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Abstract. We develop a general condition for automatically discretizing strong
type bisublinear maximal estimates that arise in the context of the real line.
In particular, this method applies directly to Michael Lacey’s strong type
boundedness results for the bisublinear maximal Hilbert transform and for
the bisublinear Hardy-Littlewood maximal operator, furnishing the counter-
part of each of these two results (without changes to the range of exponents)
for the sequence spaces `p (Z). We then take up some transference applica-
tions of discretized maximal bisublinear operators to maximal estimates and
almost everywhere convergence in Lebesgue spaces of abstract measures. We
also broaden the scope of such applications, which are based on transference
from Z, by developing general methods for transplanting bisublinear maximal
estimates from arbitrary locally compact abelian groups.

1. Introduction

In [10] and [11] R. R. Coifman and G.Weiss expanded the scope of A.P. Calderón’s
seminal techniques in [9] by developing a wide framework for transferring opera-
tors, along with their bounds, from groups to the setting of measure spaces. The
resulting “transference” methodology has been developed and its scope extended
by many authors, providing a versatile overview for systematically expanding the
role of harmonic analysis throughout modern analysis, including abstract Banach
spaces. In particular, the transference of individual multilinear operators to mea-
sure spaces was introduced in [17], and recently, in [7], the general transference of
individual bilinear operators was further developed, branching out to discretization
techniques and to transference applications of the Lacey-Thiele result ([27],[28])
that established the boundedness of the bilinear Hilbert transform for the real line.
The theme of our considerations below will be the transference of strong type

bisublinear maximal estimates and their consequent applications to almost every-
where convergence. We start off by developing in Theorem 1.1 below a sufficient
condition for the automatic discretization of bisublinear maximal estimates which
arise in the context of the real line R. We then show how discrete bisublinear
maximal estimates can be transferred to the Lebesgue spaces of abstract mea-
sures via isomeries of the Lebesgue spaces—with consequent applications to almost
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everywhere convergence such as the almost everywhere convergence of the discrete
bilinear ergodic Hilbert averages defined by any translation operator in the setting
of an arbitrary locally compact abelian group (Theorem 5.1). We thereafter use
separation-preserving operators to go beyond the discrete context by developing
general methods for transferring bisublinear maximal estimates from arbitrary lo-
cally compact abelian groups to Lebesgue spaces of abstract sigma-finite measures.
Our central discretization result in Theorem 1.1 below yields, in particular, the

counterparts for the sequence spaces `p (Z) of Michael Lacey’s strong type bound-
edness results in [26] for the bisublinear maximal Hilbert transform and for the
bisublinear Hardy-Littlewood maximal operator. The resultant discrete bisublin-
ear maximal Hilbert transform and discrete bisublinear Hardy-Littlewood maximal
operator (described in Theorems 1.4 and 1.5) then serve as concrete models cov-
ered by our transference results. While we shall indicate the role of the discrete
bisublinear Hardy-Littlewood maximal operator in such matters, our emphasis will
be on the discrete bisublinear maximal Hilbert transform, inasmuch as the recent
article [14] is devoted to multisublinear versions of the Hardy-Littlewood maxi-
mal operator, including their discretization and transference by measure-preserving
transformations to discrete dynamical systems.
For convenience in formulating the central discretization result in Theorem 1.1,

we now take up a few items of notation.

Definition 1.1. For K ∈ L1 (R), we shall denote by SK the bilinear mapping of
L2 (R)× L2 (R) into L1 (R) specified by

(1.1) (SK (f, g)) (x) =

Z
R
f (x+ y) g (x− y)K (y) dy.

Given a sequence {Kj}∞j=1 ⊆ L1 (R), the corresponding bisublinear maximal opera-
tor will be symbolized by S[{Kj}. Thus, for f, g ∈ L

2 (R), and almost all x ∈ R,

(1.2)
³
S[{Kj} (f, g)

´
(x) = sup

j∈N

¯̄¡
SKj (f, g)

¢
(x)
¯̄
.

Definition 1.2. Let K = {Kn}∞n=−∞ be a sequence of complex numbers belonging
to `1 (Z), and suppose that 0 < p1,p2 ≤ ∞. Since `∞ (Z) contains `p1 (Z)

S
`p2 (Z),

it is clear that for all a ∈ `p1 , all b ∈ `p2 (Z), and all m ∈ Z,
∞X

n=−∞
|am+nbm−nKn| <∞,

and we shall denote by SK the bilinear mapping which takes `p1 (Z) × `p2 (Z) into
the complex-valued sequences defined on Z, and which is specified for all a ∈ `p1 ,
all b ∈ `p2 (Z), and all m ∈ Z by putting

(1.3) (SK (a, b)) (m) =
∞X

n=−∞
am+nbm−nKn.

Given a sequence
©
K(j)

ª∞
j=1

of elements of `1 (Z), the corresponding bisublinear
maximal operator will be symbolized by S[{K(j)}, and so for a ∈ `

p1 , b ∈ `p2 (Z),
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and m ∈ Z,

(1.4)
³
S[{K(j)} (a, b)

´
(m) = sup

j∈N
|(SK(j) (a, b)) (m)| .

The linear space of all complex-valued bilateral sequences which have finite sup-
port will be denoted by `0 (Z). Notice that ifK ∈`1 (Z), thenSK maps `0 (Z)×`0 (Z)
into `0 (Z). Throughout all that follows, let I designate the closed interval

∙
−1
4
,
1

4

¸
in R, and for each m ∈ Z, let Im = I +m.
Remark 1.1. Suppose that K ∈ L1 (R), and that for each n ∈ Z, the restriction
K |In has a continuous derivative (in symbols, (K |In ) ∈ C1 (In)). Put°°(K |In )0°°u = sup

x∈In

¯̄
(K |In )0 (x)

¯̄
.

The following elementary argument shows that if
©°°(K |In )0°°uª ∈ `1 (Z), then the

sequence K ≡ {K (n)}∞n=−∞ ∈ `1 (Z) (and hence the bilinear form SK specified in
(1.1) can be discretized to the bilinear form SK given by (1.3)). For each n ∈ Z,

|K (n)|
2

≤
Z
In
|K (n)−K (y)| dy +

Z
In
|K (y)| dy,

and since for each y ∈ In,

(1.5) |K (y)−K (n)| =
¯̄̄̄Z y

n

K0 (t) dt

¯̄̄̄
≤
°°(K |In )0°°u |y − n| ,

we have
|K (n)|
2

≤
°°(K |In )0°°u Z

In
|y − n| dy +

Z
In
|K (y)| dy

=

°°(K |In )0°°u
16

+

Z
In
|K (y)| dy.

We can now state our fundamental discretization theorem (whose demonstration
will be deferred to §2).
Theorem 1.1. Suppose that

0 < p1, p2, p3 ≤ ∞;(1.6)

1

p1
+
1

p2
=
1

p3
.(1.7)

Let {Kj}∞j=1 be a sequence of functions belonging to L1 (R) such that for some
constant C (depending on p1, p2, and {Kj}∞j=1) we have°°°S[{Kj} (f, g)

°°°
Lp3 (R)

≤ C kfkLp1 (R) kgkLp2 (R) ,(1.8)

for all f ∈ Lp1 (R)
\
L2 (R) , all g ∈ Lp2 (R)

\
L2 (R) .

Assume that for each j ∈ N, the restriction (Kj |In ) belongs to C1 (In) for each
n ∈ Z, and define

An = An

³
{Kj}∞j=1

´
by putting

(1.9) An = sup
©¯̄
(Kj |In )0 (x)

¯̄
: j ∈ N, x ∈ In

ª
.
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Let p∗ = min (p3, 1) , and suppose that

(1.10) {An}∞n=−∞ ∈ `p
∗
(Z) .

Then the following conclusions hold.
(i) For each j ∈ N, `1 (Z) contains the sequence of complex numbers K(j)

≡
n
K(j)n

o∞
n=−∞

specified by taking

K(j)n = Kj (n) , for all n ∈ Z.
(ii) The discrete bisublinear maximal operator S[{K(j)} specified by (1.4) satis-

fies a strong type estimate°°°S[{K(j)} (a, b)
°°°
`p3 (Z)

≤ η kak`p1 (Z) kbk`p2 (Z) ,(1.11)

for all a ∈ `p1 (Z) , and all b ∈ `p2 (Z) ,
where η is a constant depending only on p1, p2, and {Kj}∞j=1.

As will be discussed shortly, Theorem 1.1 readily furnishes discrete counterparts
to the following two boundedness results of Michael Lacey ([26]) for the bisublin-
ear maximal Hilbert transform and for the bisublinear Hardy-Littlewood maximal
operator.
Theorem 1.2. Suppose that

1 < p1, p2 ≤ ∞;(1.12)

1

p1
+
1

p2
=
1

p3
;(1.13)

2

3
< p3 <∞.(1.14)

For f ∈ Lp1 (R)
T
L2 (R), g ∈ Lp2 (R)

T
L2 (R), let

(1.15) H (f, g) (x) = sup
0<ε<δ<∞

¯̄̄̄
¯
Z
ε<|y|<δ

f (x+ y) g (x− y)
y

dy

¯̄̄̄
¯ , for all x ∈ R.

Then there is a constant Ap1,p2 , depending only on p1 and p2, such that

kH (f, g)kLp3 (R) ≤ Ap1,p2 kfkLp1 (R) kgkLp2 (R) ,(1.16)

for all f ∈ Lp1 (R)
\
L2 (R) , g ∈ Lp2 (R)

\
L2 (R) .

Theorem 1.3. Suppose that

1 < p1, p2 <∞;(1.17)

1

p1
+
1

p2
=
1

p3
<
3

2
.(1.18)

For f ∈ Lp1 (R)
T
L2 (R), g ∈ Lp2 (R)

T
L2 (R), let

(1.19) M (f, g) (x) = sup
t>0

1

2t

Z t

−t
|f (x+ y) g (x− y)| dy, for all x ∈ R.

Then there is a constant Bp1,p2 , depending only on p1 and p2, such that

kM (f, g)kLp3 (R) ≤ Bp1,p2 kfkLp1 (R) kgkLp2 (R) ,(1.20)

for all f ∈ Lp1 (R)
\
L2 (R) , g ∈ Lp2 (R)

\
L2 (R) .
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The discretized versions of the above two theorems are stated as follows.

Theorem 1.4. Suppose that the conditions (1.12), (1.13), and (1.14) hold. For
a ≡ {an}∞n=−∞ ∈ `p1 (Z), b ≡ {bn}

∞
n=−∞ ∈ `p2 (Z), let

(1.21) HZ (a, b) (m) = sup
j∈N

¯̄̄̄
¯̄ X
0<|n|≤j

am+nbm−n
n

¯̄̄̄
¯̄ , for all m ∈ Z.

Then there is a constant Ap1,p2 , depending only on p1 and p2, such that

kHZ (a, b)k`p3 (Z) ≤ Ap1,p2 kak`p1 (Z) kbk`p2 (Z) ,(1.22)

for all a ∈ `p1 (Z) , b ∈ `p2 (Z) .

Theorem 1.5. Suppose that the conditions (1.17) and (1.18) hold. For a ≡
{an}∞n=−∞ ∈ `p1 (Z), b ≡ {bn}

∞
n=−∞ ∈ `p2 (Z), let

(1.23) MZ (a, b) (m) = sup
j∈N

1

2j + 1

jX
n=−j

|am+n bm−n| , for all m ∈ Z.

Then there is a constant Bp1,p2 , depending only on p1 and p2, such that

kMZ (a, b)k`p3 (Z) ≤ Bp1,p2 kak`p1 (Z) kbk`p2 (Z) ,(1.24)

for all a ∈ `p1 (Z) , b ∈ `p2 (Z) .

To deduce Theorem 1.4 and Theorem 1.5 from Theorem 1.2 and Theorem 1.3,
respectively, we reason via Theorem 1.1 as follows. (Strictly speaking, to complete
the proof in the case ofMZ we shall also need to apply the corresponding outcome
of Theorem 1.1 to |a| and |b|). In the case of Theorem 1.4, for each j ∈ N, we take
Kj ∈ L1 (R) to be the function specified for every x ∈ R by

(1.25) Kj (x) =

(
x−1, if

3

4
≤ |x| ≤ j + 1

4
;

0, otherwise.

In the case of Theorem 1.5, we define each Kj ∈ L1 (R) by putting

(1.26) Kj (x) =

(
(2j + 1)−1 , if |x| ≤ j + 1

2
;

0, otherwise.

It then suffices to show that (1.10) holds in the each of the present contexts. This

outcome occurs in the case of (1.25), because p∗ >
2

3
, while for all n ∈ Z \ {0},

An ≤
C

n2
.

In the case of (1.26), (1.10) holds trivially, since An = 0 for all n ∈ Z.

Remark 1.2. Because of the positivity of the family of kernels for the bisublin-
ear Hardy-Littlewood maximal operator, a more direct and immediate derivation
of Theorem 1.5 from Theorem 1.3 can be carried out (see Proposition 14.1-(iii) of
[14]).
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After recourse to a suitable multilinear version of the classical Banach Principle
(see the reasoning for either Theorem 1.2.1 in [13] or Theorem 6 in [18], whose
statement is reproduced below in Proposition 3.1), one observes directly that the
maximal result in Theorem 1.2 subsumes the celebrated Lacey-Thiele boundedness
result for the bilinear Hilbert transform of R ([27], [28]), which solved the long-
standing Calderón conjecture. We observe here that the corresponding boundedness
result for the discrete bilinear Hilbert transform follows even more simply from
Theorem 1.4.

Theorem 1.6. Suppose that the conditions (1.12), (1.13), and (1.14) hold. Then
for a ≡ {aj}∞j=−∞ ∈ `p1 (Z), b ≡ {bj}

∞
j=−∞ ∈ `p2 (Z), the series

(1.27) (HZ (a, b)) (m) ≡
∞X

n=−∞
n6=0

am+nbm−n
n

converges absolutely for each m ∈ Z, and the corresponding bilinear operator HZ
defined on `p1 (Z)× `p2 (Z) satisfies

kHZ (a, b)k`p3 (Z) ≤ Ap1,p2 kak`p1 (Z) kbk`p2 (Z) ,
for all a ∈ `p1 (Z) , b ∈ `p2 (Z) ,

where Ap1,p2 is the constant occurring in (1.22). For a ≡ {aj}∞j=−∞ ∈ `p1 (Z),
b ≡ {bj}∞j=−∞ ∈ `p2 (Z), and j ∈ N, let

Hj,Z(a, b) (m) =
X

0<|n|≤j

am+nbm−n
n

,(1.28)

for all m ∈ Z.
Then {Hj,Z(a, b)}∞j=1 converges to HZ (a, b) in the metric topology of `p3 (Z).

Proof. In view of Theorem 1.4, it suffices to show that for each m ∈ Z, the series
on the right of (1.27) converges absolutely. This follows immediately by applying
Corollary 2.4 to the sequence of L1 (R) kernels {Kj}∞j=1 specified in (1.25). ¤

Remark 1.3. For a different kind of discrete model for Theorem 1.2 and for the
bilinear Hilbert transform for R, see Thiele’s results in terms of Walsh wave packets
in [30], [31], and [32].

The subsequent sections of this article will be organized as follows. Section 2 is
devoted to proving the discretization theorem (Theorem 1.1) and its auxiliary con-
sequence in Corollary 2.4. In order to avoid later digressions, we recall in Section
3 the requisite measure-theoretic background items—focusing on the tools from er-
godic operator theory that will be used in Sections 4,5, and 6 for the transference to
Lebesgue spaces of bisublinear maximal operators. Theorem 4.1 is a general vehicle
for transferring discrete bisublinear maximal operators. Following on this, Sections
4 and 5 include applications of specific transferred discrete bisublinear maximal op-
erators to almost everywhere convergence. Section 4 ends with a brief description
of the relevance to the a.e. convergence in Bourgain’s double recurrence theorem
([8]), while Section 5 establishes the a.e. convergence of the discrete ergodic bi-
linear Hilbert averages defined by any translation of an arbitrary locally compact
abelian group (Theorem 5.1). The transference of strong type boundedness of dis-
crete maximal bisublinear operators is performed in Sections 4 and 5 via surjective
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isometries of Lebesgue spaces, and in the last section (Section 6) we expand this
framework by developing a general approach for transferring bisublinear maximal
estimates from an arbitrary locally compact abelian group G to Lebesgue spaces of
sigma-finite measures via representations of G by separation-preserving bijections
of Lebesgue spaces.
In all that follows, we shall employ the following notation. For a given mea-

sure µ and 0 < p ≤ ∞, , the algebra of all continous linear mappings of Lp (µ)
into Lp (µ) will be designated by B (Lp (µ)).The set of non-negative real numbers
will be denoted by R+, and the signum function on the complex plane C will
be denoted by sgn (·). For an arbitrary measure space (Ω, µ), the algebra (under
pointwise operations) consisting of all complex-valued µ-measurable functions on
Ω (identified modulo equality µ-a.e. on Ω) will be symbolized by A (µ). Given
two complex-valued functions f and g on a set Y , we shall, whenever convenient
to avoid confusion, denote their pointwise product on Y by f · g. If A is a subset
of Y , then, except where otherwise indicated, the characteristic function of A will
be designated by χA, and the restriction to A of a function F defined on Y will be
written F |A . The symbol C with a (possibly empty) set of subscripts will stand
for a constant which depends only on those subscripts, and which can change in
value from one occurrence to another.

2. Proof of Theorem 1.1

This section is devoted to the demonstration of Theorem 1.1, which will be
facilitated by the following lemmas.

Lemma 2.1. Suppose that the exponents p1, p2, and p3 satisfy (1.6) and (1.7), and
let p∗ = min (p3, 1) (hence, in particular `p

∗
(Z) ⊆ `1 (Z)). If Λ is a sequence of

complex numbers belonging to `p
∗
(Z), then SΛ is a bilinear mapping from `p1 (Z)×

`p2 (Z) to `p3 (Z) which satisfies

kSΛ (a, b)k`p3 (Z) ≤ kΛk`p∗ (Z) kak`p1 (Z) kbk`p2 (Z) ,(2.1)

for all a ∈ `p1 (Z) , and all b ∈ `p2 (Z) .

Proof. If either or both of the exponents p1, p2 is infinite, then it is easy to see that
(2.1 holds. So we now assume that the exponents p1, p2, and p3 are all finite, and
that a ∈ `p1 (Z), b ∈ `p2 (Z).. If p3 ≥ 1, then p∗ = 1. Moreover, it follows from
Minkowski’s inequality that( ∞X

m=−∞

Ã ∞X
n=−∞

|am+n| |bm−n| |Λn|
!p3)1/p3

≤
∞X

n=−∞

Ã ∞X
m=−∞

|am+n|p3 |bm−n| p3 |Λn|p3
!1/p3

=
∞X

n=−∞
|Λn|

Ã ∞X
m=−∞

|am+n|p3 |bm−n| p3
!1/p3

≤
Ã ∞X
n=−∞

|Λn|
!
kak`p1 (Z) kbk`p2 (Z) .
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If p3 < 1, then we have
∞X

m=−∞

Ã ∞X
n=−∞

|am+n| |bm−n| |Λn|
!p3

≤
∞X

m=−∞

∞X
n=−∞

|am+n|p3 |bm−n| p3 |Λn|p3

=
∞X

n=−∞
|Λn|p3

∞X
m=−∞

|am+n|p3 |bm−n| p3 .

An application of Hölder’s inequality (for the conjugate exponents p1/p3 and p2/p3)
to the sum on m in the last expression shows that

∞X
m=−∞

Ã ∞X
n=−∞

|am+n| |bm−n| |Λn|
!p3

≤
Ã ∞X
n=−∞

|Λn|p3
!
kakp3`p1 (Z) kbk

p3
`p2 (Z) ,

which completes the proof of the lemma, since p∗ = p3 because we are in the case
p3 < 1. ¤
It will now be convenient to introduce a few auxiliary notions. For each φ ∈

L1 (R) such that the support of φ is a subset of I =
∙
−1
4
,
1

4

¸
, we define the linear

mapping Pφ : CZ → CR by putting¡
Pφ
¡
{an}∞n=−∞

¢¢
(x) =

X
n∈Z

an φ (x− n) ,(2.2)

for all {an}∞n=−∞ ∈ CZ, and all x ∈ R.
When φ is specialized to be χI , the characteristic function of I, we shall write P
rather than Pφ. Clearly, if 0 < p ≤ ∞, and if φ ∈ L1 (R)

T
Lp (R) with support

contained in I, then°°Pφ ¡{an}∞n=−∞¢°°Lp(R) = kφkLp(R) °°{an}∞n=−∞°°`p(Z) ,(2.3)

for all {an}∞n=−∞ ∈ `p (Z) .
Notice also that if φ ∈ L1 (R) is a non-negative function with support contained in
I, if N ∈ N, if, for 1 ≤ j ≤ N , a(j) ≡

n
a
(j)
n

o∞
n=−∞

is a sequence of real numbers,

and if we put
a#n = sup

1≤j≤N
a(j)n , for all n ∈ Z,

then pointwise on R we have

(2.4) Pφ

³©
a#n
ª∞
n=−∞

´
= sup
1≤j≤N

Pφ

µn
a(j)n

o∞
n=−∞

¶
.

Definition 2.1. For K ∈ L1 (R) and n ∈ Z, we define the continuous function
Φn,K : R→ C by writing for each x ∈ R,

(2.5) Φn,K (x) = (χI (x))

Z (1/4)−|x|

(−1/4)+|x|
K (n+ y) dy.
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Lemma 2.2. Suppose that K ∈ L1 (R), k ∈ Z, and a and b are finitely supported
sequences defined on Z. Then if x ∈ Ik. we have

(2.6) (SK (Pa, Pb)) (x) =
∞X

n=−∞
ak+nbk−nΦn,K (x− k) .

Proof. Clearly

(SK (Pa, Pb)) (x) =
X
r,s∈Z

arbs
¡
SK

¡
χIr ,χIs

¢¢
(x)(2.7)

=
X
r,s∈Z

arbs

Z
(I+r−x)

T
(I−s+x)

K (y) dy.

Elementary considerations with endpoints show that for r ∈ Z, s ∈ Z, the closed
intervals (I + r − x) and (I − s+ x) will intersect in a set of positive Lebesgue
measure if and only if

(2.8) |r + s− 2x| < 1

2
.

Since x ∈ Ik, (2.8) implies that

|r + s− 2k| < 1,

whence
r + s = 2k.

Hence we can rewrite the last member of (2.7) by taking r = k + n, s = k − n and
letting n run through Z. This gives

(SK (Pa, Pb)) (x)(2.9)

=
∞X

n=−∞
ak+nbk−n

Z
(I+k+n−x)

T
(I−k+n+x)

K (y) dy

=
∞X

n=−∞
ak+nbk−n

Z
(I+k−x)

T
(I−k+x)

K (y + n) dy.

It is clear that if u ∈ I, then

(u+ I)
\
(−u+ I) =

∙
−1
4
+ |u| , 1

4
− |u|

¸
.

Taking u = (x− k), we can apply this to (2.9) to get (2.6). ¤

Lemma 2.3. Let N ∈ N, and suppose that {Kj}Nj=1 ⊆ L1 (R) is such that for
1 ≤ j ≤ N , and each n ∈ Z, the restriction (Kj |In ) belongs to C1 (In). For each
n ∈ Z, let

Λn = sup
©¯̄
(Kj |In )0 (x)

¯̄
: 1 ≤ j ≤ N , x ∈ In

ª
,

and assume that the sequence Λ ≡ {Λn}∞n=−∞ ∈ `1 (Z). Let³
S(N) (f, g)

´
(x) = sup

1≤j≤N

¯̄¡
SKj

(f, g)
¢
(x)
¯̄
,

for all f, g ∈ L2 (R) , and all x ∈ R,
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and put

³
S(N) (a, b)

´
(m) = sup

1≤j≤N

¯̄̄̄
¯
∞X

n=−∞
am+nbm−nKj (n)

¯̄̄̄
¯ ,

for all a, b ∈ `2 (Z) , and all m ∈ Z.

Further, let φ0 ≥ 0 and φ1 ≥ 0 be the functions defined on R by writing for each
u ∈ R,

φ0 (u) = 2

µ
1

4
− |u|

¶
χI (u) ;(2.10)

φ1 (u) =

µ
1

4
− |u|

¶2
χI (u) .(2.11)

Then for every pair a, b of finitely supported complex-valued sequences defined on
Z, the following inequality holds pointwise on R.

(2.12) Pφ0

³
S(N) (a, b)

´
≤ S(N) (Pa, Pb) + Pφ1 (SΛ (|a| , |b|)) .

Proof. First of all we observe that by (2.4) it suffices to establish (2.12) in the
special case N = 1. So without loss of generality we now replace {Kj}Nj=1 by a
single kernel K, and adjust the notation accordingly. Next observe that for any
sequence w ≡ {wn}∞n=−∞ of complex numbers, Pφ0 (w) vanishes on the complement
of the union of the intervals In, n ∈ Z. Consequently, we now fix k ∈ Z, and x ∈ Ik,
and we shall complete the proof by showing that (2.12) holds at x. For each n ∈ Z,
we have

Φn,K (x− k)(2.13)

= φ0 (x− k)K (n) +
Z 1

4−|x−k|

− 1
4+|x−k|

{K (y + n)−K (n)} dy.

Moreover, as in (1.5), the Fundamental Theorem of Calculus shows that for each
y ∈

£
−14 + |x− k| ,

1
4 − |x− k|

¤
, we have

(2.14) |K (y + n)−K (n)| ≤ An |y| .
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Using (2.13) and (2.14), we find that³
Pφ0

³
S(1) (a, b)

´´
(x)

=

¯̄̄̄
¯
∞X

n=−∞
ak+nbk−nK (n)φ0 (x− k)

¯̄̄̄
¯

≤
¯̄̄̄
¯
∞X

n=−∞
ak+nbk−nΦn,K (x− k)

¯̄̄̄
¯

+

¯̄̄̄
¯
∞X

n=−∞
ak+nbk−n (Φn,K (x− k)− φ0 (x− k)K (n))

¯̄̄̄
¯

≤
¯̄̄̄
¯
∞X

n=−∞
ak+nbk−nΦn,K (x− k)

¯̄̄̄
¯+

∞X
n=−∞

|ak+n| |bk−n|Λnφ1 (x− k)

=

¯̄̄̄
¯
∞X

n=−∞
ak+nbk−nΦn,K (x− k)

¯̄̄̄
¯+ ¡Pφ1 (SΛ (|a| , |b|))¢ (x) .

An appeal to Lemma 2.2 now completes the proof of Lemma 2.3. ¤

Proof of Theorem 1.1. We first observe that conclusion (i) is an immediate
consequence of Remark 1.1. In order to obtain conclusion (ii) temporarily fix an
arbitrary N ∈ N, and let a ≡ {an}∞n=−∞ , b ≡ {bn}∞n=−∞ be finitely supported
sequences of complex numbers. By the hypothesis in (1.8), followed by use of (2.3),
we have, in the notation of Lemma 2.3,°°°S(N) (Pa, Pb)°°°

Lp3 (R)
≤ C kPakLp1 (R) kPbkLp2 (R)(2.15)

= C2−1/p3 kak`p1 (Z) kbk`p2 (Z) .

It is evident from the definition in (2.11) that kφ1kLp3 (R) ≤
1

16
, and so from Lemma

2.1 and (2.3) we see that

(2.16)
°°Pφ1 (SΛ (|a| , |b|))°°Lp3 (R) ≤ kAk`p∗ (Z) kak`p1 (Z) kbk`p2 (Z)16

.

From (2.12) we infer that
°°Pφ0 ¡S(N) (a, b)¢°°Lp3 (R) = kφ0kLp3 (R) °°S(N) (a, b)°°`p3 (Z)

does not exceed°°S(N) (Pa, Pb)°°
Lp3 (R) +

°°Pφ1 (SΛ (|a| , |b|))°°Lp3 (R) , if 1 ≤ p3 ≤ ∞;³°°S(N) (Pa, Pb)°°p3
Lp3 (R) +

°°Pφ1 (SΛ (|a| , |b|))°°p3Lp3 (R)´1/p3 , if 0 < p3 < 1.

In view of (2.15) and (2.16) these two estimates show that there is a constant η
depending only on p1, p2, and {Kj}∞j=1. such that for arbitrary N ∈ N and for
arbitrary finitely supported sequences a ≡ {an}∞n=−∞ , b ≡ {bn}

∞
n=−∞,

(2.17)
°°°S(N) (a, b)°°°

`p3 (Z)
≤ η kak`p1 (Z) kbk`p2 (Z) .

Now let a ≡ {an}∞n=−∞ , b≡ {bn}
∞
n=−∞be arbitrary vectors in `

p1 (Z) and `p2 (Z),
respectively. For arbitrary L ∈ N, denote by ξL the characteristic function, defined
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on Z, of {k ∈ Z : |k| ≤ L}, and define the finitely supported sequences a(L) and b(L)
by writing for each n ∈ Z,

a(L)n = anξL (n) ;

b(L)n = bnξL (n) .

Observe that for N ∈ N, and each m ∈ Z, we have, for 1 ≤ j ≤ N ,

∞X
n=−∞

a
(L)
m+nb

(L)
m−nKj (n) =

min(−m+L,m+L)X
n=max(−m−L,m−L)

am+nbm−nKj (n) ,

and it follows that as L→∞,

(2.18) S(N)
³
a(L), b(L)

´
→ S(N) (a, b) pointwise on Z.

Consequently, (2.17) remains valid for all a ≡ {an}∞n=−∞ ∈ `p1 (Z), and all b
≡ {bn}∞n=−∞ ∈ `p2 (Z) (if p3 <∞, use Fatou’s Lemma together with (2.17) applied
to S(N)

¡
a(L), b(L)

¢
, and if p1 = p2 = p3 = ∞, this estimate follows directly from

(2.17) together with (2.18)). Thereafter, we can let N →∞ in the resulting version
of (2.17) in order to obtain (1.11) in similar fashion (using the monotone convergence
theorem when p3 <∞). ¤

We close this section with the following immediate corollary of Theorem 1.1.

Corollary 2.4. Under the hypotheses of Theorem 1.1, the constant η in (1.11)
has the following property: for all a ≡ {an}∞n=−∞ ∈ `p1 (Z), all b ≡ {bn}

∞
n=−∞ ∈

`p2 (Z), each j ∈ N, and each m ∈ Z,
∞X

n=−∞
|am+n| |bm−n| |Kj (n)| ≤ η kak`p1 (Z) kbk`p2 (Z) .

Proof. Define the sequences a∗ ≡ {a∗n}
∞
n=−∞ ∈ `p1 (Z), and b∗ ≡ {b∗n}

∞
n=−∞ ∈

`p2 (Z) by writing for each n ∈ Z,

a∗n = |an| (sgn (Kj (n−m))) ;
b∗n = |bn| .

Using (1.11) we see that

∞X
n=−∞

|am+n| |bm−n| |Kj (n)| =
∞X

n=−∞
a∗m+nb

∗
m−nKj (n)

≤
°°°S[{K(j)} (a

∗, b∗)
°°°
`p3 (Z)

≤ η kak`p1 (Z) kbk`p2 (Z) .

¤
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3. Measure-Theoretic Background Items

In this section we collect the necessary tools for the transference to measure
spaces of bisublinear maximal estimates and almost everywhere convergence of
bilinear mappings. For the almost everywhere convergence aspects, we shall require
the following multilinear version of the Banach Principle (a calculational proof of
this multilinear Banach Principle is indicated in the reasoning for Theorem 6 of
[18]; aternatively, its demonstration can be carried out directly by induction on m,
since for m = 1 the proposition asserts the standard Banach Principle for linear
operators).

Proposition 3.1. Let m ∈ N, and let (Γ,σ) and
¡
Ωj, µj

¢
, 1 ≤ j ≤ m, be arbitrary

measure spaces. Suppose that for 1 ≤ j ≤ m, pj is a positive real number, and Sj
is a dense subset of Lpj

¡
µj
¢
. Assume that {Tk}∞k=1 is a sequence of multilinear

mappings of
Qm
j=1 L

pj
¡
µj
¢
into the algebra A (σ), consisting of all complex-valued

σ-measurable functions on Γ (identified modulo equality σ-a.e. on Γ), and for all
(f1, f2, · · · , fm) ∈

Qm
j=1 L

pj
¡
µj
¢
and all x ∈ Γ, put

(T∗ (f1, f2, · · · , fm)) (x) = sup
k∈N

|(Tk (f1, f2, · · · , fm)) (x)| .

Suppose further that there are a constant B and a positive real number r such that

σ {x ∈ Γ : (T∗ (f1, f2, · · · , fm)) (x) > y} ≤

⎛⎝µB
y

¶ mY
j=1

kfjkLpj (µj)

⎞⎠r

,

for all positive real numbers y, and all (f1, f2, · · · , fm) ∈
mY
j=1

Lpj
¡
µj
¢
.

If for every (g1, g2, · · · , gm) ∈
Qm
j=1Sj,

lim
k
(Tk (g1, g2, · · · , gm)) (x)

exists in C for σ-almost all x ∈ Γ, then likewise for all (f1, f2, · · · , fm) ∈
Qm
j=1 L

pj
¡
µj
¢
,

lim
k
(Tk (f1, f2, · · · , fm)) (x)

exists in C for σ-almost all x ∈ Γ.
For the transference to measure spaces of strong type maximal estimates defined

by families of multilinear operators, we now recall key facts regarding the structure
of separation-preserving linear operators. (For the transference of strong type max-
imal estimates defined by sequences of linear operators, see, e.g., [1] and Theorem
(2.11) of [6].)

Definition 3.1. Let (Ω, µ) be an arbitrary measure space, and suppose that 0 < p <
∞. A continuous linear mapping S of Lp(µ) into Lp(µ) will be called separation-
preserving provided that whenever f ∈ Lp(µ), g ∈ Lp(µ) and the pointwise product
fg vanishes µ-a.e. on Ω, it follows that the pointwise product (Sf)(Sg) vanishes
µ-a.e. on Ω. A continuous linear mapping P of Lp(µ) into Lp(µ) will be called
positive provided that Pf ≥ 0 µ-a.e. on Ω whenever f ∈ Lp(µ) and f ≥ 0 µ-a.e.
on Ω.

In the literature separation-preserving operators are also called Lamperti or
disjointness-preserving (see [24] for a full account of their basic features). The
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proof of Theorem 3.1 in [24] is valid for (Ω, µ) and p as in Definition 3.1, and
furnishes the following characterization of the separation-preserving property.

Theorem 3.2. Suppose that (Ω, µ) is an arbitrary measure space, 0 < p < ∞,
and T is a continuous linear mapping of Lp(µ) into Lp(µ). Then T is separation-
preserving if and only if there is a continuous linear transformation |T | mapping
Lp(µ) into Lp(µ) such that |T | is positive, and
(3.1) |Tf | = |T | (|f |) , for all f ∈ Lp(µ).
If this is the case, then (3.1) characterizes |T | among the continuous linear map-
pings of Lp(µ) into Lp(µ) (we then call |T | the “linear modulus” of T ). Moreover,
|T | is separation-preserving, and satisfies
(3.2) |Tf | = | |T | (f) | , for all f ∈ Lp(µ).
(Hence for all f ∈ Lp(µ), kTfkLp(µ) = k |T | (|f |) kLp(µ) = k |T | (f) kLp(µ).)
Application of (3.1) to the functions f ≥ 0 in Lp(µ) yields the following obvious

corollary.

Corollary 3.3. If (Ω, µ) is an arbitrary measure space, 0 < p < ∞, and T is a
continuous linear mapping of Lp(µ) into Lp(µ) such that T is separation-preserving,
then T is positive if and only if T = |T |.
Since |T | is a positive operator on Lp(µ), |T | maps the class of real-valued func-

tions belonging to Lp(µ) into itself. The following basic corollary of Theorem 3.2
already indicates the utility of separation-preserving operators for the transference
of maximal estimates.

Corollary 3.4. Suppose that (Ω, µ) is an arbitrary measure space, 0 < p <∞, and
T is a continuous linear mapping of Lp(µ) into Lp(µ) such that T is separation-
preserving. Suppose further that N ∈ N, and that {fj}Nj=1 ⊆ Lp(µ), with fj real-
valued for 1 ≤ j ≤ N . Then |T |, the linear modulus of T , satisfies:

|T |
µ
sup

1≤j≤N
fj

¶
= sup

1≤j≤N
(|T | (fj)) ;(3.3)

|T |
µ
inf

1≤j≤N
fj

¶
= inf

1≤j≤N
(|T | (fj)) .(3.4)

Proof. The case N = 1 is trivial. In the case N = 2, we have:

sup
1≤j≤2

fj =
|f1 − f2|+ f1 + f2

2
;(3.5)

inf
1≤j≤2

fj =
f1 + f2 − |f1 − f2|

2
.(3.6)

Applying |T | to (3.5) and (3.6), we see with the aid of the general properties of |T |
asserted by (3.1) and (3.2) that

|T |
µ
sup
1≤j≤2

fj

¶
=

||T | f1 − |T | f2|+ |T | f1 + |T | f2
2

= sup
1≤j≤2

(|T | fj) ;(3.7)

|T |
µ
inf

1≤j≤2
fj

¶
=

|T | f1 + |T | f2 − ||T | f1 − |T | f2|
2

= inf
1≤j≤2

(|T | fj) .(3.8)

The desired conclusions in (3.3) and (3.4) follow by induction on N by utilizing the
case for N = 2 in (3.7) and (3.8). ¤
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Recall that by the closed graph theorem for F-spaces (see, eg., Theorem II.2.2
of [16]) if 0 < p <∞, µ is an arbitrary measure, and Q is a one-to-one continuous
linear mapping of Lp(µ) onto Lp(µ), then Q−1 is also a continuous linear mapping
of Lp(µ) onto Lp(µ). This fact is taken for granted in the following well-known
proposition relating the separation-preserving property and invertibility (for a proof
of this proposition, see, e.g., the demonstration of Scholium (2.3) in [3], where the
reasoning is valid for 0 < p <∞).
Proposition 3.5. Suppose that (Ω, µ) is an arbitrary measure space, 0 < p < ∞,
and T is a one-to-one continuous linear mapping of Lp(µ) onto Lp(µ) such that
T is separation-preserving. Then T−1 is separation-preserving, |T | is a one-to-one
continuous linear mapping of Lp(µ) onto Lp(µ), and

(3.9) |T |−1 =
¯̄
T−1

¯̄
.

Remark 3.1. It follows readily from (3.1) and (3.9) that if the hypotheses of Propo-
sition 3.5 hold, then for all n ∈ Z, Tn is separation-preserving, and

(3.10) |Tn| = |T |n .

We next describe two important classes of separation-preserving operators in the
setting of an arbitrary measure µ, and 0 < p < ∞. If S is a continuous, positive,
invertible linear mapping of Lp(µ) onto Lp(µ), then S is separation-preserving if
and only if S−1 is positive (the “only if” part follows from (3.9), while the proof
of Proposition 3.1 in [24] covers the “if” part in the generality stated here). The
second special class of separation-preserving operators is specified by the following
proposition, which follows directly from Corollary 2.1 of [29].

Proposition 3.6. Suppose that (Ω, µ) is an arbitrary measure space, 0 < p < ∞,
and p 6= 2. If U is a linear isometry of Lp(µ) into Lp(µ), then U is separation-
preserving.

As pointed out by C-H Kan ([24]), when we confine our attention to sigma-finite
measure spaces, the following major structural theorem for separation-preserving
operators results (see the reasoning used for Theorem 4.1 in [24], which relies on
adjustments to both the proof of Theorem 3.1 in [29] and the discussion on pages
453, 454 of [15]—this approach furnishes the range 0 < p <∞ stated here).

Proposition 3.7. Suppose that (Ω, µ) is a sigma-finite measure space, and 0 <
p < ∞. Denote by A (µ) the algebra under pointwise operations consisting of all
complex-valued µ-measurable functions on Ω (identified modulo equality µ-a.e. on
Ω), and let T be a linear, continuous, separation-preserving bijection of Lp(µ) onto
Lp(µ). Then there are sequences {hj}∞j=−∞ and {Φj}

∞
j=−∞ such that for each j ∈ Z:

(i) hj ∈ A (µ), with |hj | > 0 on Ω, and Φj is an algebra automorphism of A (µ)
onto A (µ); (ii) for every f ∈ Lp (µ), T jf is expressed by the pointwise product on
Ω of the functions hj and Φj (f); (iii) whenever {fk}∞k=1 ⊆ A (µ), f ∈ A (µ), and
fk → f µ-a.e. on Ω, it follows that as k →∞, Φj (fk)→ Φj (f) µ-a.e. on Ω. The
sequences {hj}∞j=−∞ and {Φj}∞j=−∞ are uniquely determined by these properties.

The sequences {hj}∞j=−∞ and {Φj}∞j=−∞ in Proposition 3.7 are said to be as-
sociated with T . It is easily seen that for each j ∈ Z, Φj (g) ≥ 0 for each g ≥ 0
belonging to A (µ), and that for f ∈ A (µ), and 0 < α <∞, we have

(3.11) |Φj (f)|α = Φj (|f |α) .
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Application of the group property T j+k = T jT k to the uniquely determined se-
quences {hj}∞j=−∞ and {Φj}∞j=−∞ associated with T furnishes the following rela-
tionships, valid for all j ∈ Z, k ∈ Z.

Φj+k (f) = Φj (Φk (f)) , for every f ∈ A (µ) .(3.12)

hj+k (x) = hj (x) (Φjhk) (x) , for µ-almost all x ∈ Ω.(3.13)

The following version of Corollary 3.1 in [29] will be useful when we use Lebesgue
space isometries to transfer the boundedness results of §§1,2 for discrete bisublinear
maximal operators.
Proposition 3.8. Suppose that (Ω, µ) is a sigma-finite measure space, and 0 <
α,β ≤ ∞, with α 6= β. Let U be a bijective linear mapping of A (µ) onto A (µ)
such that the following two conditions hold.

(i) Whenever {gk}∞k=1 ⊆ A (µ), g ∈ A (µ), and gk → g µ-a.e. on Ω, it follows
that as k → ∞, U (gk) → U (g) µ-a.e. on Ω, and U−1 (gk) → U −1 (g)
µ-a.e. on Ω.

(ii) The restrictions (U |Lα (µ) ) and
¡
U
¯̄
Lβ (µ)

¢
are surjective linear isome-

tries of Lα (µ) and Lβ (µ), respectively.
Then there are unique sequences {hj}∞j=−∞ and {Φj}∞j=−∞ such that for each

j ∈ Z:
(j) hj ∈ A (µ), with |hj | = 1 on Ω, and Φj is an algebra automorphism of

A (µ) onto A (µ);
(jj) for every f ∈ A (µ), U jf is expressed by the pointwise product on Ω of the

functions hj and Φj (f);
(jjj) whenever {fk}∞k=1 ⊆ A (µ), f ∈ A (µ), and fk → f µ-a.e. on Ω, it follows

that as k →∞, Φj (fk)→ Φj (f) µ-a.e. on Ω.
This unique sequence {Φj}∞j=−∞ has the property that

µ (E) =

Z
Ω

Φj (χE) dµ,(3.14)

for each j ∈ Z, and each µ-measurable set E.
In consequence of the foregoing, the restriction (U |Lp (µ) ) is a surjective linear
isometry of Lp (µ), for 0 < p ≤ ∞.

Proof. The contents of this proposition are well-known, and so we shall merely
outline its proof. The existence assertions when both α and β are finite can be seen
from the discussion of Corollary 3.1 in [29]. So we take up the existence asserions for
the case where one of α,β equals ∞. For sake of definiteness, suppose that β =∞
and 0 < α < ∞. Since the Gelfand representation of the commutative C∗-algebra
L∞ (µ) identifies L∞ (µ) with the Banach algebra C (∆) of all continuous complex-
valued functions on a compact Hausdorff space ∆ (see, e.g., Theorem (C.28) in
[21]), we can apply the Banach-Stone theorem’s characterization for the surjective
linear isometries of C (∆) (see, e.g., Theorem VI.2.1 of [12]) to infer that for each
j ∈ Z, ¡

U j |L∞ (µ)
¢
(f) = Hj ·Ψj (f) , for all f ∈ L∞ (µ) ,

where Hj ∈ A (µ), with |Hj | = 1 on Ω, and Ψj is a norm-preserving algebra
automorphism of L∞ (µ) onto L∞ (µ). Using this, we can invoke the continu-
ity of U |Lα (µ) (or, alternatively the hypothesis in (i)) to infer that U |Lα (µ)
is separation- preserving (even if α = 2). We can thus associate with U |Lα (µ)
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the sequences {hj}∞j=−∞ and {Φj}∞j=−∞ furnished by Proposition 3.7. If j ∈ Z,
and µ (E) < ∞, then Φj (χE) and Ψj (χE) are characteristic functions which the
equality

(3.15) hjΦj (χE) = HjΨj (χE)

shows must have the same set of zeroes. Hence Φj (χE) = Ψj (χE). By taking
absolute values on both sides of (3.15) we can now infer that for j ∈ Z, and
µ (E) <∞,

|hj |Φj (χE) = Φj (χE) .
Since µ is sigma-finite, and Φj preserves µ-a.e. convergence on Ω, this implies that
for each j ∈ Z, |hj | = Φj (1) = 1 on Ω. The sigma-finiteness of µ implies that each
f ∈ A (µ) is the µ-a.e. limit on Ω of a sequence of µ-integrable simple functions,
and so the desired conclusion in (jj) follows from the fact that¡

U j |Lα (µ)
¢
(f) = hj · Φj (f) , for all f ∈ Lα (µ) ,

since Φj preserves µ-a.e. convergence on Ω, and by our hypothesis in (i) so does U j .
The desired conclusion in (3.14) is readily seen when µ (E) <∞, since

¡
U j |Lα (µ)

¢
is an isometry of Lα (µ), and |hj | = 1 on Ω. The sigma-finiteness of µ can then be
used to remove the requirement that the measure of E is finite, and complete the
proof of the existence assertions.
Turning now to the proof of the remaining conclusions for the general case of α

and β, and putting δ = min {α,β}, we obtain the uniqueness assertion of the present
proposition immediately by applying to

¡
U j
¯̄
Lδ (µ)

¢
the uniqueness conclusion in

Theorem 3.7. For 0 < p <∞, it is clear from conclusion (j) and (3.14) that for every
µ-integrable simple function f , kUfkLp(µ) =

°°U−1f°°
Lp(µ)

= kfkLp(µ), and so for
0 < p <∞, the last conclusion of the present proposition follows by the density of
the µ-integrable simple functions in Lp (µ) , used in conjunction with hypothesis (i).
To show that (U |L∞ (µ)) is a surjective isometry of L∞ (µ) it suffices to observe
that for j ∈ Z, and F ∈ L∞ (µ), we can infer with the aid of (j), (3.11), and the
positivity of Φj on A (µ) that¯̄

U jF
¯̄
= |Φj (F )| = Φj (|F |) ≤ kFkL∞(µ) ,

and so
°°U jF°°

L∞(µ)
≤ kFkL∞(µ). ¤

Remark 3.2. (i) As has already been indicated above, the unique sequences {hj}∞j=−∞
and {Φj}∞j=−∞ furnished by the conclusion of Proposition 3.8 clearly coincide with
the unique pair of sequences associated by Proposition 3.7 with (U |Lp (µ) ) when-
ever 0 < p < ∞, and so, without ambiguity, we shall expand our terminology by
referring to these sequences {hj}∞j=−∞ and {Φj}∞j=−∞ as being associated with the
bijective linear mapping U of A (µ) onto A (µ) in the hypotheses of Proposition
3.8. In particular, the sequences {hj}∞j=−∞ and {Φj}∞j=−∞ associated with U sat-
isfy (3.11) through (3.13). (ii) Examples of a bijective linear mapping U of A (µ)
onto A (µ) associated by Proposition 3.8 with a sequence {hj}∞j=−∞ of non-constant
functions can be formed by starting with an invertible measure-preserving mapping
ψ of (Ω, µ) and a measurable function u : Ω→ T, and then setting

(Uf) (x) ≡ u (ψ (x))
u (x)

f (ψ (x)) , for all f ∈ A (µ) .
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When µ is taken to be Haar measure on a compact abelian group having archimedean
ordered dual, then examples of U associated with non-trivial {hj}∞j=−∞ can be fash-
ioned from the “cocycles” arising in Helson’s theory of generalized analyticity and
invariant subspaces (for this circle of ideas, see, e.g., [4], [19], and [20]).

The following corollary will be convenient for applying Proposition 3.8 to the
transference of maximal operators affiliated with sequences of bilinear operators.

Corollary 3.9. Assume the hypotheses of Proposition 3.8, and let {hj}∞j=−∞ and
{Φj}∞j=−∞ be the sequences thereby associated with U . Define the linear bijection
V of A (µ) onto A (µ) by writing

(3.16) V (f) = h1 U (f) = h
2
1Φ1 (f) , for all f ∈ A (µ) .

Then V also satisfies the hypotheses of Proposition 3.8, which associates with V
the sequences

©
h2j
ª∞
j=−∞ and {Φj}∞j=−∞. For all j ∈ Z, m ∈ Z, n ∈ Z, f ∈ A (µ),

g ∈ A (µ), we have, pointwise on Ω,

(3.17) V j ((Umf) · (Ung)) =
¡
U j+mf

¢
·
¡
U j+ng

¢
.

Proof. Since |h1| = 1 on Ω, it is clear that multiplication by h1 on A (µ) (respec-
tively on Lα (µ), Lβ (µ)) is a linear bijection of A (µ) (respectively, a surjective
linear isometry). Hence V = h1U has these mapping properties as well. Moreover,
for all f ∈ A (µ)

V −1f = U−1
µ
f

h1

¶
.

These observations show that V satisfies the hypotheses of Proposition 3.8. With
the aid of (3.12) (applied to U and to V ), together with the left and right sides of
(3.16), it is readily verified that {Φj}∞j=−∞ is also the sequence ofA (µ)-automorphisms
associated with V . Similar considerations that apply (3.13) to U and to V now show
that

©
h2j
ª∞
j=−∞ is the sequence of unimodular functions associated with V . For all

j ∈ Z, m ∈ Z, n ∈ Z, f ∈ A (µ), g ∈ A (µ), we have, pointwise on Ω,

V j ((Umf) · (Ung)) = h2j · Φj (Umf) · Φj (Ung)
= h2j · Φj (hmΦmf) · Φj (hnΦng)
= (hjΦj (hm)Φj+mf) (hjΦj (hn)Φj+ng) .

Using (3.13) on the right establishes (3.17) and thereby completes the proof of
Corollary 3.9. ¤

4. Transference of Maximal Estimates by Isometries

The following theorem uses isometries to transfer to sigma-finite measure spaces
the strong type bounds for discrete bisublinear maximal operators.

Theorem 4.1. Suppose that the exponents p1, p2, and p3 satisfy the conditions:

0 < p1, p2 ≤ ∞;(4.1)

1

p1
+
1

p2
=
1

p3
;(4.2)

0 < p3 <∞.(4.3)
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For each j ∈ N, let Λ(j) ≡
n
Λ
(j)
n

o∞
n=−∞

be a finitely supported sequence of com-

plex numbers, and suppose that there is a constant c such that, in the notation of
Definition 1.2, the bisublinear maximal operator S[{Λ(j)} satisfies°°°S[{Λ(j)} (a, b)°°°`p3 (Z) ≤ c kak`p1 (Z) kbk`p2 (Z) ,(4.4)

for all a ∈ `p1 , and all b ∈ `p2 (Z) .

Let (Ω, µ) be a sigma-finite measure space, and let U be a bijective linear mapping
of A (µ) onto A (µ) such that the following two conditions hold:

(i) Whenever {gk}∞k=1 ⊆ A (µ), g ∈ A (µ), and gk → g µ-a.e. on Ω, it follows
that as k → ∞, U (gk) → U (g) µ-a.e. on Ω, and U−1 (gk) → U −1 (g)
µ-a.e. on Ω.

(ii) For ν = 1, 2, 3, the restriction (U |Lpν (µ)) is a surjective linear isometry
of Lpν (µ).

Define the bisublinear maximal function M on Lp1 (µ) × Lp2 (µ) by writing for
all f ∈ Lp1 (µ), all g ∈ Lp2 (µ), and all x ∈ Ω,

(4.5) (M (f, g)) (x) = sup
j∈N

¯̄̄̄
¯
∞X

n=−∞
(Unf) (x)

¡
U−ng

¢
(x)Λ(j)n

¯̄̄̄
¯ .

Then the constant c in (4.4) also satisfies

kM (f, g)kLp3 (µ) ≤ c kfkLp1 (µ) kgkLp2 (µ) ,(4.6)

for all f ∈ Lp1 (µ) , and all g ∈ Lp2 (µ) .

Proof. Since p3 <∞, at most one of the exponents p1, p2 is∞. It is thus clear from
the current hypotheses on the exponents p1, p2, and p3 that at least two of them
are distinct. Consequently the present setup satisfies the hypotheses of Proposition
3.8 and of Corollary 3.9 (whose notation we now follow). Temporarily fix J ∈ N,
and defineM(J) on Lp1 (µ)×Lp2 (µ) by writing for all f ∈ Lp1 (µ), all g ∈ Lp2 (µ),
and all x ∈ Ω,

³
M(J) (f, g)

´
(x) = sup

1≤j≤J

¯̄̄̄
¯
∞X

n=−∞
(Unf) (x)

¡
U−ng

¢
(x)Λ(j)n

¯̄̄̄
¯ .

Let f ∈ Lp1 (µ), g ∈ Lp2 (µ), and consider the transfomation V of (3.16). It is clear
from (3.1), Corollary 3.4, and (3.17) that for each m ∈ Z, the transformation V m
satisfies the following equality µ-a.e. on Ω:¯̄̄

(V m |Lp3 (µ))
³
M(J) (f, g)

´¯̄̄
(4.7)

sup
1≤j≤J

¯̄̄̄
¯
∞X

n=−∞

¡
Um+nf

¢ ¡
Um−ng

¢
Λ(j)n

¯̄̄̄
¯ .
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Since (V m |Lp3 (µ) ) is isometric, we see from (4.7) that the following holds for an
arbitrary positive integer L.

(2L+ 1)
°°°M(J) (f, g)

°°°p3
Lp3 (µ)

(4.8)

=
LX

m=−L

°°°°° sup1≤j≤J

¯̄̄̄
¯
∞X

n=−∞

¡
Um+nf

¢ ¡
Um−ng

¢
Λ(j)n

¯̄̄̄
¯
°°°°°
p3

Lp3 (µ)

=

Z
Ω

LX
m=−L

sup
1≤j≤J

¯̄̄̄
¯
∞X

n=−∞

¡
Um+nf

¢ ¡
Um−ng

¢
Λ(j)n

¯̄̄̄
¯
p3

dµ.

Let NJ be the least positive integer such that whenever 1 ≤ j ≤ J , and n ∈ Z with
|n| > NJ , we have

Λ(j)n = 0.

After denoting by ξ the characteristic function, defined on Z, of {k ∈ Z : |k| ≤ L+NJ},
we rewrite (4.8) in the form

(2L+ 1)
°°°M(J) (f, g)

°°°p3
Lp3 (µ)

(4.9)

=

Z
Ω

LX
m=−L

sup
1≤j≤J

¯̄̄̄
¯
∞X

n=−∞
ξ (m+ n)

¡
Um+nf

¢
ξ (m− n)

¡
Um−ng

¢
Λ(j)n

¯̄̄̄
¯
p3

dµ.

We first complete the proof for the case in which both p1 and p2 are finite. Using
the hypothesis in (4.4) to estimate pointwise on Ω the size of the integrand on the
right of (4.9), we find that

LX
m=−L

sup
1≤j≤J

¯̄̄̄
¯
∞X

n=−∞
ξ (m+ n)

¡
Um+nf

¢
ξ (m− n)

¡
Um−ng

¢
Λ(j)n

¯̄̄̄
¯
p3

≤ cp3

Ã
L+NJX

n=−L−NJ

|Unf |p1
!p3/p1

·
Ã

L+NJX
n=−L−NJ

|Ung|p2
!p3/p2

.

Using this estimate inside the integral on the right of (4.9), we deduce that

(2L+ 1)
°°°M(J) (f, g)

°°°p3
Lp3 (µ)

≤ cp3
Z
Ω

Ã
L+NJX

n=−L−NJ

|Unf |p1
!p3/p1⎛⎝ L+NJX

j=−L−NJ

|Ung|p2
⎞⎠p3/p2

dµ.

After applying Hölder’s inequality on the right for the pair of conjugate indices
(p1/p3) and (p2/p3), and then taking into account that (U |Lp1 (µ) ), (U |Lp2 (µ))
are surjective isometries, we see that°°°M(J) (f, g)

°°°p3
Lp3 (µ)

(4.10)

≤ 2L+ 2NJ + 1

2L+ 1
cp3 kfkp3Lp1 (µ) kgk

p3
Lp2 (µ) .
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While keeping J fixed, we now let L → ∞ on the right. This shows that for each
J ∈ N, all f ∈ Lp1 (µ), and all g ∈ Lp2 (µ),

(4.11)
°°°M(J) (f, g)

°°°p3
Lp3 (µ)

≤ cp3 kfkp3Lp1 (µ) kgk
p3
Lp2 (µ) .

We can now let J →∞ in (4.11) to obtain (4.6) by monotone convergence.
In the remaining case, precisely one of the exponents p1, p2 is ∞ (for sake of

definiteness, say p2= ∞, which implies that p3 = p1), and then by making obvious
corresponding adjustments to the reasoning subsequent to (4.9) we arrive at the
following substitute estimate for (4.10).°°°M(J) (f, g)

°°°p3
Lp3 (µ)

≤ 2L+ 2NJ + 1

2L+ 1
cp3 kfkp1Lp1 (µ)

°°°°° sup
|n|≤L+NJ

|Ung|
°°°°°
p3

L∞(µ)

.

Since for each n ∈ Z, (Un |L∞ (µ) ) is isometric, we have pointwise µ-a.e. on Ω,

|Ung| ≤ kUngkL∞(µ) = kgkL∞(µ) ,

and so °°°M(J) (f, g)
°°°p3
Lp3 (µ)

≤ 2L+ 2NJ + 1

2L+ 1
cp3 kfkp1Lp1 (µ) kgk

p3
L∞(µ) .

Since p3 = p1 in the case at hand, the proof of (4.6) in this case can now be
completed as before by first letting L→∞ and then letting J →∞ . ¤

Upon specializing the sequence of discrete kernels
©
Λ(j)

ª∞
j=1

in Theorem 4.1 by
writing for each j ∈ N, and each n ∈ Z,

Λ(j)n =

½
n−1, if 0 < |n| ≤ j;
0, otherwise.

we arrive at the following transferred version of the discrete bisublinear maximal
Hilbert transform in Theorem 1.4 .

Theorem 4.2. Suppose that the exponents p1, p2, and p3 satisfy the conditions
(1.12), (1.13), and (1.14). Let (Ω, µ) be a sigma-finite measure space, and let U be
a bijective linear mapping of A (µ) onto A (µ) such that the conditions (i) and (ii) in
Theorem 4.1 hold. Define the bisublinear maximal function HU on Lp1 (µ)×Lp2 (µ)
by writing for all f ∈ Lp1 (µ), all g ∈ Lp2 (µ), and all x ∈ Ω,

(HU (f, g)) (x) = sup
j∈N

¯̄̄̄
¯̄ X
0<|n|≤j

{(Unf) (x)} {(U−ng) (x)}
n

¯̄̄̄
¯̄ .

Then

kHU (f, g)kLp3 (µ) ≤ Ap1,p2 kfkLp1 (µ) kgkLp2 (µ) ,
for all f ∈ Lp1 (µ) , and all g ∈ Lp2 (µ) ,

where Ap1,p2 is the constant depending only on p1 and p2 which appears in (1.22).
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Similarly, after specifying the sequence of discrete kernels
©
Λ(j)

ª∞
j=1

in Theorem
4.1 by writing for each j ∈ N, and each n ∈ Z,

Λ(j)n =

½
(2j + 1)

−1 , if |n| ≤ j;
0, otherwise.

,

we can obtain the following transferred version of the discrete bisublinear Hardy-
Littlewood maximal operator in Theorem 1.5.

Theorem 4.3. Suppose that the exponents p1, p2, and p3 satisfy the conditions
(1.17) and (1.18). Let (Ω, µ) be a sigma-finite measure space, and let U be a
bijective linear mapping of A (µ) onto A (µ) such that the conditions (i) and (ii) in
Theorem 4.1 hold. Define the bisublinear maximal functionMU on Lp1 (µ)×Lp2 (µ)
by writing for all f ∈ Lp1 (µ), all g ∈ Lp2 (µ), and all x ∈ Ω,

(4.12) (MU (f, g)) (x) = sup
j∈N

1

2j + 1

jX
n=−j

|(Unf) (x)|
¯̄¡
U−ng

¢
(x)
¯̄
.

Then

kMU (f, g)kLp3 (µ) ≤ Bp1,p2 kfkLp1 (µ) kgkLp2 (µ) ,(4.13)

for all f ∈ Lp1 (µ) , and all g ∈ Lp2 (µ) ,

where Bp1,p2 is the constant depending only on p1 and p2 which appears in (1.24).

Proof. Since the absolute value signs on the right of (4.12) occur inside the sum-
mation sign, the form ofMU does not , strictly speaking, conform to the definition
of M in Theorem 4.1. This detail is easily attended to, since the automorphism
Φ1 of A (µ) which Proposition 3.8 associates with U also satisfies the hypotheses
of Theorem 4.1 in place of U . In order to obtain the present theorem for MU as
defined in (4.12), we need only apply Theorem 4.1 to Φ1 in place of U and to |f |
and |g| for arbitrary f ∈ Lp1 (µ) and arbitrary g ∈ Lp2 (µ). ¤

For the transference of multisublinear versions of the Hardy-Littlewood maxi-
mal operator to a discrete dynamical system via the system’s measure-preserving
transformation, see Proposition 14.1 in [14]. In the case of the discrete bisublinear
Hardy-Littlewood maximal operator, such transference to dynamical systems au-
tomatically furnishes some expansion to the range of exponents for which the a.e.
convergence in Bourgain’s double recurrence theorem holds, and we now briefly
describe this state of affairs. In [8] J. Bourgain established the following double
recurrence theorem (see the discussion on pg. 140 of [8] regarding the a.e. conver-
gence for L2-functions quoted here).

Theorem 4.4. Suppose that (Ω, µ) is a measure space such that µ (Ω) < ∞, and
T is an invertible measure-preserving transformation of Ω onto Ω. Then for all
f ∈ L2 (µ), and all g ∈ L2 (µ),

(4.14)
1

N

NX
n=1

f (Tnx) · g
¡
T−nx

¢
converges for µ-almost all x ∈ Ω, as N →∞.
In view of the Banach Principle in Proposition 3.1 and the strong type bound-

edness of the discrete bisublinear Hardy-Littlewood maximal operator transferred
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via T , it is clear that the almost everywhere convergence of the bilinear ergodic
averages in (4.14) will hold whenever f ∈ Lp1 (µ), and g ∈ Lp2 (µ), provided

1 < p1, p2 <∞;(4.15)

1

p1
+
1

p2
<
3

2
.(4.16)

Example 4.1. Suppose that (4.15) and (4.16) hold. Let m ∈ N, let µ be Lebesgue
measure of Rm, and suppose that U is an orthogonal linear transformation of Rm
onto Rm. Since |det (U)| = 1, U is an invertible measure-preserving transformation
of (Rm, µ). For each k ∈ N, denote by Bk the closed k-ball {x ∈ Rm : kxkRm ≤ k}.
Then (U |Bk ) is an invertible measure-preserving transformation of Bk. Since µ (Bk) <
∞, we can apply the preceding observation to see that if f ∈ Lp1 (Rm, µ) and
g ∈ Lp2 (Rm, µ), then the bilinear ergodic averages

1

N

NX
n=1

f (Unx) · g
¡
U−nx

¢
converge for µ-almost all x in each Bk, and hence converge for µ-almost all x ∈ Rm.

5. An Application to a.e. Convergence of the Transferred Bilinear
Hilbert Averages

The following theorem applies Theorem 4.2 to infer almost everywhere conver-
gence for the bilinear Hilbert averages induced by translations of locally compact
abelian groups.
Theorem 5.1. Let λ be Haar measure for a locally compact abelian group G, and
let τ ∈ G. Denote by Uτ the translation operator corresponding to τ that acts
on the algebra A (λ), consisting of all complex-valued λ-measurable functions on G
(identified modulo equality λ-a.e. on G). Suppose that the exponents p1, p2, and
p3 satisfy the conditions

1 < p1, p2 <∞;(5.1)

1

p1
+
1

p2
=
1

p3
<
3

2
.(5.2)

Define the bisublinear mapping HG,τ on Lp1 (λ) × Lp2 (λ) by writing for all f ∈
Lp1 (λ), all g ∈ Lp2 (λ), and all x ∈ G,

(5.3) (HG,τ (f, g)) (x) = sup
N∈N

¯̄̄̄
¯̄ X
0<|n|≤N

{(Unτ f) (x)} {(U−nτ g) (x)}
n

¯̄̄̄
¯̄ .

Then for all f ∈ Lp1 (λ), and all g ∈ Lp2 (λ), we have:
(i) kHG,τ (f, g)kLp3 (λ) ≤ Ap1,p2 kfkLp1 (λ) kgkLp2 (λ), where Ap1,p2 is the con-

stant depending only on p1 and p2 that occurs in (1.22);
(ii) the sequence of functions⎧⎨⎩ X

0<|n|≤N

(Unτ f) · (U−nτ g)

n

⎫⎬⎭
∞

N=1

converges λ-a.e. on G to a function HG,τ (f, g) ∈ Lp3 (λ) such that
kHG,τ (f, g)kLp3 (λ) ≤ Ap1,p2 kfkLp1 (λ) kgkLp2 (λ) .
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Before taking up the proof of Theorem 5.1, we make a few simplifying obser-
vations which, in particular, furnish a reduction to the case of sigma-finite λ, as
required for satisfying the hypotheses of Theorem 4.2. We begin this process by
recalling a few items from the structure theory of locally compact groups.

Definition 5.1. A topological group G is said to be compactly generated provided
there is a compact subset F of G such that G coincides with the abstract subgroup
generated by F .

Notice that a compactly generated group is automatically sigma-compact. The
following standard item (see, e.g., Theorem (5.14) in [21]) fits compactly generated
groups into analysis on locally compact groups.

Proposition 5.2. Let F be a compact subset of a locally compact group G. Then
there is an open and closed compactly generated subgroup of G that contains F .
We remark that the existence of an open sigma-compact subgroup of the arbi-

trary locally compact group G can be used to show that every subset of G which
has finite left Haar measure is sigma-bounded (that is, is a subset of the union
of a sequence of compact sets). The following item from the structure theory of
locally compact abelian groups (Theorem (9.8) in [21]) will play a central role in
establishing Theorem 5.1 in the full generality stated.

Proposition 5.3. Every compactly generated locally compact abelian group G is
topologically isomorphic with a direct product

(5.4) Ra × Zb ×K,
where a and b are non-negative integers, and K is a compact abelian group.

We claim that the proof of Theorem 5.1 can be reduced to the special case in
which G is compactly generated. To establish the claim, assume that Theorem 5.1
is known to be valid when G is compactly generated, and consider the general case
where G is an arbitrary locally compact abelian group. Let f ∈ Lp1 (µ), g ∈ Lp2 (µ).
Then there is a sequence {Fk}∞k=1 of compact subsets of G such that

(5.5) {t ∈ G : f (t) 6= 0} ⊆
∞[
k=1

Fk.

Consequently we can apply Proposition 5.2 to obtain an increasing sequence {Gk}∞k=1
consisting of open and closed compactly generated subgroups of G, and such that
for each k ∈ N,

(5.6) Fk
[
{τ} ⊆ Gk.

(Since each subgroup Gk is open, the Haar measure λ of G, when restricted to Gk,
serves as Haar measure for Gk.) For each k ∈ N, we can temporarily confine our
attention to Gk, and there apply the special case of Theorem 5.1 to infer that°°°°°° supN∈N

¯̄̄̄
¯̄ X
0<|n|≤N

(Unτ f) · (U−nτ g)

n

¯̄̄̄
¯̄
°°°°°°
Lp3 (Gk,λ)

(5.7)

≤ Ap1,p2 kfkLp1 (G,λ) kgkLp2 (G,λ) .

Observe that for all x ∈ G\(
S∞
k=1Gk), and all n ∈ Z, we have (Unτ f) (x) = 0. Hence

we can let k →∞ in (5.7) to deduce by monotone convergence that the assertion in
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Theorem 5.1-(i) holds. The assertion in Theorem 5.1-(ii) can be justified by using
the sequence {Gk}∞k=1 to argue similarly from the special case of the theorem.
Proof of Theorem 5.1. As has just been described, we can (and will) assume
without loss of generality that G is compactly generated. Since, in particular, G
is sigma-compact, we can apply Theorem 4.2 directly to (G,λ) in order to obtain
conclusion (i) of the theorem.
So it now remains only to establish the λ-a.e. convergence of the bilinear Hilbert

averages, as asserted in conclusion (ii) of the theorem. For this purpose we proceed
to show that the a.e.-convergence hypothesis of the multilinear Banach Principle
(Proposition 3.1) is satisfied here. By Proposition 5.3, we can write G in the form
(5.4). Thus, in the sense of integration over locally compact spaces (as treated by
Chapter III of [21]), λ is the product measure of the Haar measures λ1, λ2, λ3 of
Ra, Zb, and K, respectively. Our method of proof will exhaust the separate cases
which arise according to the possible combinations of values for the non-negative
integers a and b in (5.4).
Case I (a = b = 0). In this case G can be identified with the compact abelian
group K. Since it follows with the aid of the Stone-Weierstrass Theorem that the
trigonometric polynomials on K (that is, the finite linear combinations of contin-
uous characters of K) are dense in Lp (λ) for 0 < p < ∞, it suffices for Case I to
observe that for all continuous characters γ1, γ2 of K, and for every x ∈ K, the
sequence ⎧⎨⎩ X

0<|n|≤N

((Unτ γ1) (x)) ((U
−n
τ γ2) (x))

n

⎫⎬⎭
∞

N=1

=

⎧⎨⎩γ1 (x) γ2 (x)
X

0<|n|≤N

³
γ1 (τ) γ2 (τ)

´n
n

⎫⎬⎭
∞

N=1

converges. The convergence of the sequence on the right is elementary, since the
function φ of bounded variation on the circle specified by φ (1) = 0, and

φ
¡
eit
¢
= i (π − t) , for 0 < t < 2π,

has Fourier series

(5.8)
∞X

n=−∞
n6=0

zn

n
,

which converges to φ (z) at every z ∈ T.
Case II (a = 0, b > 0). In this case G can be identified with the direct product
Zb ×K. Put

τ = (u, v) ∈ Zb ×K,
and for m ∈ Zb, let ηm denote the characteristic function, defined on Zb, of the
singleton set consisting of m. For 0 < p < ∞ we can take as a dense subset of
Lp (λ) the linear span of all functions having the form

(x, y) ∈ Zb ×K 7→ ηm (x) γ (y) ,

where m ∈ Zb, and γ is a continuous character of K. So for Case II it suffices to
show that if m1 ∈ Zb, m2 ∈ Zb, γ1 and γ2 are continuous characters of K, and
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(x, y) ∈ Zb ×K, then the sequence

(5.9)

⎧⎨⎩γ1 (y) γ2 (y)
X

0<|n|≤N

ηm1
(x+ nu) ηm2

(x− nu)
³
γ1 (v) γ2 (v)

´n
n

⎫⎬⎭
∞

N=1

is convergent. This convergence can readily be see as follows. If u = 0, then the
convergence is immediate by virtue of the above-noted pointwise convergence on T
of the Fourier series in (5.8). If u 6= 0, then ηm1

(x+ nu) = 0 as soon as

|n| kukZb − kxkZb > km1kZb ,

and so there is N0 ∈ N such that the sequence in (5.9) has the same value for all
N ≥ N0.
Case III (a > 0, b = 0). In this case G can be identified with the direct product
Ra×K, and for 0 < p <∞ we can take as a dense subset of Lp (λ) the linear span
of all functions having the form

(x, y) ∈ Ra ×K 7→ ψ (x) γ (y) ,

where ψ : Ra → C is a continuous function with compact support, and γ is a
continuous character of K. The proof for Case III can be carried out in analogy
with the proof for Case II by replacing the functions ηm (m ∈ Zb) in the reasoning
for Case II with the continuous compactly supported functions ψ on Ra.
Case IV (a > 0, b > 0). In this case G is identified with the direct product
Ra×Zb×K, and the details of the proof are similar to those in the preceding cases.
¤
Remark 5.1. Theorem 5.1 does not have a valid analogue for the one-sided bilinear
Hilbert averages induced by a translation operator because of the following funda-
mental feature of ergodic theory (shown independently in [25] and as Corollary 2 of
[23] ).

Example 5.1. Whenever we are given an invertible ergodic measure-preserving
transformation ζ of a nonatomic probability space (Ω, µ), there is always an f0 ∈
L∞ (µ) with

R
Ω
f0 dµ = 0 such that

sup
N∈N

¯̄̄̄
¯
NX
n=1

f0 (ζ
n (x))

n

¯̄̄̄
¯ =∞, for µ-almost all x ∈ Ω.

Example 5.1 obviously extends to the one-sided bilinear Hilbert averages in the
ergodic theory setting, since we can let g0 ∈ L∞ (µ) be the function identically equal
to 1 on Ω in order to conclude that

(5.10) sup
N∈N

¯̄̄̄
¯
NX
n=1

f0 (ζ
n (x)) g0

¡
ζ−n (x)

¢
n

¯̄̄̄
¯ =∞, for µ-almost all x ∈ Ω.

In particular, if we take Ω to be T with its normalized Haar measure λ, we can
satisfy the hypotheses of Example 5.1 by choosing an arbitrary irrational number
s, putting τ = e2πis, and then taking translation of T by τ as the ergodic transfor-
mation ζ. Clearly, the hypotheses of Theorem 5.1 on G, λ, and τ are also satisfied
under these circumstances, but (5.10) shows that the analogues of Theorem 5.1-
(i),(ii) for the one-sided bilinear Hilbert averages can fail to hold.
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6. Transference of Bisublinear Maximal Estimates from lca Groups

In this last section, we develop a general approach to the transference of bisublin-
ear maximal estimates from arbitrary locally compact abelian groups to Lebesgue
spaces of abstract sigma-finite measures. We begin by introducing the requisite
machinery and notation, which will be in effect henceforth. The exponents p1, p2,
and p3 will satisfy

1 ≤ p1, p2 <∞;(6.1)

1

p1
+
1

p2
=
1

p3
.(6.2)

G will be an arbitrary locally compact abelian group with Haar measure λ. We
generalize Definition 1.1 to the setting of G as follows.
Definition 6.1. For K ∈ L1 (G), we shall denote by BK the bilinear mapping of
L2 (G)× L2 (G) into L1 (G) specified by

(BK (f, g)) (x) =

Z
G
f (x+ y) g (x− y)K (y) dλ (y) .

Given a sequence {Kj}∞j=1 ⊆ L1 (G), the corresponding bisublinear maximal operator
will be symbolized by B[{Kj}. Thus, for f, g ∈ L

2 (G), and almost all x ∈ G,³
B[{Kj} (f, g)

´
(x) = sup

j∈N

¯̄¡
BKj (f, g)

¢
(x)
¯̄
.

We now suppose that we are given a sequence of compactly supported functions
{Kj}∞j=1 ⊆ L1 (G) such that for some constant ρ,°°°B[{Kj} (f, g)

°°°
Lp3 (G)

≤ ρ kfkLp1 (G) kgkLp2 (G) ,(6.3)

for all f ∈ Lp1 (G)
\
L2 (G) , all g ∈ Lp2 (G)

\
L2 (G) .

Our goal will be to transfer the maximal estimate in (6.3) to the setting of an
arbitrary sigma-finite measure space (Ω, µ), and we now seek to formulate suitable
properties for operators representing G to implement such a transference. In keeping
with (3.3), it is desirable for such operators to incorporate the separation-preserving
property. Moreover, these operators will have to act simultaneously on Lp (µ)-
spaces for different values of the exponent p, while some extra care will be needed,
because we shall have to control the Lp3 (µ)-norms of vector-valued integrals, even in
the cases when p3 < 1. For these purposes, we shall utilize A (µ), the algebra (under
pointwise operations) consisting of all complex-valued µ-measurable functions on
Ω (identified modulo equality µ-a.e. on Ω), to “represent” G by linear bijections of
A (µ) onto A (µ). Specifically, we shall consider a mapping R : u 7→ Ru of G with
the following properties.

(1) R is a homomorphism of G into the group (under composition) of all linear
bijections of A (µ) onto A (µ).

(2) For each u ∈ G, limk Ru (gk) = Ru (g) µ-a.e. on Ω, whenever {gk}∞k=1 ⊆
A (µ), g ∈ A (µ), and limk gk = g µ-a.e. on Ω.

(3) For ν = 1, 2, 3, Lpν (µ) is invariant under {Ru : u ∈ G}, and the mapping
u ∈ G 7→ (Ru|Lpν (µ)) is a strongly continuous homomorphism of G into the
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group of invertible separation-preserving operators belonging toB (Lpν (µ))
such that

(6.4) sν ≡ sup
n
kRu|Lpν (µ)kB(Lpν (µ)) : u ∈ G

o
<∞.

Before taking up the transference of (6.3), we shall take up some further prop-
erties of R that automatically flow from the above assumptions. One sees easily
with the aid of Proposition 3.7 and property (2) above that there are unique fam-
ilies {hu}u∈G and {Φu}u∈G such that for every u ∈ G: hu ∈ A (µ) with |hu| > 0
on Ω; Φu is an algebra automorphism of A (µ) onto A (µ); for all f ∈ A (µ),
Ruf = huΦu (f);whenever {gk}∞k=1 ⊆ A (µ), g ∈ A (µ), and limk gk = g µ-a.e. on
Ω, it follows that limk Φu (gk) = Φu (g) µ-a.e. on Ω. It is now straighforward to
deduce the following analogues in the present context for (3.11), (3.12) , and (3.13).

|Φu (f)|α = Φu (|f |α) , for u ∈ G, f ∈ A (µ) , 0 < α <∞.(6.5)

Φu+v (f) = Φu (Φu (f)) , for u ∈ G, v ∈ G, f ∈ A (µ) .(6.6)

hu+v = huΦu (hv) , for u ∈ G, v ∈ G.(6.7)

We next show that, since p3 < p1, we can infer from (6.4) that

(sp11 s
p3
3 )
−1/(p1−p3) ≤ |hu| ≤ (sp11 s

p3
3 )

1/(p1−p3) µ-a.e. on Ω,(6.8)

for every u ∈ G.

To this end, note first that if µ (E) <∞, and u ∈ G, then we have for υ = 1, 3,

s−pνν

Z
Ω

|hu|pν Φu (χE) dµ ≤ µ (E) ≤ spνν
Z
Ω

|hu|pν Φu (χE) dµ <∞.

This, together with sigma-finiteness, implies that for every µ-measurable set W ,
each u ∈ G, and for (ν1, ν2) = (1, 3) or (3, 1),

(6.9) s
−pν1
ν1

Z
W

|hu|pν1 dµ ≤ s
pν2
ν2

Z
W

|hu|pν2 dµ.

Suppose again that µ (E) <∞, and let χB ∈ A (µ), with Φu (χE) = χB. Put

B0 =
n
x ∈ B : s−pν1ν1 |hu|pν1 > s

pν2
ν2 |hu|pν2

o
.

Then

∞ > s
−pν1
ν1

Z
Ω

|hu|pν1 Φu (χE) dµ ≥ s
−pν1
ν1

Z
B0

|hu|pν1 dµ ≥ s
pν2
ν2

Z
B0

|hu|pν2 dµ.

In view of this and (6.9), we have

∞ > s
−pν1
ν1

Z
B0

|hu|pν1 dµ = s
pν2
ν2

Z
B0

|hu|pν2 dµ,

which, together with the definition of B0, shows that µ-a.e. in B0, we have
s
−pν1
ν1 |hu|pν1 = s

pν2
ν2 |hu|

pν2 . And it is now clear from the definition of B0 that
µ (B0) = 0. Since (Ω, µ) is sigma-finite, and ν1, ν2 are distinct, this yields (6.8).
We next show that for 0 < p < ∞, Lp (µ) is invariant under {Ru : u ∈ G}, and

the mapping u ∈ G 7→ (Ru|Lp (µ)) is a homomorphism of G into the group of
invertible separation-preserving operators belonging to B (Lpν (µ)) such that

(6.10) Θp ≡ sup
n
kRu|Lp (µ)kB(Lp(µ)) : u ∈ G

o
<∞.
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To see this, suppose that 0 < p <∞, and f is a µ-integrable simple function. Then
there is a µ-integrable simple function g ≥ 0 such that

|f | = gp1/p,

and, with the aid of two successive applications of (6.8), we find that for each u ∈ G,Z
Ω

|Ruf |p dµ

=

Z
Ω

|hu|p Φu (gp1) dµ

≤ (sp11 s
p3
3 )

p/(p1−p3)
Z
Ω

Φu (g
p1) dµ

≤ (sp11 s
p3
3 )

p/(p1−p3) (sp11 s
p3
3 )

p1/(p1−p3)
Z
Ω

|hu|p1 Φu (gp1) dµ

= (sp11 s
p3
3 )

p/(p1−p3) (sp11 s
p3
3 )

p1/(p1−p3) kRugkp1Lp1 (µ) .

Since kRugkp1Lp1 (µ) ≤ s
p1
1 kgkp1Lp1 (µ) = s

p1
1 kfk

p
Lp(µ), we can now use property (2) of

R together with Fatou’s Lemma to obtain (6.10). At this juncture, the following
proposition (Proposition (3.2) of [2]) permits us to infer from (6.1) in conjunction
with the strong continuity provision in property (3) above and (6.10) that
(6.11)
for 1 ≤ p <∞, the representation u ∈ G 7→ Ru|Lp (µ) is strongly continuous.

Proposition 6.1. Let G be a locally compact abelian group and (X,σ) an arbitrary
measure space. Suppose that 1 ≤ r1, r2 < ∞, and, for j = 1, 2, let u 7→ Rj,u be a
representation of G in Lrj (σ) such that

sup
n
kRj,ukB(Lrj (σ)) : u ∈ G

o
<∞.

Suppose also that

R1,uf = R2,uf , for u ∈ G and f ∈ Lr1 (σ)
\
Lr2 (σ) .

Then the representation u 7→ R1,u is strongly continuous if and only if the repre-
sentation u 7→ R2,u is strongly continuous.

For 0 < p <∞, we shall, as a convenient abbreviation, denote by R(p) : u 7→ R
(p)
u

the representation u 7→ Ru|Lp (µ) of G. A bonus stemming from (6.10) and (6.11)

is that for f ∈ L2 (µ) and g ∈ L2 (µ), the pointwise product
³
R
(2)
u f

´³
R
(2)
−ug

´
moves

continuously in L1 (µ) (as a function of u ∈ G) with respect to the norm topology
of L1 (µ), and is bounded in L1 (µ)-norm. Consequently we can use L1 (µ)-valued
Bochner integration to formulate the following transference analogue of Definition
6.1.

Definition 6.2. For K ∈ L1 (G), we shall denote by TK the bilinear mapping of
L2 (µ)×L2 (µ) into L1 (µ) specified by L1 (µ)-valued Bochner integration as follows.

TK (f, g) =

Z
G

³
R(2)u f

´³
R
(2)
−ug

´
K (u) dλ (u) ,

for all f ∈ L2 (µ) and all g ∈ L2 (µ) .
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Given a sequence {Kj}∞j=1 ⊆ L1 (G), we define the corresponding transferred bisub-
linear maximal operator T [{Kj} by writing for all f ∈ L

2 (G), all g ∈ L2 (G), and
almost all x ∈ G, ³

T [{Kj} (f, g)
´
(x) = sup

j∈N

¯̄¡
TKj (f, g)

¢
(x)
¯̄
.

We shall also require an auxiliary representation of G by bijective linear mappings
of A (µ) onto A (µ) that is designed to furnish suitable muliplicativity properties in
analogy with (3.17). This is accomplished analogously as follows.
Lemma 6.2. For each u ∈ G, let Wu be the linear mapping of A (µ) into A (µ)
defined by writing pointwise µ-a.e. on Ω,

Wuf = huRuf = h
2
uΦu (f) , for all f ∈ A (µ) .

Then the mapping W : u ∈ G 7→Wu is a homomorphism of G into the group (under
composition) of all linear bijections of A (µ) onto A (µ). For 0 < p < ∞, Lp (µ)
is invariant under {Wu : u ∈ G}, and the mapping u ∈ G 7→ (Wu|Lp (µ)) is a
homomorphism of G into the group of invertible separation-preserving operators
belonging to B (Lp (µ)) such that

(6.12) ∆p ≡ sup
n
kWu|Lp (µ)kB(Lp(µ)) : u ∈ G

o
<∞.

For all u ∈ G, v ∈ G, w ∈ G, all f ∈ A (µ), and all g ∈ A (µ), we have, pointwise
µ-a.e. on Ω,

(6.13) Wu ((Rvf) (Rwg)) = (Ru+vf) (Ru+wg) .

Proof. All the assertions follow directly from the corresponding properties of R and
(6.8) in conjunction with (6.6) and (6.7). ¤
Before taking up the transference theorem for (6.3), there is one remaining matter

that needs to be addressed. This concerns the measure-theoretic technicalities
connected with the use of Fubini’s theorem that inevitably arise in such transference
environments. Specifically, for a given f ∈ Lp (µ) there is no a priori way to
represent an expression such as

³
R
(p)
u f

´
(x) as a λ × µ measurable function of

(u, x) ∈ G× Ω. A general approach to surmounting such difficulties is furnished
by Lemma (2.5) of [5], whose proof supplies the following specialized tool for our
present situation. (Here and henceforth, given subsets A and B of G, we shall
denote by A−B the group -theoretic difference set consisting of all differences a−b
such that a ∈ A and b ∈ B.)
Proposition 6.3. Let C be a compact subset of G, let V be an open subset of G
having compact closure, and let f ∈ L2 (µ). Then there exists a complex-valued
λ× µ measurable function F on G ×Ω such that:

(a) F vanishes off (V − C)×Ω;
(b) for λ-almost all u ∈ V − C, F (u, ·) is a representing function for the equiv-

alence class (modulo equality µ-a.e. on Ω) of R(2)u f .
The stage is now set for the transference of the maximal estimate in (6.3). This

takes the following form.
Theorem 6.4. Let p1, p2, p3, G, and λ be as just described above. Suppose that
we are given a sequence of compactly supported functions {Kj}∞j=1 ⊆ L1 (G) such
that for some constant ρ, (6.3) holds. If (Ω, µ) is a sigma-finite measure space, and
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u 7→ Ru is a mapping of G having the properties (1), (2), and (3) listed above, then,
in the notation of Definition 6.2, we have:°°°T [{Kj} (f, g)

°°°
Lp3 (µ)

≤ ρs1s2∆p3 kfkLp1 (µ) kgkLp2 (µ) ,(6.14)

for all f ∈ Lp1 (µ)
\
L2 (µ) , and all g ∈ Lp2 (µ)

\
L2 (µ) ,

where ∆p3 is defined by (6.12), and s1, and s2 are the constants given by (6.4).

Proof. Let N ∈ N, and define the truncated maximal operator T (N) by writing for
all f ∈ L2 (µ), g ∈ L2 (µ),

T (N) (f, g) = sup
1≤j≤N

¯̄
TKj (f, g)

¯̄
.

By the monotone convergence theorem it clearly suffices to show that for all f ∈
Lp1 (µ)

T
L2 (µ) and all g ∈ Lp2 (µ)

T
L2 (µ),

(6.15)
°°°T (N) (f, g)°°°

Lp3 (µ)
≤ ρs1s2∆p3 kfkLp1 (µ) kgkLp2 (µ) .

To this end, fix f ∈ Lp1 (µ)
T
L2 (µ), g ∈ Lp2 (µ)

T
L2 (µ), and let C be a symmetric

compact subset of G that contains the support of Kj for 1 ≤ j ≤ N . Let ε be a
positive real number. By Lemma (31.36) of [22] (a form of Leptin’s condition), we
can choose a non-void symmetric open set V in G such that the closure of V is
compact, and

(6.16)
λ (V − C)
λ (V )

< 1 + ε.

Let v ∈ V . We now apply (3.3) to T (N) (f, g) and to the separation-preserving
operator Wv|L1 (µ) ∈ B

¡
L1 (µ)

¢
, which is described by Lemma 6.2. This gives

(6.17)
¯̄̄¡
Wv|L1 (µ)

¢ ³
T (N) (f, g)

´¯̄̄
= sup
1≤j≤N

¯̄¡
Wv|L1 (µ)

¢ ¡
TKj (f, g)

¢¯̄
.

For 1 ≤ j ≤ N , we see by (6.13) that, in terms of L1 (µ)-valued Bochner integration,

(6.18)
¡
Wv|L1 (µ)

¢ ¡
TKj (f, g)

¢
=

Z
C

³
R
(2)
v+uf

´³
R
(2)
v−ug

´
Kj (u) dλ (u) .

At this juncture, we observe that by virtue of Proposition 6.3, we can and shall
arrange matters so that, without loss of generality, we can regard each of the ex-

pressions
³
R
(2)
u f

´
(x) and

³
R
(2)
−ug

´
(x) as if it were a jointly measurable function of

(u, x) on (V − C)×Ω. Moreover, we can treat each of the expressions
³
R
(2)
s+uf

´
(x)

and
³
R
(2)
s−ug

´
(x) as if it were a jointly measurable function of (s, u, x) on V ×C×Ω,

whence for v ∈ V , and 1 ≤ j ≤ N ,

¡¡
Wv|L1 (µ)

¢ ¡
TKj (f, g)

¢¢
(x) =

Z
C

³
R
(2)
v+uf

´
(x)

³
R
(2)
v−ug

´
(x)Kj (u) dλ (u) ,

(6.19)

for µ-almost all x ∈ Ω.

Although we do not yet know that T (N) (f, g) ∈ Lp3 (µ), it is clear from the in-
variance provision of Lemma 6.2 that for any h ∈ A (µ), and any g ∈ G, we have
Wgh ∈ Lp3 (µ) if and only if h ∈ Lp3 (µ). Keeping this in mind, we will now consider
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expressions such as
°°T (N) (f, g)°°p3

Lp3 (µ)
(which, as far as we know at this juncture,

might be infinite). From (6.12) and (6.17) we see that for v ∈ V ,°°°T (N) (f, g)°°°p3
Lp3 (µ)

≤ ∆p3p3

°°°¡Wv|L1 (µ)
¢ ³
T (N) (f, g)

´°°°p3
Lp3 (µ)

= ∆p3p3

°°°° sup
1≤j≤N

¯̄¡
Wv|L1 (µ)

¢ ¡
TKj (f, g)

¢¯̄°°°°p3
Lp3 (µ)

.

Substituting (6.19) in the last member, we get°°°T (N) (f, g)°°°p3
Lp3 (µ)

≤ ∆p3p3

Z
Ω

sup
1≤j≤N

¯̄̄̄Z
C

³
R
(2)
v+uf

´
(x)

³
R
(2)
v−ug

´
(x)Kj (u) dλ (u)

¯̄̄̄p3
dµ (x) .

Averaging this estimate over V with respect to dλ (v), and using Fubini’s theorem
to interchange the order of integration, we find that

(6.20)°°°T (N) (f, g)°°°p3
Lp3 (µ)

≤
∆p3p3
λ (V )

Z
Ω

Z
V

sup
1≤j≤N

¯̄̄̄Z
C

³
R
(2)
v+uf

´
(x)

³
R
(2)
v−ug

´
(x)Kj (u) dλ (u)

¯̄̄̄p3
dλ (v) dµ (x) .

Let χ denote the characteristic function, defined on G, of V − C =V + C. In terms
of χ we have the following pointwise estimate on Ω for the integrand with respect
to dµ (x).

(6.21)Z
V

sup
1≤j≤N

¯̄̄̄Z
C

³
R
(2)
v+uf

´
(x)

³
R
(2)
v−ug

´
(x)Kj (u) dλ (u)

¯̄̄̄p3
dλ (v)

≤
Z
V

sup
1≤j≤N

¯̄̄̄Z
G
χ (v + u)

³
R
(2)
v+uf

´
(x)χ (v − u)

³
R
(2)
v−ug

´
(x)Kj (u) dλ (u)

¯̄̄̄p3
dλ (v) .

Applying the hypothesis (6.3) to the majorant in (6.21), we infer that for µ-almost
all x ∈ Ω,Z

V

sup
1≤j≤N

¯̄̄̄Z
C

³
R
(2)
v+uf

´
(x)

³
R
(2)
v−ug

´
(x)Kj (u) dλ (u)

¯̄̄̄p3
dλ (v)

≤ ρp3
µZ

V−C
|(Ruf) (x)|p1 dλ (u)

¶p3/p1 µZ
V−C

|(Rug) (x)|p2 dλ (u)
¶p3/p2

.

Using this estimate in (6.20) gives°°°T (N) (f, g)°°°p3
Lp3 (µ)

≤
∆p3p3ρ

p3

λ (V )

Z
Ω

µZ
V−C

|(Ruf) (x)|p1 dλ (u)
¶p3/p1 µZ

V−C
|(Rug) (x)|p2 dλ (u)

¶p3/p2
dµ (x) .
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Applying Hölder’s inequality for the pair of conjugate exponents
p1
p3
and

p2
p3
, we see

that
°°T (N) (f, g)°°p3

Lp3 (µ)
does not exceed the product of

∆p3p3ρ
p3

λ (V )

µZ
Ω

Z
V−C

|(Ruf) (x)|p1 dλ (u) dµ (x)
¶p3/p1

with µZ
Ω

Z
V−C

|(Rug) (x)|p2 dλ (u) dµ (x)
¶p3/p2

.

Hence °°°T (N) (f, g)°°°p3
Lp3 (µ)

≤ ρp3sp31 s
p3
2 ∆

p3
p3

λ (V − C)
λ (V )

kfkp3Lp1 (µ) kgk
p3
Lp2 (µ)

≤ ρp3sp31 s
p3
2 ∆

p3
p3 (1 + ε) kfkp3Lp1 (µ) kgk

p3
Lp2 (µ) .

Letting ε→ 0 yields (6.15) and completes the proof of Theorem 6.4. ¤
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