A space of projections on the Bergman space

Oscar Blasco*and Salvador Pérez-Esteva[†]

September 2, 2008

Abstract

We define a set of projections on the Bergman space A^2 parameterized by an affine closed space of a Banach space. This family is defined from an affine space of a Banach space of holomorphic functions in the disk and includes the classical Forelli-Rudin projections.

2000 Mathematics Subject Classification 46E20.

1 Introduction

Recall that the Bergman projection of $L^2(\mathbb{D})$ onto the holomorphic Bergman space $A^2 = L^2(\mathbb{D}) \cap \mathcal{H}(\mathbb{D})$, where $\mathcal{H}(\mathbb{D})$ denotes the space of holomorphic functions in the unit disk, is given by

$$P\varphi(z) = \int_{\mathbb{D}} \frac{\varphi(w)}{(1-z\overline{w})^2} dA(w),$$

where dA is the normalized Lebesgue measure in the disk. Recall also the family of Forelli-Rudin projections parameterized by $\alpha > -1$

$$P_{\alpha}\varphi(z) = \int_{\mathbb{D}} (\alpha+1) \left(\frac{1-|w|^2}{1-z\overline{w}}\right)^{\alpha} \frac{\varphi(w)}{(1-z\overline{w})^2} dA(w)$$

*Partially supported by the spanish grant MTM2008-04594/MTM

[†]Partially supported by Conacyt-DAIC U48633-F.

which are the orthogonal projection of the weighted $L^2(\mathbb{D},(1-|w|)^{\alpha}dA(w))$ onto $\mathcal{H}(\mathbb{D}) \cap L^2(\mathbb{D},(1-|w|)^{\alpha}dA(w))$. It is well known (see [6, Th. 7.1.4]) that P_{α} is a continuous projection of $L^2(\mathbb{D})$ onto A^2 , for each $\alpha > -1/2$.

Since

$$\left\{\frac{1-|w|^2}{1-z\overline{w}}, z, w \in \mathbb{D}\right\} \subset \mathbb{D}_1$$

where $\mathbb{D}_1 = \{z : |z-1| < 1\}$, we may replace the function $g_\alpha(\zeta) = (\alpha+1)\zeta^\alpha$ in the definition of P_α by any holomorphic function g on \mathbb{D}_1 to obtain an operator T_g mapping the space $C_c(\mathbb{D})$ of compactly supported continuous functions defined on \mathbb{D} into A^2 . An equivalent formulation of the operators defined this way was given by Bonet, Engliš and Taskinen in [1] to construct continuous projections in weighted L^∞ spaces of \mathbb{D} into $\mathcal{H}(\mathbb{D})$. The purpose of this paper is to study the space \mathcal{P} of all holomorphic functions $g \in \mathbb{D}_1$, for which the corresponding operator T_g can be extended continuously to $L^2(\mathbb{D})$. In particular we study the set \mathcal{P}_0 of those functions $g \in \mathcal{P}$ that define continuous projections on A^2 . For convenience in the notation we will translate the functions in \mathcal{P} to the unit disk \mathbb{D} .

We will prove that \mathcal{P} is a Banach space when we define the norm of $g \in \mathcal{P}$ as the operator norm of the operator T_g and that $\Phi(g) = \int_0^1 g(r) dr$ defines a bounded linear functional in \mathcal{P}^* . We give an analytic description of the elements of \mathcal{P} and show that if $g \in \mathcal{P}$ then either T_g is identically zero on A^2 or it is a multiple of a continuous projection onto A^2 , implying that $\mathcal{P}_0 = \Phi^{-1}(\{1\})$ is a closed affine subspace of \mathcal{P} .

As usual, for each $z \in \mathbb{D}$, ϕ_z will denote by ϕ_z the Möbius transform $\phi_z(w) = \frac{z-w}{1-\bar{z}w}$ which satisfies $(\phi_z)^{-1} = \phi_z$ and $\phi'_z(w) = -\frac{1-|z|^2}{(1-\bar{z}w)^2}$. Throughout this paper we will write

$$\psi_z(w) = \frac{1 - |w|^2}{1 - z\bar{w}}$$

and

$$\mathbb{H} = \{ z \in \mathbb{C} : \operatorname{Re}(z) > 1/2 \}.$$

Clearly the mapping $z \to \frac{1}{1-z}$ is a bijection of \mathbb{D} onto \mathbb{H} , and

$$\psi_z(w) = 1 - \bar{w}\phi_w(z). \tag{1}$$

2 A space of projections on A^2

Let us start by presenting our new definitions and spaces of projections.

Definition 1 Let g be holomorphic in \mathbb{D} . We define

$$T_g\varphi(z) = \int_{\mathbb{D}} g(\bar{w}\phi_w(z))\varphi(w) \frac{dA(w)}{(1-z\overline{w})^2},$$

for any $\varphi \in C_c(\mathbb{D})$.

We denote by \mathcal{P} (respect. \mathcal{P}_0) the space of holomorphic functions $g \in \mathcal{H}(\mathbb{D})$ such that T_g extends continuously to $L^2(\mathbb{D})$ (respect. T_g is a projection on the Bergman space A^2).

We provide the space \mathcal{P} with the norm $\|g\|_{\mathcal{P}} = \|T_g\|_{L^2(\mathbb{D}) \to L^2(\mathbb{D})}$.

Remark 2 In [1] it was introduced, for each F holomorphic in \mathbb{H} the operator

$$S_F\varphi(z) = \int_D F\left(\frac{1-z\overline{w}}{1-|w|^2}\right)\varphi(w)\frac{dA(w)}{(1-|w|^2)^2}.$$

We have that $T_g = S_F$, with $F(\eta) = \frac{1}{\eta^2}g(1-\frac{1}{\eta})$. We will say that such $F \in \mathcal{P}$ (respect. \mathcal{P}_0) if $g \in \mathcal{P}$ (respect. \mathcal{P}_0).

Example 3 Let $g_{\alpha}(z) = (\alpha + 1)(1 - z)^{\alpha}$ for every $\alpha > -1$. Then $g_{\alpha} \in \mathcal{P}_0$ for $\alpha > -1/2$. In fact by (1) we have that $T_{g_{\alpha}} = P_{\alpha}$, which is a bounded projection from $L^2(\mathbb{D})$ into A^2 if and only if $\alpha > -1/2$.

Example 4 If $P(z) = \sum_{k=0}^{N} a_k z^k$ is a polynomial then $P \in \mathcal{P}$. Moreover $P \in \mathcal{P}_0$ if and only if $\sum_{k=0}^{N} \frac{a_k}{(k+1)} = \int_0^1 P(r) dr = 1$.

Proof. Write $P(z) = \sum_{k=0}^{N} b_k (1-z)^k$ where $b_k = (-1)^k \frac{P^{(k)}(1)}{k!}$. Hence

$$T_P = \sum_{k=0}^{N} \frac{b_k}{(k+1)} P_k.$$

This shows that $T_P \in \mathcal{P}$ and $\|P\|_{\mathcal{P}} \leq \sum_{k=0}^{N} \frac{|b_k|}{(k+1)} \|P_k\|$. On the other hand $T_P \in \mathcal{P}_0$ if and only if $\sum_{k=0}^{N} \frac{b_k}{(k+1)} = 1$. Notice now that $\sum_{k=0}^{N} \frac{b_k}{(k+1)} = \int_0^1 P(r) dr$ to conclude the proof.

Example 5 If $g \in \mathcal{H}(\mathbb{D})$ is such that $(1-z)^{\alpha}g(z)$ is bounded for some $\alpha > -1/2$ then $g \in \mathcal{P}$ and $||g||_{\mathcal{P}} \leq C \sup_{|z|<1} |(1-z)^{\alpha}g(z)|$. In particular the space of bounded holomorphic functions $H^{\infty}(\mathbb{D})$ is contained in \mathcal{P} and $||f||_{\mathcal{P}} \leq C ||f||_{\infty}$.

Proof. Use that $P^*_{\alpha}\varphi(z) = \int_D \frac{(1-|w|^2)^{\alpha}}{|1-\bar{w}z|^{2+\alpha}}\varphi(w)dA(w)$ also defines a bounded operator on $L^2(\mathbb{D})$ (see [5, Theorem 1.9]).

Proposition 6 Let $g : \{z : |z - 1| < 2\} \to \mathbb{C}$ be holomorphic such that $g(z) = \sum_{n=1}^{\infty} a_n (1-z)^n$ for |z - 1| < 2. If $\sum_{n=0}^{\infty} \frac{2^n |a_n|}{(n+1)^{5/4}} < \infty$ then $g \in \mathcal{P}$ and

$$||g||_{\mathcal{P}} \le C \sum_{n=0}^{\infty} \frac{2^n |a_n|}{(n+1)^{5/4}}.$$

Moreover, $g \in \mathcal{P}_0$ if and only if $\sum_{n=0}^{\infty} \frac{a_n}{n+1} = 1$.

Proof. Indeed, the norm $||P_n|| = \frac{\sqrt{(2n)!}}{n!}$ (see [2, 3]). Then for $\varphi \in C_c(\mathbb{D})$

$$T_g\varphi(z) = \sum_{n=1}^{\infty} \frac{a_n}{(n+1)} P_n\varphi(z),$$

and

$$||g||_{\mathcal{P}} \le \sum_{n=0}^{\infty} \frac{|a_n|\sqrt{(2n)!}}{(n+1)n!}.$$

Finally observe that, from Stirling's formula, $\frac{\sqrt{(2n)!}}{(n+1)n!} \sim \frac{2^n}{(n+1)^{1/4}}$. To conclude the result note that $\sum_{n=0}^{\infty} \frac{|a_n|}{n+1} < \infty$ and

$$T_g\varphi(z) = \left(\sum_{n=1}^{\infty} \frac{a_n}{(n+1)}\right)\varphi(z),$$

for $\varphi \in A^2$.

Example 7 Let $h_{\beta}(z) = A_{\beta}(1+z)^{-\beta}$ for $\beta > 0$ where $A_{\beta} = \frac{1-\beta}{2^{-\beta+1}-1}$ if $\beta \neq 1$ and $A_1 = (\log 2)^{-1}$. Then $h_{\beta} \in \mathcal{P}_0$ for $0 < \beta < 5/4$.

Proof. Since, for $\beta > 0$, $\frac{1}{(1-w)^{\beta}} = \sum_{n=0}^{\infty} \beta_n w^n$ for |w| < 1, where $\beta_n \sim 1$ $(n+1)^{\beta-1}$, we have that

$$h_{\beta}(z) = \frac{A_{\beta}}{2^{\beta}(1 - (1 - z)/2)^{\beta}} = \sum_{n=0}^{\infty} A_{\beta} 2^{-(n+\beta)} \beta_n (1 - z)^n$$

Now Proposition 6 implies that $h_{\beta} \in \mathcal{P}$.

Note that

$$1 = \int_{1}^{2} A_{\beta} s^{-\beta} ds = \int_{0}^{1} h_{\beta}(r) dr = \sum_{n=0}^{\infty} \frac{A_{\beta} 2^{-(n+1)} \beta_{n}}{n+1}.$$

Apply again Proposition 6 to finish the proof.

Let us now give some necessary conditions that functions g in \mathcal{P} should satisfy.

Theorem 8 If $g \in \mathcal{P}$ then

$$\sup_{z\in\mathbb{D}}\left\{\int_{\mathbb{D}}\left|g\left(\bar{w}\phi_{w}(z)\right)\right|^{2}dA(w)\right\}^{1/2}\leq 2\left\|g\right\|_{\mathcal{P}},$$
(2)

$$\left(\int_{0}^{1} |g(r)|^{2} dr\right)^{1/2} \leq 2||g||_{\mathcal{P}},\tag{3}$$

$$\left(\int_{0}^{1} \left(\int_{\mathbb{D}} \frac{|g(ru))|^{2}}{|1-ru|^{4}} dA(u)\right) (1-r^{2})^{2} r dr\right)^{1/2} \leq 2 \|g\|_{\mathcal{P}}.$$
 (4)

Proof. If $g \in \mathcal{P}$ and $\varphi \in C_c(\mathbb{D})$ one has $T_g \varphi \in A^2$. Hence for each $z \in \mathbb{D}$

$$|T_g\varphi(z)| \le \frac{\|T_g\varphi\|_2}{(1-|z|)} \le \frac{\|g\|_{\mathcal{P}} \|\varphi\|_2}{(1-|z|)}.$$

Therefore

$$\left| \int_{\mathbb{D}} g\left(\bar{w}\phi_w(z) \right) \varphi(w) \frac{dA(w)}{(1-z\overline{w})^2} \right| \le \frac{\|g\|_{\mathcal{P}} \|\varphi\|_2}{(1-|z|)}.$$

Then by duality,

$$\left\{ \int_{\mathbb{D}} \left| g\left(\bar{w}\phi_w(z) \right) \right|^2 \frac{dA(w)}{|1 - z\bar{w}|^4} \right\}^{1/2} \le \frac{\|g\|_{\mathcal{P}}}{(1 - |z|)} \le 2\frac{\|g\|_{\mathcal{P}}}{(1 - |z|^2)}.$$
 (5)

Let us show the following formula:

$$\overline{\phi_z(u)}\phi_{\phi_z(u)}(z) = u\overline{\phi_u(z)}.$$
(6)

Indeed, since

$$1 - |\phi_z(u)|^2 = \frac{(1 - |z|^2)(1 - |u|^2)}{|1 - \bar{z}u|^2},$$

then

$$\psi_z(\phi_z(u)) = \frac{1 - |\phi_z(u)|^2}{1 - \overline{\phi_z(u)}z} = \frac{(1 - |u|^2)}{(1 - \overline{z}u)} = \overline{\psi_z(u)}.$$
(7)

Now (6) follows from (1) and (7)

$$\overline{\phi_z(u)}\phi_{\phi_z(u)}(z) = 1 - \psi_z(\phi_z(u)) = u\overline{\phi_u(z)}.$$
(8)

Changing the variable $u = \phi_z(w)$ in (5) and using (6) we obtain

$$\left\{\int_{\mathbb{D}} \left|g\left(u\overline{\phi_u(z)}\right)\right|^2 dA(u)\right\}^{1/2} \le 2 \, \|f\|_{\mathcal{P}} \, .$$

Now replacing u and \overline{z} by \overline{w} and z respectively the inequality (2) is achieved.

Part (3) follows selecting z = 0 in (2).

Part (4) follows from (2) replacing the supremum by an integral over \mathbb{D} and changing the variable $u = \phi_w(z)$,

$$\begin{split} \int_{\mathbb{D}} \int_{\mathbb{D}} |g\left(\bar{w}\phi_{w}(z)\right)|^{2} dA(w) dA(z) &= \int_{\mathbb{D}} \left(\int_{\mathbb{D}} \frac{|g\left(\bar{w}u\right)\rangle|^{2}}{|1-\bar{w}u|^{4}} dA(u) \right) (1-|w|^{2})^{2} dA(w) \\ &= \int_{\mathbb{D}} \left(\int_{\mathbb{D}} \frac{|g\left(|w|u\right)\rangle|^{2}}{|1-|w|u|^{4}} dA(u) \right) (1-|w|^{2})^{2} dA(w) \\ &= \int_{0}^{1} \left(\int_{\mathbb{D}} \frac{|g\left(ru\right)\rangle|^{2}}{|1-ru|^{4}} dA(u) \right) (1-r^{2})^{2} r dr. \end{split}$$

Remark 9 $(\mathcal{P}, \|\cdot\|_{\mathcal{P}})$ is a normed space and $\Phi(g) = \int_0^1 g(r)dr \in \mathcal{P}^*$. Indeed, the only condition which needs a proof is the fact that $\|g\|_{\mathcal{P}} = 0$ implies that g = 0. It follows from (3) that if $\|g\|_{\mathcal{P}} = 0$, then g(r) = 0 for 0 < r < 1. Hence by analytic continuation, g(z) = 0 for $z \in \mathbb{D}$.

Notice also that (3) implies that $\|\Phi\| \leq 2$.

Remark 10 The space \mathcal{P} is not invariant under under rotations. Given $\theta \in [0, 2\pi)$ denote $R_{\theta}(f)(z) = f(e^{i\theta}z)$ for $f \in \mathcal{H}(\mathbb{D})$. Observe that $R_{\theta}T_g(\varphi) = T_g(R_{\theta}\varphi)$. However, that T_g is bounded in $L^2(\mathbb{D})$ does not imply that $T_{R_{\theta}g}$ is bounded in $L^2(\mathbb{D})$. For instance, the function $g(z) = (1+z)^{-1/2}$ belongs to \mathcal{P} , but by (3), its reflection $g(z) = (1-z)^{-1/2} \notin \mathcal{P}$.

Let us now also give some necessary conditions to belong to the class \mathcal{P}_0 .

Theorem 11 If $g \in \mathcal{P}_0$ then

$$\int_{\mathbb{D}} g(u\overline{\phi_u(z)})\psi(u)dA(u) = \psi(0)$$
(9)

for all $\psi \in A_2$ and $z \in \mathbb{D}$. In particular,

- (i) If $g \in \mathcal{P}_0$ then $\int_0^1 g(r) dr = 1$.
- (ii) Let $S_2 = \{\bar{z}(1-|z|^2)\varphi(\bar{z}) : \varphi \in A^2\}$. If $g \in \mathcal{P}_0$ and $g' \in \mathcal{P}$ then $S_2 \subset Ker(T_{g'})$.

Proof. Assume

$$\int_{\mathbb{D}} g(\bar{w}\phi_w(z)) \frac{\varphi(w)}{(1-\bar{w}z)^2} dA(w) = \varphi(z)$$

for all $\varphi \in A^2$.

Given $\psi \in A^2$ and $z \in D$, consider $\varphi(w) = \psi(\phi_z(w)) \frac{(1-|z|^2)^2}{(1-\bar{z}w)^2}$. Clearly $\varphi \in A_2$ and $\|\varphi\|_2 = (1-|z|^2) \|\psi\|_2$. From the assumption,

$$\int_{\mathbb{D}} g(\bar{w}\phi_w(z))\psi(\phi_z(w))\frac{(1-|z|^2)^2}{|1-\bar{w}z|^4}dA(w) = \psi(0).$$

for all $\psi \in A^2$ and $z \in \mathbb{D}$.

Now changing the variable $u = \phi_z(w)$, and using (6), one gets

$$\int_{\mathbb{D}} g(u\overline{\phi_u(z)})\psi(u)dA(u) = \psi(0)$$

for all $\psi \in A_2$ and $z \in \mathbb{D}$. Finally changing u by \overline{w} one obtains

$$\int_{\mathbb{D}} g(\bar{w}\phi_w(z))\psi(\bar{w})dA(w) = \psi(0)$$
(10)

for all $\psi \in A_2$ and $z \in \mathbb{D}$.

(i) follows selecting $\psi = 1$ and z = 0 in (10).

Differentiating in (10) with respect to z one obtains

$$\int_{\mathbb{D}} g'(\bar{w}\phi_w(z)) \frac{-\bar{w}(1-|w|^2)}{(1-\bar{w}z)^2} \psi(\bar{w}) dA(u) = T_{g'}(\psi_1) = 0$$

where $\varphi_1(u) = -\bar{u}(1-|u|^2)\varphi(\bar{u})$. Hence (ii) is finished.

Let us now show that $(\mathcal{P}, \|\cdot\|_{\mathcal{P}})$ is complete. For such a purpose, let us define $h_z : \mathbb{D} \to \mathbb{H}$ by

$$h_z(w) = \frac{1}{\psi_z(w)} = \frac{1 - z\overline{w}}{1 - |w|^2},$$

and let us mention that

$$\mathbb{D}_{1} = \{ \frac{1 - |w|^{2}}{1 - z\overline{w}} : z, w \in \mathbb{D} \} = \{ \psi_{z}(w) : z, w \in \mathbb{D} \}.$$

Lemma 12 For every $\xi \in \mathbb{H}$, there exist $0 \leq \alpha < 1$ and $w \in \mathbb{D}$ such that $\xi = h_{\alpha}(w)$ and h_{α} is an diffeomorfism of a neighborhood U of w onto an open neighborhood of ξ .

Proof. For $0 \le r, \alpha < 1$ fixed,

$$h_{\alpha}(re^{i\theta}) = \frac{1}{1-r^2} - \frac{r\alpha}{1-r^2}e^{-i\theta}$$
(11)

describes the circle $C_{r,\alpha}$ centered at the complex number $\frac{1}{1-r^2}$ with radius $\frac{r\alpha}{1-r^2}$.

Let $\xi \in \mathbb{H}$. To prove that $\xi \in h_{\alpha}(\mathbb{D})$ it is enough to see that $\xi \in C_{r,\alpha}$ for some $0 \leq r, \alpha < 1$.

Let

$$\beta = \frac{1}{r^2} \left[(1 - r^2)^2 \left| \xi \right|^2 + 1 - 2(1 - r^2) \operatorname{Re} \xi \right] = \frac{|(1 - r^2)\xi - 1|^2}{r^2}.$$
 (12)

It is clear that $\beta \geq 0$ and

$$\beta < 1 \Leftrightarrow (1 - r^2) |\xi|^2 + 1 < 2 \operatorname{Re} \xi.$$

Also, since $\xi \in \mathbb{H}$, we have for some $\varepsilon > 0$ that $2 \operatorname{Re} \xi > 1 + \varepsilon$. Hence if $|\xi|^2 < \frac{\varepsilon}{(1-r^2)}$ then $\beta < 1$. We conclude that there exists r_0 such that $0 \leq \beta < 1$ provided $r_0 < r < 1$. Then if $r_0 < r < 1$ and we let $\alpha = \sqrt{\beta}$ we have $0 \leq \alpha < 1$ and

$$\left|\xi - \frac{1}{1 - r^2}\right| = \frac{r\alpha}{1 - r^2},$$

that is $\xi \in C_{r,\alpha}$. Hence there exists θ_r and $0 \le \alpha_r < 1$ such that $h_{\alpha_r}(re^{i\theta_r}) = \xi$.

To find θ_r explicitly, we let $\varphi_r = \pi - \theta_r$. From (11) we can write

$$\xi = \frac{1}{1 - r^2} + \frac{r\alpha_r}{1 - r^2} e^{i\varphi_r}$$

Hence φ_r is the argument of ξ in polar coordinates centered at the complex number $\frac{1}{1-r^2}$. Then if $\frac{1}{1-r^2} \ge \operatorname{Re}(\xi)$,

$$\sin \theta_r = \sin \varphi_r = \frac{\mathrm{Im}(\xi)}{r\alpha_r} (1 - r^2)$$

$$\cos \theta_r = -\cos \varphi_r = \frac{(1-r^2)}{r\alpha_r} \left(\frac{1}{1-r^2} - \operatorname{Re}(\xi)\right)$$
(13)
$$= \frac{1 - (1-r^2)\operatorname{Re}(\xi)}{r\alpha_r}.$$

Now we will prove that possibly except for a finite number of values of $r \ge r_0$, the jacobian matrix $Dh_{\alpha_r}(re^{i\theta_r})$ is not singular, where α_r and θ_r are chosen so that $h_{\alpha_r}(re^{i\theta_r}) = \xi$ as before. To this end, it is enough to see that the set of values of r such that the vectors

$$\frac{\partial h_{a_r}}{\partial \rho} (\rho e^{i\theta_r})_{|\rho=r} \text{ and } \frac{1}{r} \frac{\partial h_{a_r}}{\partial \theta} (r e^{i\theta})_{|\theta=\theta_r}$$
(14)

are linearly dependent is finite.

We have

$$\frac{\partial h_a}{\partial \rho}(\rho e^{i\theta}) = \left(\frac{2\rho}{(1-\rho^2)^2} - \frac{\alpha(1+\rho^2)}{(1-\rho^2)^2}\cos\theta, \frac{\alpha(1+\rho^2)}{(1-\rho^2)^2}\sin\theta\right),$$
$$\frac{1}{\rho}\frac{\partial h_a}{\partial \theta}(\rho e^{i\theta}) = \left(\frac{\alpha}{(1-\rho^2)}\sin\theta, \frac{\alpha}{(1-\rho^2)}\cos\theta\right),$$

and the jacobian of h_{α}

$$Jh_{\alpha}(\rho e^{i\theta}) = \det\left[\frac{\partial h_{a}}{\partial \rho}(\rho e^{i\theta})|\frac{1}{\rho}\frac{\partial h_{a}}{\partial \theta}(\rho e^{i\theta})\right]$$
$$= \det\left[\frac{\frac{2\rho}{(1-\rho^{2})^{2}} - \frac{\alpha(1+\rho^{2})}{(1-\rho^{2})^{2}}\cos\theta}{\frac{\alpha}{(1-\rho^{2})^{2}}\sin\theta} - \frac{\alpha}{(1-\rho^{2})}\cos\theta}\right]$$
$$= \frac{\alpha}{(1-\rho^{2})}\cos(\theta) - \alpha(1+\rho^{2})$$
(15)

$$= \frac{\alpha}{(1-\rho^2)^3} \left(2\rho \cos \theta - \alpha (1+\rho^2) \right).$$
(15)

If $2r\cos\theta_r - \alpha_r(1+r^2) = 0$, then multiplying this equation by $\alpha_r r^2$ we obtain

$$2r^{2}\alpha_{r}r\cos\theta_{r} - \alpha_{r}^{2}r^{2}(1+r^{2}) = 0.$$
 (16)

However, from (12) and (13) we see that $2r^2\alpha_r r\cos\theta_r - \alpha_r^2 r^2(1+r^2)$ is a polynomial of degree 6 in the variable r. We conclude that the vectors in (14) are linearly dependent for six values of r at the most and the proof of the lemma is complete.

Theorem 13 \mathcal{P} is a Banach space

Proof. Let $g \in \mathcal{P}$ we have by Theorem 8 that

$$\sup_{z \in \mathbb{D}} \left\{ \int_{\mathbb{D}} |g(\bar{w}\phi_w(z))|^2 \, dA(w) \right\}^{1/2} \le 2 \, \|g\|_{\mathcal{P}} \,. \tag{17}$$

Fix $\xi \in \mathbb{D}$. Since $\psi_z = 1/h_z$, then the local invertibility statement of Lemma 12 holds for the family of functions $1 - \psi_z$ taking $\xi \in \mathbb{D}$, namely, there exist $\alpha \in (0, 1), w_{\xi} \in \mathbb{D}$ and open neighborhoods U and V of ξ and w_{ξ} respectively, such that $1 - \psi_z$ is a diffeomorphism of V into U.

Hence

$$\left\{ \int_{U} |g(u)|^{2} dA(u) \right\}^{1/2} = \left\{ \int_{V} |g(1 - \psi_{\alpha}(w))|^{2} |J\psi_{\alpha}(w)| dA(w) \right\}^{1/2}$$
$$\leq C(\xi) \left\{ \int_{V} |g(\bar{w}\phi_{w}(\alpha))|^{2} dA(w) \right\}^{1/2}$$

$$\leq C(\xi) \, \|g\|_{\mathcal{P}} \, .$$

It follows that

$$\left\{ \int_{K} |g(u)|^{2} dA(u) \right\}^{1/2} \leq C_{K} ||g||_{\mathcal{P}},$$

for every compact set $K \subset \mathbb{D}$. This implies that

$$\sup_{u \in K} |g(u)| \le ||g||_{\mathcal{P}} C'_{K}.$$
(18)

If $\{g_n\}$ is a Cauchy sequence in \mathcal{P} , we have by (18) that $\{g_n\}$ converges to uniformly on compact sets of \mathbb{D} to a holomorphic function g.

If $\varphi \in C_c(\mathbb{D})$, we have

$$T_{g_n}\varphi(z) \to T_g\varphi(z),$$

uniformly on \mathbb{D} in $L^2(\mathbb{D})$. Since $||g_n||_{\mathcal{P}}$ is a bounded sequence then by the Fatou lemma it follows that

$$\left\|T_g\varphi\right\|_2 \le M \left\|g\right\|_{\mathcal{P}},$$

and $g \in \mathcal{P}$. Also, from

$$\left\|T_{g_n}\varphi - T_{g_m}\varphi\right\|_2 \le \left\|g_n - g_m\right\|_{\mathcal{P}} \left\|\varphi\right\|_2$$

we conclude that $T_{g_n} \to T_g$, namely $g_n \to g$ in \mathcal{P} .

3 Main results

Let us now describe the norm in \mathcal{P} in a more explicit way. We shall use the formulation of the space given in [1].

Theorem 14 Let $g \in \mathcal{H}(\mathbb{D})$ and put $F(\xi) = \frac{1}{\xi^2}g(1-\frac{1}{\xi})$. Then $g \in \mathcal{P}$ if and only

$$\sup_{j} \frac{1}{j!\sqrt{j+1}} \left(\int_{1}^{\infty} [(x-1)x]^{j} \left| xF^{(j)}(x) \right|^{2} dx \right)^{1/2} < \infty$$

Proof. We use the expression

$$T_g\varphi(z) = \int_{\mathbb{D}} F\left(\frac{1-z\overline{w}}{1-|w|^2}\right)\varphi(w)\frac{dA(w)}{(1-|w|^2)^2}.$$

Consider the space M of functions of the form

$$\varphi = \sum_{finite} \varphi_j(r) e^{ij\theta},$$

with $\varphi_j \in L^2((0,1), rdr)$. Then M is a dense subspace of $L^2(\mathbb{D})$. For $z \in \mathbb{D}$ and $0 \leq r < 1$ fixed, let $f(\zeta) = F\left(\frac{1-rz\zeta}{1-r^2}\right)$, which is holomorphic on $\overline{\mathbb{D}}.$ We have .

$$f(\zeta) = F\left(\frac{1 - rz\zeta}{1 - r^2}\right) = \sum_{j \ge 0} \frac{1}{j!} \left(\frac{-rz}{1 - r^2}\right)^j F^{(j)}(\frac{1}{1 - r^2})\zeta^j, |\zeta| \le 1.$$

Then for $g \in M$,

$$\int_0^{2\pi} f(re^{-i\theta})\varphi(re^{i\theta})\frac{d\theta}{2\pi} = \sum_{j\ge 0}\varphi_j(r)\frac{(-1)^j}{j!}\left(\frac{r}{1-r^2}\right)^j F^{(j)}(\frac{1}{1-r^2})z^j,$$

Hence

$$T_g(\varphi)(z) = \sum_{j \ge 0} \gamma_j(\varphi_j) \sqrt{j+1} z^j, \tag{19}$$

where γ_j is the functional in $L^2((0,1), rdr)$ defined by

$$\gamma_j(\varphi) = \frac{(-1)^j}{\sqrt{j+1}j!} \int_0^1 \varphi(r) \left(\frac{r}{1-r^2}\right)^j F^{(j)}\left(\frac{1}{1-r^2}\right) \frac{r}{(1-r^2)^2} dr.$$

Using the normalized Lebesgue measure dA, the set $\{\sqrt{j+1}z^j\}$ is an or-thonormal basis for A^2 , so we conclude that T_g is bounded in $L^2(\mathbb{D})$ if and

only if

$$\left\| (\gamma_j(\varphi_j))_{j\geq 0} \right\|_{\ell^2} \leq C \left\| \varphi \right\|_{L^2(\mathbb{D})}$$
$$= C \left(\sum_j \int |\varphi_j(r)|^2 r dr \right)^{1/2}$$

Using duality, this will hold if and only if

$$\sup_{j\geq 0} \frac{1}{\sqrt{j+1}j!} \left(\int_0^1 \left(\frac{r}{1-r^2}\right)^{2j} \left| F^{(j)}\left(\frac{1}{1-r^2}\right) \right|^2 \frac{rdr}{(1-r^2)^4} \right)^{1/2} < \infty.$$
(20)

Letting the change of variables $x = \frac{1}{1-r^2}$, the integrals above equal

$$\frac{1}{2} \int_{1}^{\infty} [(x-1)x]^{j} \left| xF^{(j)}(x) \right|^{2} dx$$

and the proof is complete. \blacksquare

We can now give an alternative proof of a well know result.

Corollary 15 P_{α} is bounded on $L^{2}(\mathbb{D})$ if and only if $\alpha > -1/2$.

Proof. Consider $g_{\alpha}(z) = (1-z)^{\alpha}$. Assume first that $g_{\alpha} \in \mathcal{P}$. Then (3) in Theorem 8 implies that $\int_0^1 (1-r)^{2\alpha} dr < \infty$ and therefore $\alpha > -1/2$. Assume now that $\alpha > -1/2$. Since $F_{\alpha}(\xi) = \xi^{-m}$ with $m = 2 + \alpha$ and

2m-3 > 0, one has for $j \ge 0$ that

$$F_{\alpha}^{(j)}(x) = (-1)^{j} m(m+1) \dots (m+j-1) x^{-(m+j)} = (-1)^{j} \frac{\Gamma(m+j)}{\Gamma(m)} x^{-(m+j)}.$$

Therefore

$$\begin{split} \int_{1}^{\infty} [(x-1)x]^{j} \left| x F_{\alpha}^{(j)}(x) \right|^{2} dx &= \int_{1}^{\infty} (1-\frac{1}{x})^{j} (x^{j+1} F_{\alpha}^{(j)}(x))^{2} dx \\ &= \left(\frac{\Gamma(m+j)}{\Gamma(m)} \right)^{2} \int_{1}^{\infty} (1-\frac{1}{x})^{j} x^{-2m+4} \frac{d}{x^{2}} \\ &= \left(\frac{\Gamma(m+j)}{\Gamma(m)} \right)^{2} \int_{0}^{1} (1-r)^{j} r^{2m-4} dr \\ &= \left(\frac{\Gamma(m+j)}{\Gamma(m)} \right)^{2} B(2m-3,j+1). \end{split}$$

Using that $B(p,q) = \frac{\Gamma(p)\Gamma(q)}{\Gamma(p+q)}$ one concludes that

$$\frac{1}{(j!)^2(j+1)} \int_1^\infty [(x-1)x]^j \left| xF_\alpha^{(j)}(x) \right|^2 dx = \frac{B(2m-3,j+1)}{B(m,j)^2 j^2(j+1)}.$$

Finally since for p fixed, $B(p,j)\sim j^{-p}$ one obtains that

$$\frac{B(2m-3,j+1)}{B(m,j)^2 j^2 (j+1)} \sim 1.$$

Example 16 In Example 7 it was shown that, for $0 < \beta < 5/4$, $g(z) = (1+z)^{-\beta} \in \mathcal{P}$ (which corresponds to $F(\xi) = \frac{\xi^{\beta-2}}{(2\xi-1)^2}$). Let us show for instance that $g(z) = (1+z)^{-2} \notin \mathcal{P}$.

In this case $F(\xi) = \frac{1}{(2\xi-1)^2}$ and

$$F^{(j)}(\xi) = \frac{(-1)^j (j+1)! 2^j}{(2\xi - 1)^{2+j}}.$$

Since $\frac{x}{2} \leq x - 1 \leq x$ for $x \geq 2$ we have

$$\left(\int_{2}^{\infty} (x(x-1))^{j} |xF^{(j)}(x)|^{2} dx\right)^{1/2} \sim 2^{j} (j+1)! \left(\int_{2}^{\infty} \frac{x^{2j+2}}{(2x-1)^{4+2j}} dx\right)^{1/2} \sim 2^{j} (j+1)!$$

Hence the condition in Theorem 14 does not hold.

The conditions

$$\sup_{j\geq 0} \frac{1}{j!} \int_{1}^{\infty} \left| (x-1)^{j} F^{(j)}(x) \right| dx < \infty,$$
(21)

$$\lim_{x \to \infty} x^{j+1} F^{(j)}(x) = 0 \tag{22}$$

were introduced in [1]. These conditions imply that on the space of all the holomorphic functions φ such that $S_F \varphi$ is well defined, the operator S_F is a constant multiple of the identity . Now we will see that (21) and (22) hold for every $g \in \mathcal{P}$ what allows to show the following result.

Theorem 17 Let $g \in \mathcal{P}$ and $c_0 = \int_0^1 g(r) dr$. Then

$$T_g(\varphi) = c_0 \varphi, \quad \varphi \in A^2$$

Proof. Let us notice first that $(x-1)^j F^{(j)}(x) \in L^1([1,\infty), dx)$ for $j \ge 0$. Indeed,

$$\int_{1}^{\infty} |x-1|^{j} |F^{(j)}(x)| dx$$

$$= \int_{1}^{\infty} |x(x-1)|^{j} |xF^{(j)}(x)| \frac{dx}{x^{j+1}}$$

$$\leq \left(\int_{1}^{\infty} (x(x-1))^{j} |xF^{(j)}(x)|^{2} dx\right)^{1/2} \left(\int_{1}^{\infty} \frac{(x(x-1))^{j}}{x^{2j+2}} dx\right)^{1/2}$$

$$= \left(\int_{1}^{\infty} (x(x-1))^{j} |xF^{(j)}(x)|^{2} dx\right)^{1/2} \left(\int_{0}^{1} (1-r)^{j} dr\right)^{1/2}$$

$$= \frac{1}{\sqrt{j+1}} \left(\int_{1}^{\infty} |x(x-1)|^{j} |xF^{(j)}(x)|^{2} dx\right)^{1/2} \leq Cj! ||g||_{\mathcal{P}}.$$

Applying (19) in Theorem 14 to $\varphi(z) = \sum_{j=0}^{N} a_j z^j$ one obtains

$$T_g \varphi = \sum_{j=0}^N c_j a_j z^j, \tag{23}$$

and

$$c_j = \frac{(-1)^j}{j!} \int_1^\infty (x-1)^j F^{(j)}(x) dx,$$

where c_j is well defined.

As in [1, Th. 1] we have by integration by parts

$$c_j - c_{j+1} = \frac{(-1)^j}{(j+1)!} \lim_{x \to \infty} (1-x)^{j+1} F^{(j)}(x).$$

Let us now show that $\lim_{x\to\infty} (1-x)^{j+1} F^{(j)}(x) = 0$. Note first that $(x-1)^{j+1} F^{(j)}(x) \in L^2([1,\infty), dx)$ for $j \ge 0$. Indeed

$$\int_{1}^{\infty} |(x-1)^{j+1} F^{(j)}(x)|^2 dx \le \int_{1}^{\infty} |x(x-1)|^j |xF^{(j)}(x)|^2 dx \le C(j+1)(j!)^2.$$
(24)

In particular $(x-1)^j F^{(j)}(x) \in L^2([1,\infty), dx)$ for $j \ge 1$. From Cauchy-Schwarz and the previous estimates one has that if $f_j(x) = [(x-1)^{j+1} F^{(j)}(x)]^2$ then $(f_j)' \in L^1([1,\infty))$ for every $j \ge 0$.

Therefore writing

$$[(x-1)^{j+1}F^{(j)}(x)]^2 = \int_1^x (f_j)'(y)dy$$

we see that the $\lim_{x\to\infty}((x-1)^{j+1}F^{(j)}(x))^2$ exists and by (24) it vanishes for all j.

Hence (23) becomes $T_g(\varphi) = c_0 \varphi$ where

$$c_0 = \int_1^\infty F(x)dx = \int_1^\infty g(1 - \frac{1}{x})\frac{dx}{x^2} = \int_0^1 g(r)dr.$$

Corollary 18 Let $g \in \mathcal{P}$. Then $A^2 \subset KerT_g$ if and only if $\int_0^1 g(r)dr = 0$.

Corollary 19 Let $\Phi(g) = \int_0^1 g(r) dr$ for $g \in \mathcal{P}$. Then $\mathcal{P}_0 = \Phi^{-1}(\{1\})$.

Corollary 20 Let $g \in \mathcal{P}$. If T_g is not identically zero in A^2 then there exists $\lambda \neq 0$ and $g_0 \in g \in \mathcal{P}_0$ such that $g = \lambda g_0$.

References

- [1] Bonet J., Engliš M., Taskinen J., Weighted L^{∞} -estimates for Bergman projections, Studia Math. 171(1) (2005
- [2] Dostanić, M., Norm estimate of the Cauchy transform on $L^p(\Omega)$. Integral Equations Operator Theory 52(2005), no. 4, 465–475.
- [3] Dostanić, M., Norm of Berezin transform on L^p space, Journal d'Analyse Mathématique, 104(2008), no.1, 13-23.
- [4] Forelli, F., Rudin, W., Projections on spaces of holorphic functions on balls, Indiana Univ. Math. J. 24(1974), 593-602.
- [5] Handenmalm, H., Koremblum, B., Zhu, K., Theory of Bergman spaces, Graduate Texts in Mathematics, Springer Verlag, 2000.
- [6] Rudin, W., Function theory in the unit ball of Cⁿ, Springer, New York, 1980.

[7] Zhu, K., Operator Theory in Function Spaces, Marcel Dekker, New York, 1990.

Oscar Blasco Departamento de Matemáticas Universidad de Valencia 46100-Burjassot (Valencia) Oscar.Blasco@uv.es

Salvador Pérez-Esteva Instituto de Matemáticas Unidad Cuernavaca Universidad Nacional Autónoma de México A.P. 273-3 ADMON 3 Cuernavaca, Mor., 62251, México salvador@matcuer.unam.mx