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Abstract. Several results about convolution and Fourier coef-
ficients for X-valued functions defined on the torus satisfying
sup‖y‖=1

∫ π
−π ‖B(f(eiθ), y)‖ dθ

2π
< ∞ for a bounded bilinear map

B : X × Y → Z are presented and some applications are given.

1. Introduction and notation

Let (T,m) be the Lebesgue measure space over T = {|z| = 1}, let X be a
Banach space over K (R or C). An X-valued function f : T → X is said to be
strongly measurable if there exits a sequence of simple functions, (sn) ∈ S(T, X),
which converges to f a.e. It is called weakly measurable if 〈f, x∗〉 is measurable
for any x∗ ∈ X∗. We denote by L0(T, X) and L0

weak(T, X) the spaces of strongly
and weakly measurable functions. As usual we denote by P p(T, X) the Pettis p-
integrable functions and by Lp(T, X) the Bochner p-integrable functions for 1 ≤
p < ∞.

Convolutions with respect to bilinear maps were introduced and studied in [4, 5]
in the setting of Bochner integrable functions:

Let Y and Z be a Banach spaces and let B : X × Y → Z be a bounded bilinear
map. If f ∈ L1(T, X) and g ∈ L1(T, Y ) then the map eiθ → B(f(ei(t−θ)), g(eiθ)) is
strongly measurable for each t and the fact

‖B(f(ei(t−θ)), g(eiθ)‖ ≤ ‖B‖‖f(ei(t−θ))‖‖g(eiθ)‖
allows to define

f ∗B g(eit) =
∫ π

−π

B(f(ei(t−θ), g(eiθ))
dθ

2π
∈ L1(T, Z)

and ‖f ∗B g‖L1(T,Z) ≤ ‖f‖L1(T,X)‖g‖L1(T,Y ).

Also it is clear that f̂(n) =
∫ π

−π
f(eiθ)e−inθ dθ

2π is well defined (as Bochner integral)
for n ∈ Z and f ∈ L1(T, X).

Actually the following formula holds (see [4, 5]) for f ∈ L1(T, X) and g ∈
L1(T, Y ),

(f ∗B g)̂(n) = B(f̂(n), ĝ(n)).
In this paper we shall try to developp the theory for a wider class of functions

integrable with respect the bilinear map that has been recently considered by the
authors in [7], and which allows to extend the results in [4, 5].

Given a bounded bilinear map B : X × Y → Z, we shall be denoting by Bx ∈
L(Y,Z) and By ∈ L(X,Z) the corresponding linear operators Bx(y) = B(x, y) and
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By(x) = B(x, y). The following notions were introduced in [7]: A triple (Y,Z,B)
is admissible for X if Y and Z are Banach spaces and B : X×Y → Z is a bounded
bilinear map such that x → Bx is injective from X → L(Y,Z), i.e. B(x, y) = 0 for
all y ∈ Y implies x = 0. X is said to be a (Y,Z,B)-normed space if there exists
C > 0 such that ‖x‖ ≤ C‖Bx‖ for all x ∈ X, that is X can be understood as a
subspace of L(Y,Z) with some equivalent norm.

Also we define the ”adjoints” B∗ : X ×Z∗ → Y ∗ and B∗ : Y ×Z∗ → X∗ by the
formulas

〈B∗(x, z∗), y〉 = 〈B(x, y), z∗〉,(1)

〈B∗(y, z∗), x〉 = 〈B(x, y), z∗〉.(2)

Hence (B∗)x = (Bx)∗ and (B∗)y = (By)∗.
Clearly (Y,Z,B) is admissible for X if and only if (Z∗, Y ∗, B∗) is. Observe that

X is (Y,Z,B) normed if and only if there exists C1, C2 > 0 such that

C1 ≤ sup
‖x‖=‖y‖=‖z∗‖=1

|〈B(x, y), z∗〉| ≤ C2.

Therefore X is (Y,Z,B) normed only if X is (Z∗, Y ∗, B∗) normed if and only if Y
is (Z∗, X∗, B∗) normed.

Throughout the paper we always assume that X is (Y,Z,B) normed. Our aim
is to show that some of the results from vector-valued Fourier Analysis can be
extended to more general functions and bilinear maps.

As in [7] we say that f : T → X is (Y,Z,B)-measurable if B(f, y) ∈ L0(T, Z) for
any y ∈ Y and denote the class of such functions by L0

B(T, X).
For 1 ≤ p < ∞ and a simple function s =

∑n
k=1 xkχAk

one has that

‖s‖Lp
B(X) = sup

‖y‖=1

‖By(s)‖Lp(Z)

= sup
‖y‖=1

(
n∑

k=1

‖B(xk, y)‖pµ(Ak))1/p

= sup{‖
n∑

k=1

B∗(xk, z
∗
k)µ(Ak)‖ : (

n∑
k=1

‖z∗k‖p
′
)1/p

′
= 1}.

We define Lp
B(T, X) as the closure of simple functions S(T, X) under this norm.

Of course Lp(T, X) ⊂ Lp
B(T, X) and ‖f‖Lp

B(X) ≤ ‖f‖Lp(X) for any f ∈ Lp(T, X).
In particular Lp

B(T, X) for the cases D : X ×X∗ → K given by D(x, x∗) = 〈x, x∗〉
and B : X × K → X given by B(x, λ) = λx correspond to P p(T, X) and Lp(T, X)
respectively.

The reader is referred to [7] for some general facts about the theory on these
spaces. It is shown there that, under the assumption of X being a (Y,Z,B)-
normed space, one obtains that L1

B(T, X) ⊆ P 1(T, X) and also the existence of the
B-integral over sets E for functions in L1

B(T, X). There are some general examples
to have in mind where the general theory can be applied.

Example 1.1. Let X = L(Y,Z) for some Banach spaces Y,Z. Define

OY,Z : L(Y,Z) × Y → Z, OY,Z(T, y) = T (y).(3)

Clearly one has (OY,Z)∗(T, z∗) = OZ∗,Y ∗(T ∗, z∗).
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If f : T → L(Y,Z), defined by f(eit) = Tt, belongs to L1
OY,Z

(T,L(X,Y )) then

‖f‖L1
OY,Z

(L(X,Y )) = sup
‖y‖=1

∫ π

−π

‖Tθ(y)‖
dθ

2π

and there exists T ∈ L(X,Y ) such that T (y) =
∫ π

−π
Tθ(y) dθ

2π .

Example 1.2. (Hölder’s bilinear map) Let (Ω, η) be a σ-finite measure space, 1 ≤
p1, p2 ≤ ∞ and 1

p3
= 1

p1
+ 1

p2
. Consider

Hp1,p2 : Lp1(η) × Lp2(η) → Lp3(η), (f, g) → fg.

It was shown in [7] that for Ω = N with the counting measure then

‖f‖Lp3
Hp1,p2

(�p1 ) = ‖(fn)‖�p1 (Lp3 )

where f = (fn) ∈ L0(T, "p1).

Example 1.3. (Young’s bilinear map) Let G be locally compact abelian group and
m the Haar measure, 1 ≤ p1, p2 ≤ ∞ with 1

p1
+ 1

p2
≥ 1 and 1

p3
= 1

p1
+ 1

p2
− 1.

Consider
Yp1,p2 : Lp1(G) × Lp2(G) → Lp3(G), (f, g) → f ∗ g.

It was shown in [7] that Lp(R) is (L1(R), Lp(R),Yp,1)-normed whenever L1(G)
has a bounded approximation of the identity. However (L2(R), L2(R),Y1,2) is an
admissible triple for L1(R), but L1(R) is not (L2(R), L2(R),Y1,2)-normed.

Also for G = R with the Lebesgue measure it is easy to show that

‖f‖Lp
Yp1,1

(Lp1 (R)) = ‖f‖Lp(Lp1 (R))

for any f ∈ L0(T, Lp1(R)).

2. Fourier Analysis with respect to bilinear maps.

We denote by P(T, X) the space of X-valued trigonometric polynomials. It is
clear that P(T, X) is dense in Lp

B(T, X).
We start by pointing out a result which will be used in the sequel.

Proposition 2.1. (see [7]) If f ∈ L1
B(T, X) and E ∈ Σ there exists a unique

xE ∈ X such that for any y ∈ Y

B(xE , y) =
∫
E

B(f, y)dµ.

The value xE = (B)
∫
E
fdµ is called the B-integral of f over E.

Of course (B)
∫
E
fdµ coincides always with the Pettis integral, and in the case

of Bochner integrable functions then (B)
∫
E
fdµ =

∫
E
fdµ is the Bochner integral.

It is clear that if f ∈ L1
B(T, X) and ϕ ∈ L∞(T) then fϕ ∈ L1

B(T, X). Hence
Proposition 2.1 allows to give the following definitions.

Definition 2.2. Let n ∈ Z and f ∈ L1
B(T, X). Define the n-Fourier coefficient

with respect to B as

f̂B(n) = (B)
∫ π

−π

f(eiθ)e−inθ dθ

2π
.

Hence
B(f̂B(n), y) =

∫ π

−π

B(f(eiθ), y)e−inθ dθ

2π
= (By(f))̂(n).
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Of course if f ∈ L1(T, X) then f̂B(n) = f̂(n) for all n ∈ Z. In particular if
f ∈ P(T, X) with f(eiθ) =

∑M
k=−N xke

ikθ then f̂B(n) = xn for n ∈ [−N,M ] and
f̂B(n) = 0 otherwise.

Proposition 2.3. If f ∈ L1
B(T, X) then (f̂B(n))n∈Z ∈ c0(Z, X). Moreover

‖f̂B(n)‖ ≤ C‖f‖L1
B(T,X).

Proof. Using that X is (Y,Z,B)-normed one has

‖f̂B(n)‖ ≤ C sup
‖y‖=1

‖B(f̂B(n), y))‖ ≤ C‖f‖L1
B(T,X).

The standard approximation for polynomials show that (f̂B(n))n∈Z ∈ c0(Z, X). �
Let us denote ft(eiθ) = f(ei(t−θ)) for f ∈ Lp

B(T, X). It is obvious that ft ∈
Lp

B(T, X) and ‖ft‖Lp
B(T,X) = ‖f‖Lp

B(T,X).

Definition 2.4. Let f ∈ L1
B(T, X) and ϕ ∈ L∞(T). Define the convolution with

respect to B by

f ∗B ϕ(eit) = (B)
∫ π

−π

ft(eiθ)ϕ(eiθ)
dθ

2π
, eit ∈ T.

Hence

B(f ∗B ϕ(eit), y) =
∫ π

−π

B(f(ei(t−θ)), y)ϕ(eiθ)
dθ

2π
= By(f) ∗ ϕ(eit)

for any trigonometric polynomial ϕ.

Proposition 2.5. If f ∈ L1
B(T, X) and ϕ ∈ L∞(T) then

‖f ∗B ϕ‖L1
B(T,X) ≤ ‖f‖L1

B(T,X).‖ϕ‖L1(T).

Proof.∫ π

−π

‖B(f ∗B ϕ(eit), y)|‖ dt
2π

≤
∫ π

−π

∫ π

−π

‖B(ft(eiθ)ϕ(eiθ), y)‖ dθ
2π

dt

2π

≤
∫ π

−π

(
∫ π

−π

‖B(ft(eiθ), y)‖
dθ

2π
)|ϕ(eit)| dt

2π
≤ ‖f‖L1

B(T,X)‖ϕ‖L1(T).

�
This allows to give the following definition.

Definition 2.6. If f ∈ L1
B(T, X) and ϕ ∈ L1(T) we define the convolution

f ∗B ϕ = lim
n

f ∗B ϕn

for any sequence of polynomials ϕn converging to ϕ ∈ L1(T).
Of course f ∗B ϕ ∈ L1

B(T, X) and ‖f ∗B ϕ‖L1
B(T,X) ≤ ‖f‖L1

B(T,X)‖ϕ‖L1(T).

Remark 2.7. If f ∈ L1
B(T, X), ϕ ∈ L1(T) and y ∈ Y then

B(f ∗B ϕ, y) = By(f) ∗ ϕ.
We now give the connection between convolution and Fourier coefficients.

Proposition 2.8. Let n ∈ Z, f ∈ L1
B(T, X) and ϕ ∈ L1(T) then

(f ∗B ϕ)̂B(n) = f̂B(n)ϕ̂(n).
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Proof. Assume first that ϕ(t) = eimt for some m ∈ Z. Then

(f ∗B ϕ)(eit) = (B)
∫ π

−π

ft(eiθ)emiθ dθ

2π

= (B)
∫ π

−π

f(ei(t−θ))emiθ dθ

2π

= (B)
∫ π

−π

f(eiθ)emi(t−θ) dθ

2π

= eimtf̂B(m).

This shows the result in this particular case. Now by linearity one gets the result
for polinomials ϕ. Finally using Propositions 2.3 and 2.5 one extends to general
functions ϕ ∈ L1(T).

�
Let us now extend the notion of convolution between two different vector-valued

functions.

Definition 2.9. Let f ∈ L1
B(T, X) and g ∈ L1(T) ⊗ Y , say g =

∑M
k=0 ykφk where

yk ∈ Y and φk ∈ L1(T). Define the convolution

f ∗B g =
M∑
k=0

B(f ∗B φk, yk).

Remark 2.10. In particular B(f ∗B φ, y) = f ∗B (φ⊗y) = By(f)∗φ for φ ∈ L1(T)
and y ∈ Y .

Proposition 2.11. If f ∈ L1
B(T, X) and g ∈ P(T, Y ) then

f ∗B g(eit) =
∫ π

−π

B(f(ei(t−θ)), g(eiθ))
dθ

2π
.

Proof. Take g =
∑M

k=−N φk⊗yk where yk ∈ Y and φk(eit) = eikt. Apply Remark
2.10 to obtain

f ∗B g(eit) =
M∑

k=−N

f ∗B (φk ⊗ yk)(eit)

=
M∑

k=−N

∫ π

−π

B(f(ei(t−θ)), yk)φk(eiθ)
dθ

2π

=
∫ π

−π

B(f(ei(t−θ)), g(eiθ))
dθ

2π
.

�

Proposition 2.12. Let f ∈ L1
B(T, X) and g ∈ S(T, Y ). Then

‖f ∗B g‖L1(Z) ≤ ‖f‖L1
B(X)‖g‖L1(Y ).

Proof. Assume g =
∑M

k=0 ykφk where φk = χIk
for pairwise disjoint intervals.

Hence
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‖f ∗B g‖L1(Z) ≤
M∑
k=0

‖B(f ∗B φk, yk)‖L1(Z)

=
M∑
k=0

‖Byk(f) ∗ φk‖L1(Z)

=
M∑
k=0

‖Byk(f)‖L1(Z)‖φk‖L1

=
M∑
k=0

‖B
yk

‖yk‖ (f)‖L1(Z)‖yk‖‖φk‖L1

≤ ‖f‖L1
B(X)‖g‖L1(Y ).

�
This allows us to give the following definition.

Definition 2.13. If f ∈ L1
B(T, X) and g ∈ L1(T, Y ) = L1(T)⊗̂Y we define the

convolution
f ∗B g = lim

n
f ∗B gn

for any sequence of simple functions (gn) ⊂ S(T, Y ) converging to g ∈ L1(T, Y ).

Of course f ∗B g ∈ L1(T, Z) and ‖f ∗B g‖L1(T,Z) ≤ ‖f‖L1
B(T,X)‖g‖L1(T,Y ).

Theorem 2.14. Let n ∈ Z, f ∈ L1
B(T, X) and g ∈ L1(T, Y ). Then

(f ∗B g)̂(n) = B(f̂B(n), ĝ(n)).

Proof. Assume first that g = φ⊗ y for φ ∈ L∞(T) and y ∈ Y .
Therefore

(f ∗B g)̂(n) = B(f ∗B φ, y)̂(n)

= B((f ∗B φ)̂(n), y)

= B(f̂B(n)φ̂(n), y)

= B(f̂B(n), ĝ(n)).

This extends to g ∈ P(T, Y ) by linearity. Now use the density of P(T, Y ) in
L1(T, Y ) to obtain

(f ∗B g)̂(n) = lim
k→∞

(f ∗B gk )̂(n)

= lim
k→∞

B(f̂B(n), ĝk(n))

= B(f̂B(n), ĝ(n)).

�

3. Young’s Theorem

We shall present here several analogues to Young’s theorems about convolutions
in our setting.

Note that for any f ∈ L1(T, X) and ϕ ∈ L1(T) the following pointwise estimate
holds

‖f ∗ ϕ‖ ≤ ‖f‖ ∗ |ϕ|.
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Using the scalar-valued Young theorem one clearly obtains that if f ∈ Lp(T, X)
and ϕ ∈ Lq(T) then f ∗ ϕ ∈ Lr(T, X) with

‖f ∗ ϕ‖Lr(T,X) ≤ ‖f‖Lp(T,X)‖ϕ‖Lq(T)

where 1 ≤ p, q, r ≤ ∞ with 1
r = 1

p + 1
q − 1.

Using Remark 2.7 and the previous observation we can formulate the following
extension.

Proposition 3.1. Let 1 ≤ p < ∞, 1 ≤ q ≤ ∞ with 1
p + 1

q ≥ 1 and let 1
r = 1

p + 1
q −1.

If f ∈ Lp
B(T, X) and ϕ ∈ Lq(T) then f ∗B ϕ ∈ Lr

B(T, X).
Moreover

‖f ∗B ϕ‖Lr
B(T,X) ≤ ‖f‖Lp

B(T,X)‖ϕ‖Lq(T).

Let us establish the dualities to be used in our bilinear setting.

Lemma 3.2. Let B : X × Y → Z bounded bilinear map and B∗ : Y × Z∗ → X∗

given by 〈B(x, y), z∗〉 = 〈x,B∗(y, z∗)〉.
If f ∈ P(T, X), g ∈ P(T, Y ) and h ∈ P(T, Z∗) then

〈f ∗B ḡ, h〉 = 〈f, g ∗B∗ h〉 and 〈f̄ ∗B g, h〉 = 〈f ∗B∗ h, g〉,
where ḡ(eiθ) = g(e−iθ).

Proof. Observe that if F and G are polynomial with values in a Banach space
and its dual respectively then

〈F,G〉 =
∫ π

−π

〈F (eiθ), G(eiθ)〉 dθ
2π

=
∑

〈F̂ (n), Ĝ(−n)〉

Taking into account that

f ∗B ḡ(eit) =
∑

B(f̂B(n), ĝ(−n))eint

one obtains

〈f ∗B ḡ, h〉 =
∑

〈B(f̂(n), ĝ(−n)), ĥ(−n)〉

=
∑

〈f̂(n), B∗(ĝ(−n), ĥ(−n))〉

=
∑

〈f̂(n), (g ∗B∗ h)̂(−n)〉
= 〈f, g ∗B∗ h〉.

Similarly

〈f̄ ∗B g, h〉 =
∑

〈B(f̂(−n), ĝ(n)), ĥ(−n)〉

=
∑

〈B∗(f̂(−n), ĥ(−n)), ĝ(n)〉

=
∑

〈(f ∗B∗ h)̂(−n), ĝ(n)〉
= 〈f ∗B∗ h, g〉.

�
Let us now present the version of Young’s theorem in our general setting.

Theorem 3.3. Let 1 < p < ∞.
(i) If f ∈ Lp

B(T, X) and g ∈ L1(T, Y ) then f ∗B g ∈ Lp(T, Z). Moreover

‖f ∗B g‖Lp(Z) ≤ ‖f‖Lp
B(X)‖g‖L1(Y ).
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(ii) If f ∈ Lp
B∗(T, X) and g ∈ Lp′

(T, Y ) then f ∗B g ∈ L∞(T, Z). Moreover

‖f ∗B g‖L∞(Z) ≤ ‖f‖Lp
B∗ (X)‖g‖Lp′ (Y ).

(iii) If f ∈ Lp′
(T, X) and g ∈ Lp

B∗
(T, Y ) then f ∗B g ∈ L∞(T, Z). Moreover

‖f ∗B g‖L∞(Z) ≤ ‖f‖L1(X)‖g‖Lp
B∗ (Y ).

(iv) If f ∈ Lp
B(T, X) ∩ Lp

B∗(T, X), and g ∈ Lq(T, Y ) for 1 ≤ q ≤ p′ then
f ∗B g ∈ Lr(T, Z) where 1

r = 1
p + 1

q − 1. Moreover

‖f ∗B g‖Lr(T,Z) ≤ ‖f‖p/r
′

Lp
B(T,X)

‖f‖1−p/r′

Lp
B∗ (T,X)

‖g‖Lq(T).

Proof. (i) Assume g =
∑M

k=0 ykφk where φk = χIk
for pairwise disjoint intervals.

Hence

‖f ∗B g‖Lp(Z) ≤
M∑
k=0

‖B(f ∗B φk, yk)‖Lp(Z)

=
M∑
k=0

‖Byk(f) ∗ φk‖Lp(Z)

=
M∑
k=0

‖B
yk

‖yk‖ (f)‖Lp(Z)‖yk‖‖φk‖L1

≤ ‖f‖Lp
B(X)‖g‖L1(Y ).

As usual one extends to general functions g ∈ L1(T, Y ) using the density of simple
functions.

(ii) Using Lemma 3.2 and (i) one gets, for f ∈ P(T, X) and g ∈ P(T, Y ), that

‖f ∗B g‖L∞(Z) = sup{|〈f ∗B g, h〉| : h ∈ P(T, Z∗), ‖h‖L1(Z∗) = 1}
= sup{|〈f̄ ∗B∗ h, g〉| : h ∈ P(T, Z∗), ‖h‖L1(Z∗) = 1}
≤ sup{‖g‖Lp′ (Y )‖f̄ ∗B∗ h‖Lp(Y ∗) : h ∈ P(T, Z∗), ‖h‖L1(Z∗) = 1}
≤ ‖f‖Lp

B∗ (X)‖g‖Lp′ (Y ).

Using the density of polynomials the result is completed.
(iii) is analogous to (ii).
(iv) follows from interpolation using (i) and (ii). �

Remark 3.4. For D : X×X∗ → K given by D(x, x∗) = 〈x, x∗〉 and B : X×K → X
given by B(x, λ) = λx one has that B∗ = D and D∗ = B. Therefore Lp

B(T, X) ⊂
Lp
B∗(T, X), and there exists f ∈ Lp

D(T, X) \ Lp
D∗(T, X).

We shall now observe that Young’s theorem (see Theorem 3.3, (iv)) does not
hold without the extra assumption f ∈ Lp

B∗(T, X).

Proposition 3.5. For any infinite dimensional Banach space X there exists f ∈
L1
D(T, X) and g ∈ L∞(T, X∗) such that f ∗D g /∈ L∞(T).

Proof. Assume the result does not hold true. Then if f ∈ P(T, X) we have that
for any g ∈ P(T, X∗)

|f ∗D g(0)| = |
∫ π

−π

〈f(e−iθ), g(eiθ)〉 dθ
2π

| ≤ C‖f‖L1
B(X)‖g‖L∞(Y ).
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This would imply that ‖f‖L1(T,X) ≤ C‖f‖P 1(T,X) for any polynomial, and then X
would be finite dimensional. �

Let us point out an application of our convolution which extends the bilinear
Marcinkiewicz-Zygmund theorem (see [5], Corollary 2.7).

Theorem 3.6. Let 1 ≤ pi < ∞ and (Ωi, µi) be σ-finite measure spaces for i = 1, 2.
If X is (Lp1(µ1), Lp2(µ2), B)-normed then there exists C > 0 such that

‖(
n∑

j=1

|B(xj , φj)|2)1/2‖Lp2 ≤ C sup
‖ϕ‖p1=1

‖(
n∑

j=1

|B(xj , ϕ)|2)1/2‖Lp2‖(
n∑

j=1

|φj |2)1/2‖Lp1

for all x1, ..., xn ∈ X, φ1, ..., φn ∈ Lp1(µ1), n ∈ N.

Proof. Let f(eit) =
∑n

j=1 xje
i2jt ∈ P(T, X) and g(eit) =

∑n
j=1 φje

i2jt ∈
P(T, Lp1(µ1)). Hence f ∗B g(eit) =

∑n
j=1 B(xj , φj)ei2

jt. Now use Kintchine’s
inequalities (see [10]), which assert that

‖
n∑

j=1

ϕje
i2jt‖L1(T,Lp(µ)) ≈ ‖(

n∑
j=1

|ϕj |2)1/2‖Lp(µ)

for any 0 < p < ∞ and ϕ1, ...ϕn ∈ Lp(µ), together with

‖f ∗B g‖L1(T,Lp2 (µ2)) ≤ ‖f‖L1
B(T,X)‖g‖L1(T,Lp1 (µ2))

to obtain the result. �

Corollary 3.7. Let (Ω, µ) be σ-finite measure space and 1 ≤ pi < ∞ for i = 1, 2, 3
such that 1/p3 = 1/p1 + 1/p2. Then there exists C > 0 such that

‖(
n∑

j=1

|ψjφj |2)1/2‖Lp3 ≤ C‖(
n∑

j=1

|ψj |2)1/2‖Lp1‖(
n∑

j=1

|φj |2)1/2‖Lp2

for all ψ1, ..., ψn ∈ Lp1(µ), φ1, ..., φn ∈ Lp2(µ), n ∈ N.

Proof. Apply Theorem 3.6 for B : Lp1(µ) × Lp2(µ) → Lp3(µ) given by (φ, ψ) →
φψ and use the fact

sup
‖ϕ‖p2=1

‖(
n∑

j=1

|B(φj , ϕ)|2)1/2‖Lp3 = sup
‖ϕ‖p2=1

‖(
n∑

j=1

|φj |2)1/2|ϕ|‖Lp3 = ‖(
n∑

j=1

|φj |2)1/2‖Lp1

�

Corollary 3.8. Let (R,m) be the Lebesgue measure space and 1 ≤ p < ∞. Then
there exists C > 0 such that

‖(
n∑

j=1

|ψj ∗ φj |2)1/2‖Lp ≤ C sup
‖ϕ‖1=1

‖(
n∑

j=1

|ψj ∗ ϕ|2)1/2‖Lp‖(
n∑

j=1

|φj |2)1/2‖Lp

for all ψ1, ..., ψn ∈ Lp(R), φ1, ..., φn ∈ L1(R), n ∈ N.

Proof. Apply Theorem 3.6 for B : Lp(R) × L1(R) → Lp(R) given by (φ, ψ) →
φ ∗ ψ. �

We now present the following different generalization of the Marcinkiewizc-
Zygmund Theorem (see [10]).
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Theorem 3.9. Let 1 ≤ pi < ∞ and (Ωi, µi) be σ-finite measure spaces for i = 1, 2.
Then there exists C > 0 such that

‖(
n∑

j=1

|Tj(φj)|2)1/2‖Lp2 ≤ C sup
‖ϕ‖p1=1

‖(
n∑

j=1

|Tj(ϕ)|2)1/2‖Lp2‖(
n∑

j=1

|φj |2)1/2‖Lp1

for all φ1, ..., φn ∈ Lp1(µ1), Tj : Lp1(µ1) → Lp2(µ2) bounded linear operators for
1 ≤ j ≤ n, and n ∈ N.

Proof. Apply Theorem 3.6 for B : L(Lp1(µ1), Lp2(µ2)) × Lp1(µ1) → Lp2(µ2)
given by (T, ψ) → T (ψ). �

4. Haussdorff-Young inequality

We recall that for 1 ≤ p ≤ 2 a complex Banach space X is said have Fourier
type p if there exists C > 0 such that

(
∑
k∈Z

‖f̂(k)‖p′
)1/p

′ ≤ C‖f‖Lp(T,X)

for any f ∈ P(T, X) and p′, as usual, verifies 1/p + 1/p′ = 1.
This notion was firstintroduced in [13] and it has been extensively studied by

different authors (see [11] for a survey on that). It is well known that X has Fourier
type 2 if and only if X is isomorphic to a Hilbert space ( [9]) and that X has Fourier
type p if and only if X∗ has.

Definition 4.1. Let 1 ≤ p ≤ 2. X is said to have B-Fourier type p if there exists
C > 0 such that

sup
‖y‖=1

‖(B(f̂B(k), y))k∈Z‖�p′ (Z) ≤ C‖f‖Lp
B(T,X)

for any f ∈ P(T, X).

Remark 4.2. Every Banach space X has B-Fourier type 1.

Proposition 4.3. If Z has Fourier type p then X has B-Fourier type p.
In particular every Banach space X has D-Fourier type 2.

Proof. Let f ∈ P(T, X) and y ∈ Y . From the assumption

‖(B(f̂B(k), y))k∈Z‖�p′ (Z) = ‖(By(f )̂(k))k∈Z‖�p′ (Z)

≤ C‖By(f)‖Lp(Z)

≤ C‖y‖‖f‖Lp(T,X)

Taking suprema one gets the result. �
It is well known that "q has Fourier-type min{q, q′}.

Proposition 4.4. Let 2 ≤ q ≤ ∞. For each r ∈ [q′, 2] there exists B such that "q
has B-Fourier type r.

Proof. For r = 2 take B = D and for r = q′ take B = B. Assume now
q′ < r < 2 < q.

Consider B = "q × "p → "r given by ((αn), (βn)) → (αnβn) for 1/p = 1/r − 1/q.
Using Proposition 4.3 and F ("r) = r one obtains the result. �
We now present some applications. theorems.
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Theorem 4.5. Let 1 ≤ p < ∞ and (Ω, µ) be σ-finite measure space. If Tn : X →
Lp(µ) be a sequence of bounded linear operator then there exists C > 0 such that

sup
‖x‖=1

(
n∑

j=1

‖Tj(x)‖max{p,p′}
Lp )1/max{p,p′} ≤ C sup

‖x‖=1

‖(
n∑

j=1

|Tj(x)|2)1/2‖Lp

for all n ∈ N.

Proof. Since Lp(µ) has Fourier-type min{p, p′}, applying Proposition 4.3 for the
bilinear map B : L(X,Lp(µ)) × X → Lp(µ) given by (T, x) → T (x) one has that
L(X,Lp(µ)) has B-Fourier type min{p, p′}. Now apply the result to the function
f(eit) =

∑n
j=1 Tje

i2jt and Kintchine’s inequality one more time. �

Remark 4.6. The previous result is immediate for p ≥ 2, since

‖(
n∑

j=1

|Tj(x)|p)1/p‖Lp ≤ ‖(
n∑

j=1

|Tj(x)|2)1/2‖Lp .

Corollary 4.7. Let 1 < p < 2 and denote ∆j(f)(eiθ) =
∑2j+1

n=2j+1 f̂(n)einθ. Then
there exists C > 0 such that

(
∑
j

‖∆j(f)‖p
′

Lp(T))
1/p′ ≤ C‖f‖Lp(T).

Proof. Apply Theorem 4.5 for Tj : Lp(T) → Lp(T) given by Tj(f) = ∆j(f)
together with Littlewood-Paley inequalities

‖(
n∑

j=1

|∆j(f)|2)1/2‖Lp ≈ ‖f‖Lp .

�
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[11] Garćıa-Cuerva, J, Kazarian, K. S., Kolyada, V. I., Torrea, J.L., Vector-valued
Hausdorff-Young inequality and applications, Russian Math. Surveys 53 (1998),
435-513



12 OSCAR BLASCO AND JOSÉ M. CALABUIG
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