geq 0} \varphi_{j}(r) \frac{(-1)^{j}}{j!}\left(\frac{r}{1-r^{2}}\right)^{j} F^{(j)}\left(\frac{1}{1-r^{2}}\right) z^{j}
$$

Hence

$$
\begin{equation*}
T_{g}(\varphi)(z)=\sum_{j \geq 0} \gamma_{j}\left(\varphi_{j}\right) \sqrt{j+1} z^{j} \tag{19}
\end{equation*}
$$

where γ_{j} is the functional in $L^{2}((0,1), r d r)$ defined by

$$
\gamma_{j}(\varphi)=\frac{(-1)^{j}}{\sqrt{j+1} j!} \int_{0}^{1} \varphi(r)\left(\frac{r}{1-r^{2}}\right)^{j} F^{(j)}\left(\frac{1}{1-r^{2}}\right) \frac{r}{\left(1-r^{2}\right)^{2}} d r
$$

Using the normalized Lebesgue measure $d A$, the set $\left\{\sqrt{j+1} z^{j}\right\}$ is an orthonormal basis for A^{2}, so we conclude that T_{g} is bounded in $L^{2}(\mathbb{D})$ if and
only if

$$
\begin{aligned}
\left\|\left(\gamma_{j}\left(\varphi_{j}\right)\right)_{j \geq 0}\right\|_{\ell^{2}} & \leq C\|\varphi\|_{L^{2}(\mathbb{D})} \\
& =C\left(\sum_{j} \int\left|\varphi_{j}(r)\right|^{2} r d r\right)^{1 / 2} .
\end{aligned}
$$

Using duality, this will hold if and only if

$$
\begin{equation*}
\sup _{j \geq 0} \frac{1}{\sqrt{j+1} j!}\left(\int_{0}^{1}\left(\frac{r}{1-r^{2}}\right)^{2 j}\left|F^{(j)}\left(\frac{1}{1-r^{2}}\right)\right|^{2} \frac{r d r}{\left(1-r^{2}\right)^{4}}\right)^{1 / 2}<\infty \tag{20}
\end{equation*}
$$

Letting the change of variables $x=\frac{1}{1-r^{2}}$, the integrals above equal

$$
\frac{1}{2} \int_{1}^{\infty}[(x-1) x]^{j}\left|x F^{(j)}(x)\right|^{2} d x
$$

and the proof is complete.
We can now give an alternative proof of a well know result.
Corollary $15 P_{\alpha}$ is bounded on $L^{2}(\mathbb{D})$ if and only if $\alpha>-1 / 2$.
Proof. Consider $g_{\alpha}(z)=(1-z)^{\alpha}$. Assume first that $g_{\alpha} \in \mathcal{P}$. Then (3) in Theorem 8 implies that $\int_{0}^{1}(1-r)^{2 \alpha} d r<\infty$ and therefore $\alpha>-1 / 2$.

Assume now that $\alpha>-1 / 2$. Since $F_{\alpha}(\xi)=\xi^{-m}$ with $m=2+\alpha$ and $2 m-3>0$, one has for $j \geq 0$ that

$$
F_{\alpha}^{(j)}(x)=(-1)^{j} m(m+1) \ldots(m+j-1) x^{-(m+j)}=(-1)^{j} \frac{\Gamma(m+j)}{\Gamma(m)} x^{-(m+j)} .
$$

Therefore

$$
\begin{aligned}
\int_{1}^{\infty}[(x-1) x]^{j}\left|x F_{\alpha}^{(j)}(x)\right|^{2} d x & =\int_{1}^{\infty}\left(1-\frac{1}{x}\right)^{j}\left(x^{j+1} F_{\alpha}^{(j)}(x)\right)^{2} d x \\
& =\left(\frac{\Gamma(m+j)}{\Gamma(m)}\right)^{2} \int_{1}^{\infty}\left(1-\frac{1}{x}\right)^{j} x^{-2 m+4} \frac{d}{x^{2}} \\
& =\left(\frac{\Gamma(m+j)}{\Gamma(m)}\right)^{2} \int_{0}^{1}(1-r)^{j} r^{2 m-4} d r \\
& =\left(\frac{\Gamma(m+j)}{\Gamma(m)}\right)^{2} B(2 m-3, j+1)
\end{aligned}
$$

Using that $B(p, q)=\frac{\Gamma(p) \Gamma(q)}{\Gamma(p+q)}$ one concludes that

$$
\frac{1}{(j!)^{2}(j+1)} \int_{1}^{\infty}[(x-1) x]^{j}\left|x F_{\alpha}^{(j)}(x)\right|^{2} d x=\frac{B(2 m-3, j+1)}{B(m, j)^{2} j^{2}(j+1)} .
$$

Finally since for p fixed, $B(p, j) \sim j^{-p}$ one obtains that

$$
\frac{B(2 m-3, j+1)}{B(m, j)^{2} j^{2}(j+1)} \sim 1 .
$$

Example 16 In Example 7 it was shown that, for $0<\beta<5 / 4, g(z)=$ $(1+z)^{-\beta} \in \mathcal{P}$ (which corresponds to $\left.F(\xi)=\frac{\xi^{\beta-2}}{(2 \xi-1)^{2}}\right)$.

Let us show for instance that $g(z)=(1+z)^{-2} \notin \mathcal{P}$.
In this case $F(\xi)=\frac{1}{(2 \xi-1)^{2}}$ and

$$
F^{(j)}(\xi)=\frac{(-1)^{j}(j+1)!2^{j}}{(2 \xi-1)^{2+j}}
$$

Since $\frac{x}{2} \leq x-1 \leq x$ for $x \geq 2$ we have

$$
\left(\int_{2}^{\infty}(x(x-1))^{j}\left|x F^{(j)}(x)\right|^{2} d x\right)^{1 / 2} \sim 2^{j}(j+1)!\left(\int_{2}^{\infty} \frac{x^{2 j+2}}{(2 x-1)^{4+2 j}} d x\right)^{1 / 2} \sim 2^{j}(j+1)!
$$

Hence the condition in Theorem 14 does not hold.
The conditions

$$
\begin{gather*}
\sup _{j \geq 0} \frac{1}{j!} \int_{1}^{\infty}\left|(x-1)^{j} F^{(j)}(x)\right| d x<\infty, \tag{21}\\
\lim _{x \rightarrow \infty} x^{j+1} F^{(j)}(x)=0 \tag{22}
\end{gather*}
$$

were introduced in [1]. These conditions imply that on the space of all the holomorphic functions φ such that $S_{F} \varphi$ is well defined, the operator S_{F} is a constant multiple of the identity . Now we will see that (21) and (22) hold for every $g \in \mathcal{P}$ what allows to show the following result.

Theorem 17 Let $g \in \mathcal{P}$ and $c_{0}=\int_{0}^{1} g(r) d r$. Then

$$
T_{g}(\varphi)=c_{0} \varphi, \quad \varphi \in A^{2} .
$$

Proof. Let us notice first that $(x-1)^{j} F^{(j)}(x) \in L^{1}([1, \infty), d x)$ for $j \geq 0$. Indeed,

$$
\begin{aligned}
& \int_{1}^{\infty}|x-1|^{j}\left|F^{(j)}(x)\right| d x \\
= & \int_{1}^{\infty}|x(x-1)|^{j}\left|x F^{(j)}(x)\right| \frac{d x}{x^{j+1}} \\
\leq & \left(\int_{1}^{\infty}(x(x-1))^{j}\left|x F^{(j)}(x)\right|^{2} d x\right)^{1 / 2}\left(\int_{1}^{\infty} \frac{(x(x-1))^{j}}{x^{2 j+2}} d x\right)^{1 / 2} \\
= & \left(\int_{1}^{\infty}(x(x-1))^{j}\left|x F^{(j)}(x)\right|^{2} d x\right)^{1 / 2}\left(\int_{0}^{1}(1-r)^{j} d r\right)^{1 / 2} \\
= & \frac{1}{\sqrt{j+1}}\left(\int_{1}^{\infty}|x(x-1)|^{j}\left|x F^{(j)}(x)\right|^{2} d x\right)^{1 / 2} \leq C j!\|g\|_{\mathcal{P}} .
\end{aligned}
$$

Applying (19) in Theorem 14 to $\varphi(z)=\sum_{j=0}^{N} a_{j} z^{j}$ one obtains

$$
\begin{equation*}
T_{g} \varphi=\sum_{j=0}^{N} c_{j} a_{j} z^{j}, \tag{23}
\end{equation*}
$$

and

$$
c_{j}=\frac{(-1)^{j}}{j!} \int_{1}^{\infty}(x-1)^{j} F^{(j)}(x) d x
$$

where c_{j} is well defined.
As in [1, Th. 1] we have by integration by parts

$$
c_{j}-c_{j+1}=\frac{(-1)^{j}}{(j+1)!} \lim _{x \rightarrow \infty}(1-x)^{j+1} F^{(j)}(x) .
$$

Let us now show that $\lim _{x \rightarrow \infty}(1-x)^{j+1} F^{(j)}(x)=0$.
Note first that $(x-1)^{j+1} F^{(j)}(x) \in L^{2}([1, \infty), d x)$ for $j \geq 0$. Indeed

$$
\begin{equation*}
\int_{1}^{\infty}\left|(x-1)^{j+1} F^{(j)}(x)\right|^{2} d x \leq \int_{1}^{\infty}|x(x-1)|^{j}\left|x F^{(j)}(x)\right|^{2} d x \leq C(j+1)(j!)^{2} \tag{24}
\end{equation*}
$$

In particular $(x-1)^{j} F^{(j)}(x) \in L^{2}([1, \infty), d x)$ for $j \geq 1$. From CauchySchwarz and the previous estimates one has that if $f_{j}(x)=\left[(x-1)^{j+1} F^{(j)}(x)\right]^{2}$ then $\left(f_{j}\right)^{\prime} \in L^{1}([1, \infty))$ for every $j \geq 0$.

Therefore writing

$$
\left[(x-1)^{j+1} F^{(j)}(x)\right]^{2}=\int_{1}^{x}\left(f_{j}\right)^{\prime}(y) d y
$$

we see that the $\lim _{x \rightarrow \infty}\left((x-1)^{j+1} F^{(j)}(x)\right)^{2}$ exists and by (24) it vanishes for all j.

Hence (23) becomes $T_{g}(\varphi)=c_{0} \varphi$ where

$$
c_{0}=\int_{1}^{\infty} F(x) d x=\int_{1}^{\infty} g\left(1-\frac{1}{x}\right) \frac{d x}{x^{2}}=\int_{0}^{1} g(r) d r .
$$

Corollary 18 Let $g \in \mathcal{P}$. Then $A^{2} \subset K e r T_{g}$ if and only if $\int_{0}^{1} g(r) d r=0$.
Corollary 19 Let $\Phi(g)=\int_{0}^{1} g(r) d r$ for $g \in \mathcal{P}$. Then $\mathcal{P}_{0}=\Phi^{-1}(\{1\})$.
Corollary 20 Let $g \in \mathcal{P}$. If T_{g} is not identically zero in A^{2} then there exists $\lambda \neq 0$ and $g_{0} \in g \in \mathcal{P}_{0}$ such that $g=\lambda g_{0}$.

References

[1] Bonet J., Engliš M., Taskinen J., Weighted L^{∞}-estimates for Bergman projections, Studia Math. 171(1) (2005
[2] Dostanić, M., Norm estimate of the Cauchy transform on $L^{p}(\Omega)$. Integral Equations Operator Theory 52(2005), no. 4, 465-475.
[3] Dostanić, M., Norm of Berezin transform on L^{p} space, Journal d'Analyse Mathématique, 104(2008), no.1, 13-23.
[4] Forelli, F., Rudin, W., Projections on spaces of holorphic functions on balls, Indiana Univ. Math. J. 24(1974), 593-602.
[5] Handenmalm, H., Koremblum, B., Zhu, K., Theory of Bergman spaces, Graduate Texts in Mathematics, Springer Verlag, 2000.
[6] Rudin, W., Function theory in the unit ball of C^{n}, Springer, New York, 1980.
[7] Zhu, K., Operator Theory in Function Spaces, Marcel Dekker, New York, 1990.

Oscar Blasco
Departamento de Matemáticas
Universidad de Valencia
46100-Burjassot (Valencia)
Oscar.Blasco@uv.es
Salvador Pérez-Esteva
Instituto de Matemáticas Unidad Cuernavaca
Universidad Nacional Autónoma de México
A.P. 273-3 ADMON 3

Cuernavaca, Mor., 62251, México
salvador@matcuer.unam.mx

[^0]: *Partially supported by the spanish grant MTM2008-04594/MTM
 ${ }^{\dagger}$ Partially supported by Conacyt-DAIC U48633-F.

