FOURIER ANALYSIS WITH RESPECT TO BILINEAR MAPS

OSCAR BLASCO AND JOSÉ M. CALABUIG

ABSTRACT. Several results about convolution and Fourier coefficients for X-valued functions defined on the torus satisfying $\sup_{\|y\|=1} \int_{-\pi}^{\pi} \|B(f(e^{i\theta}), y)\| \frac{d\theta}{2\pi} < \infty$ for a bounded bilinear map $B: X \times Y \to Z$ are presented and some applications are given.

1. INTRODUCTION AND NOTATION

Let (\mathbb{T}, m) be the Lebesgue measure space over $\mathbb{T} = \{|z| = 1\}$, let X be a Banach space over \mathbb{K} (\mathbb{R} or \mathbb{C}). An X-valued function $f : \mathbb{T} \to X$ is said to be strongly measurable if there exits a sequence of simple functions, $(s_n) \in \mathcal{S}(\mathbb{T}, X)$, which converges to f a.e. It is called weakly measurable if $\langle f, x^* \rangle$ is measurable for any $x^* \in X^*$. We denote by $L^0(\mathbb{T}, X)$ and $L^0_{weak}(\mathbb{T}, X)$ the spaces of strongly and weakly measurable functions. As usual we denote by $P^p(\mathbb{T}, X)$ the Pettis pintegrable functions and by $L^p(\mathbb{T}, X)$ the Bochner *p*-integrable functions for $1 \leq 1$ $p < \infty$.

Convolutions with respect to bilinear maps were introduced and studied in [4, 5] in the setting of Bochner integrable functions:

Let Y and Z be a Banach spaces and let $B: X \times Y \to Z$ be a bounded bilinear map. If $f \in L^1(\mathbb{T}, X)$ and $g \in L^1(\mathbb{T}, Y)$ then the map $e^{i\theta} \to B(f(e^{i(t-\theta)}), g(e^{i\theta}))$ is strongly measurable for each t and the fact

$$\|B(f(e^{i(t-\theta)}), g(e^{i\theta})\| \le \|B\| \|f(e^{i(t-\theta)})\| \|g(e^{i\theta})\|$$

allows to define

$$f *_B g(e^{it}) = \int_{-\pi}^{\pi} B(f(e^{i(t-\theta)}, g(e^{i\theta}))) \frac{d\theta}{2\pi} \in L^1(\mathbb{T}, Z)$$

and $||f *_B g||_{L^1(\mathbb{T},Z)} \leq ||f||_{L^1(\mathbb{T},X)} ||g||_{L^1(\mathbb{T},Y)}$. Also it is clear that $\hat{f}(n) = \int_{-\pi}^{\pi} f(e^{i\theta}) e^{-in\theta} \frac{d\theta}{2\pi}$ is well defined (as Bochner integral) for $n \in \mathbb{Z}$ and $f \in L^1(\mathbb{T}, X)$.

Actually the following formula holds (see [4, 5]) for $f \in L^1(\mathbb{T}, X)$ and $g \in$ $L^1(\mathbb{T},Y),$

$$(f *_B g)(n) = B(\hat{f}(n), \hat{g}(n)).$$

In this paper we shall try to develop the theory for a wider class of functions integrable with respect the bilinear map that has been recently considered by the authors in [7], and which allows to extend the results in [4, 5].

Given a bounded bilinear map $B: X \times Y \to Z$, we shall be denoting by $B_x \in$ $\mathcal{L}(Y,Z)$ and $B^y \in \mathcal{L}(X,Z)$ the corresponding linear operators $B_x(y) = B(x,y)$ and

Key words and phrases. vector-valued functions, Pettis and Bochner integrals, Fourier type. 2000 Mathematical Subjects Classifications. Primary 42B30, 42B35, Secondary 47B35

The authors gratefully acknowledges support by Spanish Grants BMF2002-04013 and MTN2004-21420-E

 $B^y(x) = B(x, y)$. The following notions were introduced in [7]: A triple (Y, Z, B)is admissible for X if Y and Z are Banach spaces and $B: X \times Y \to Z$ is a bounded bilinear map such that $x \to B_x$ is injective from $X \to \mathcal{L}(Y, Z)$, i.e. B(x, y) = 0 for all $y \in Y$ implies x = 0. X is said to be a (Y, Z, B)-normed space if there exists C > 0 such that $||x|| \leq C ||B_x||$ for all $x \in X$, that is X can be understood as a subspace of $\mathcal{L}(Y, Z)$ with some equivalent norm.

Also we define the "adjoints" $B^*:X\times Z^*\to Y^*$ and $B_*:Y\times Z^*\to X^*$ by the formulas

(1)
$$\langle B^*(x,z^*),y\rangle = \langle B(x,y),z^*\rangle$$

(2)
$$\langle B_*(y, z^*), x \rangle = \langle B(x, y), z^* \rangle$$

Hence $(B^*)_x = (B_x)^*$ and $(B_*)_y = (B^y)^*$.

Clearly (Y, Z, B) is admissible for X if and only if (Z^*, Y^*, B^*) is. Observe that X is (Y, Z, B) normed if and only if there exists $C_1, C_2 > 0$ such that

$$C_1 \le \sup_{\|x\|=\|y\|=\|z^*\|=1} |\langle B(x,y), z^* \rangle| \le C_2.$$

Therefore X is (Y, Z, B) normed only if X is (Z^*, Y^*, B^*) normed if and only if Y is (Z^*, X^*, B_*) normed.

Throughout the paper we always assume that X is (Y, Z, B) normed. Our aim is to show that some of the results from vector-valued Fourier Analysis can be extended to more general functions and bilinear maps.

As in [7] we say that $f : \mathbb{T} \to X$ is (Y, Z, B)-measurable if $B(f, y) \in L^0(\mathbb{T}, Z)$ for any $y \in Y$ and denote the class of such functions by $L^0_B(\mathbb{T}, X)$.

For $1 \le p < \infty$ and a simple function $s = \sum_{k=1}^{n} x_k \chi_{A_k}$ one has that

$$\begin{split} \|s\|_{L^p_B(X)} &= \sup_{\|y\|=1} \|B^y(s)\|_{L^p(Z)} \\ &= \sup_{\|y\|=1} (\sum_{k=1}^n \|B(x_k, y)\|^p \mu(A_k))^{1/p} \\ &= \sup\{\|\sum_{k=1}^n B^*(x_k, z^*_k) \mu(A_k)\| : (\sum_{k=1}^n \|z^*_k\|^{p'})^{1/p'} = 1\}. \end{split}$$

We define $L^p_B(\mathbb{T}, X)$ as the closure of simple functions $\mathcal{S}(\mathbb{T}, X)$ under this norm. Of course $L^p(\mathbb{T}, X) \subset L^p_B(\mathbb{T}, X)$ and $||f||_{L^p_B(X)} \leq ||f||_{L^p(X)}$ for any $f \in L^p(\mathbb{T}, X)$. In particular $L^p_B(\mathbb{T}, X)$ for the cases $\mathcal{D} : X \times X^* \to \mathbb{K}$ given by $\mathcal{D}(x, x^*) = \langle x, x^* \rangle$ and $\mathcal{B} : X \times \mathbb{K} \to X$ given by $\mathcal{B}(x, \lambda) = \lambda x$ correspond to $P^p(\mathbb{T}, X)$ and $L^p(\mathbb{T}, X)$ respectively.

The reader is referred to [7] for some general facts about the theory on these spaces. It is shown there that, under the assumption of X being a (Y, Z, B)-normed space, one obtains that $L^1_B(\mathbb{T}, X) \subseteq P^1(\mathbb{T}, X)$ and also the existence of the *B*-integral over sets *E* for functions in $L^1_B(\mathbb{T}, X)$. There are some general examples to have in mind where the general theory can be applied.

Example 1.1. Let $X = \mathcal{L}(Y, Z)$ for some Banach spaces Y, Z. Define

(3)
$$\mathcal{O}_{Y,Z} : \mathcal{L}(Y,Z) \times Y \to Z, \qquad \mathcal{O}_{Y,Z}(T,y) = T(y).$$

Clearly one has $(\mathcal{O}_{Y,Z})^*(T, z^*) = \mathcal{O}_{Z^*,Y^*}(T^*, z^*).$

If
$$f : \mathbb{T} \to \mathcal{L}(Y, Z)$$
, defined by $f(e^{it}) = T_t$, belongs to $L^1_{\mathcal{O}_{Y,Z}}(\mathbb{T}, \mathcal{L}(X, Y))$ then
 $\|f\|_{L^1_{\mathcal{O}_{Y,Z}}(\mathcal{L}(X,Y))} = \sup_{\|y\|=1} \int_{-\pi}^{\pi} \|T_{\theta}(y)\| \frac{d\theta}{2\pi}$

and there exists $T \in \mathcal{L}(X, Y)$ such that $T(y) = \int_{-\pi}^{\pi} T_{\theta}(y) \frac{d\theta}{2\pi}$.

Example 1.2. (Hölder's bilinear map) Let (Ω, η) be a σ -finite measure space, $1 \le p_1, p_2 \le \infty$ and $\frac{1}{p_3} = \frac{1}{p_1} + \frac{1}{p_2}$. Consider

$$\mathcal{H}_{p_1,p_2}: L^{p_1}(\eta) \times L^{p_2}(\eta) \to L^{p_3}(\eta), \qquad (f,g) \to fg.$$

It was shown in [7] that for $\Omega = \mathbb{N}$ with the counting measure then

$$\|f\|_{L^{p_3}_{\mathcal{H}_{p_1,p_2}}(\ell_{p_1})} = \|(f_n)\|_{\ell_{p_1}(L^{p_3})}$$

where $f = (f_n) \in L^0(\mathbb{T}, \ell^{p_1}).$

Example 1.3. (Young's bilinear map) Let G be locally compact abelian group and m the Haar measure, $1 \le p_1, p_2 \le \infty$ with $\frac{1}{p_1} + \frac{1}{p_2} \ge 1$ and $\frac{1}{p_3} = \frac{1}{p_1} + \frac{1}{p_2} - 1$. Consider

$$\mathcal{Y}_{p_1,p_2}: L^{p_1}(G) \times L^{p_2}(G) \to L^{p_3}(G), \qquad (f,g) \to f * g.$$

It was shown in [7] that $L^p(\mathbb{R})$ is $(L^1(\mathbb{R}), L^p(\mathbb{R}), \mathcal{Y}_{p,1})$ -normed whenever $L^1(G)$ has a bounded approximation of the identity. However $(L^2(\mathbb{R}), L^2(\mathbb{R}), \mathcal{Y}_{1,2})$ is an admissible triple for $L^1(\mathbb{R})$, but $L^1(\mathbb{R})$ is not $(L^2(\mathbb{R}), L^2(\mathbb{R}), \mathcal{Y}_{1,2})$ -normed.

Also for $G = \mathbb{R}$ with the Lebesgue measure it is easy to show that

$$\|f\|_{L^p_{\mathcal{Y}_{p_1,1}}(L^{p_1}(\mathbb{R}))} = \|f\|_{L^p(L^{p_1}(\mathbb{R}))}$$

for any $f \in L^0(\mathbb{T}, L^{p_1}(\mathbb{R}))$.

We denote by $\mathcal{P}(\mathbb{T}, X)$ the space of X-valued trigonometric polynomials. It is clear that $\mathcal{P}(\mathbb{T}, X)$ is dense in $L^p_B(\mathbb{T}, X)$.

We start by pointing out a result which will be used in the sequel.

Proposition 2.1. (see [7]) If $f \in L^1_B(\mathbb{T}, X)$ and $E \in \Sigma$ there exists a unique $x_E \in X$ such that for any $y \in Y$

$$B(x_E, y) = \int_E B(f, y) d\mu.$$

The value $x_E = (B) \int_E f d\mu$ is called the *B*-integral of *f* over *E*.

Of course $(B) \int_E f d\mu$ coincides always with the Pettis integral, and in the case of Bochner integrable functions then $(B) \int_E f d\mu = \int_E f d\mu$ is the Bochner integral.

It is clear that if $f \in L^1_B(\mathbb{T}, X)$ and $\varphi \in L^{\infty}(\mathbb{T})$ then $f\varphi \in L^1_B(\mathbb{T}, X)$. Hence Proposition 2.1 allows to give the following definitions.

Definition 2.2. Let $n \in \mathbb{Z}$ and $f \in L^1_B(\mathbb{T}, X)$. Define the n-Fourier coefficient with respect to B as

$$\hat{f}^B(n) = (B) \int_{-\pi}^{\pi} f(e^{i\theta}) e^{-in\theta} \frac{d\theta}{2\pi}$$

Hence

$$B(\hat{f}^{B}(n), y) = \int_{-\pi}^{\pi} B(f(e^{i\theta}), y) e^{-in\theta} \frac{d\theta}{2\pi} = (B^{y}(f))(n).$$

Of course if $f \in L^1(\mathbb{T}, X)$ then $\hat{f}^B(n) = \hat{f}(n)$ for all $n \in \mathbb{Z}$. In particular if $f \in \mathcal{P}(\mathbb{T}, X)$ with $f(e^{i\theta}) = \sum_{k=-N}^{M} x_k e^{ik\theta}$ then $\hat{f}^B(n) = x_n$ for $n \in [-N, M]$ and $\hat{f}^B(n) = 0$ otherwise.

Proposition 2.3. If $f \in L^1_B(\mathbb{T}, X)$ then $(\hat{f}^B(n))_{n \in \mathbb{Z}} \in c_0(\mathbb{Z}, X)$. Moreover $\|\hat{f}^B(n)\| \leq C \|f\|_{L^1_p(\mathbb{T}, X)}.$

Proof. Using that X is (Y, Z, B)-normed one has

 $\|\hat{f}^B(n)\| \le C \sup_{\|y\|=1} \|B(\hat{f}^B(n), y))\| \le C \|f\|_{L^1_B(\mathbb{T}, X)}.$

The standard approximation for polynomials show that $(\hat{f}^B(n))_{n \in \mathbb{Z}} \in c_0(\mathbb{Z}, X)$. \Box Let us denote $f_t(e^{i\theta}) = f(e^{i(t-\theta)})$ for $f \in L^p_B(\mathbb{T}, X)$. It is obvious that $f_t \in L^p_B(\mathbb{T}, X)$ and $\|f_t\|_{L^p_B(\mathbb{T}, X)} = \|f\|_{L^p_B(\mathbb{T}, X)}$.

Definition 2.4. Let $f \in L^1_B(\mathbb{T}, X)$ and $\varphi \in L^\infty(\mathbb{T})$. Define the convolution with respect to B by

$$f *^B \varphi(e^{it}) = (B) \int_{-\pi}^{\pi} f_t(e^{i\theta})\varphi(e^{i\theta}) \frac{d\theta}{2\pi}, \quad e^{it} \in \mathbb{T}.$$

Hence

$$B(f *^B \varphi(e^{it}), y) = \int_{-\pi}^{\pi} B(f(e^{i(t-\theta)}), y)\varphi(e^{i\theta}) \frac{d\theta}{2\pi} = B^y(f) * \varphi(e^{it})$$

for any trigonometric polynomial φ .

Proposition 2.5. If $f \in L^1_B(\mathbb{T}, X)$ and $\varphi \in L^\infty(\mathbb{T})$ then

$$||f *^B \varphi||_{L^1_B(\mathbb{T},X)} \le ||f||_{L^1_B(\mathbb{T},X)} \cdot ||\varphi||_{L^1(\mathbb{T})}.$$

Proof.

$$\int_{-\pi}^{\pi} \|B(f*^{B}\varphi(e^{it}),y)\|\|\frac{dt}{2\pi} \leq \int_{-\pi}^{\pi} \int_{-\pi}^{\pi} \|B(f_{t}(e^{i\theta})\varphi(e^{i\theta}),y)\|\frac{d\theta}{2\pi}\frac{dt}{2\pi} \leq \int_{-\pi}^{\pi} (\int_{-\pi}^{\pi} \|B(f_{t}(e^{i\theta}),y)\|\frac{d\theta}{2\pi})|\varphi(e^{it})|\frac{dt}{2\pi} \leq \|f\|_{L^{1}_{B}(\mathbb{T},X)}\|\varphi\|_{L^{1}(\mathbb{T})}.$$

This allows to give the following definition.

Definition 2.6. If $f \in L^1_B(\mathbb{T}, X)$ and $\varphi \in L^1(\mathbb{T})$ we define the convolution $f *^B \varphi = \lim f *^B \varphi_n$

for any sequence of polynomials φ_n converging to $\varphi \in L^1(\mathbb{T})$. Of course $f *^B \varphi \in L^1_B(\mathbb{T}, X)$ and $\|f *^B \varphi\|_{L^1_B(\mathbb{T}, X)} \leq \|f\|_{L^1_B(\mathbb{T}, X)} \|\varphi\|_{L^1(\mathbb{T})}$.

Remark 2.7. If $f \in L^1_B(\mathbb{T}, X)$, $\varphi \in L^1(\mathbb{T})$ and $y \in Y$ then $B(f *^B \varphi, y) = B^y(f) * \varphi.$

We now give the connection between convolution and Fourier coefficients. **Proposition 2.8.** Let $n \in \mathbb{Z}$, $f \in L^1_B(\mathbb{T}, X)$ and $\varphi \in L^1(\mathbb{T})$ then $(f *^B \varphi)^B(n) = \hat{f}^B(n)\hat{\varphi}(n).$

Proof. Assume first that $\varphi(t) = e^{imt}$ for some $m \in \mathbb{Z}$. Then

$$(f *^{B} \varphi)(e^{it}) = (B) \int_{-\pi}^{\pi} f_{t}(e^{i\theta}) e^{mi\theta} \frac{d\theta}{2\pi}$$
$$= (B) \int_{-\pi}^{\pi} f(e^{i(t-\theta)}) e^{mi\theta} \frac{d\theta}{2\pi}$$
$$= (B) \int_{-\pi}^{\pi} f(e^{i\theta}) e^{mi(t-\theta)} \frac{d\theta}{2\pi}$$
$$= e^{imt} \hat{f}^{B}(m).$$

This shows the result in this particular case. Now by linearity one gets the result for polynomials φ . Finally using Propositions 2.3 and 2.5 one extends to general functions $\varphi \in L^1(\mathbb{T})$.

Let us now extend the notion of convolution between two different vector-valued functions.

Definition 2.9. Let $f \in L^1_B(\mathbb{T}, X)$ and $g \in L^1(\mathbb{T}) \otimes Y$, say $g = \sum_{k=0}^M y_k \phi_k$ where $y_k \in Y$ and $\phi_k \in L^1(\mathbb{T})$. Define the convolution

$$f *_B g = \sum_{k=0}^{M} B(f *^B \phi_k, y_k).$$

Remark 2.10. In particular $B(f *^B \phi, y) = f *_B (\phi \otimes y) = B^y(f) * \phi$ for $\phi \in L^1(\mathbb{T})$ and $y \in Y$.

Proposition 2.11. If $f \in L^1_B(\mathbb{T}, X)$ and $g \in \mathcal{P}(\mathbb{T}, Y)$ then

$$f *_B g(e^{it}) = \int_{-\pi}^{\pi} B(f(e^{i(t-\theta)}), g(e^{i\theta})) \frac{d\theta}{2\pi}$$

Proof. Take $g = \sum_{k=-N}^{M} \phi_k \otimes y_k$ where $y_k \in Y$ and $\phi_k(e^{it}) = e^{ikt}$. Apply Remark 2.10 to obtain

$$f *_B g(e^{it}) = \sum_{k=-N}^M f *_B (\phi_k \otimes y_k)(e^{it})$$

=
$$\sum_{k=-N}^M \int_{-\pi}^{\pi} B(f(e^{i(t-\theta)}), y_k)\phi_k(e^{i\theta})\frac{d\theta}{2\pi}$$

=
$$\int_{-\pi}^{\pi} B(f(e^{i(t-\theta)}), g(e^{i\theta}))\frac{d\theta}{2\pi}.$$

Proposition 2.12. Let $f \in L^1_B(\mathbb{T}, X)$ and $g \in \mathcal{S}(\mathbb{T}, Y)$. Then

 $||f *_B g||_{L^1(Z)} \le ||f||_{L^1_B(X)} ||g||_{L^1(Y)}.$

Proof. Assume $g = \sum_{k=0}^{M} y_k \phi_k$ where $\phi_k = \chi_{I_k}$ for pairwise disjoint intervals. Hence

$$\begin{split} \|f *_B g\|_{L^1(Z)} &\leq \sum_{k=0}^M \|B(f *^B \phi_k, y_k)\|_{L^1(Z)} \\ &= \sum_{k=0}^M \|B^{y_k}(f) * \phi_k\|_{L^1(Z)} \\ &= \sum_{k=0}^M \|B^{y_k}(f)\|_{L^1(Z)} \|\phi_k\|_{L^1} \\ &= \sum_{k=0}^M \|B^{\frac{y_k}{\|y_k\|}}(f)\|_{L^1(Z)} \|y_k\| \|\phi_k\|_{L^1} \\ &\leq \|f\|_{L^1_B(X)} \|g\|_{L^1(Y)}. \end{split}$$

This allows us to give the following definition.

Definition 2.13. If $f \in L^1_B(\mathbb{T}, X)$ and $g \in L^1(\mathbb{T}, Y) = L^1(\mathbb{T}) \hat{\otimes} Y$ we define the convolution

$$f *_B g = \lim_{n \to \infty} f *_B g_r$$

for any sequence of simple functions $(g_n) \subset \mathcal{S}(\mathbb{T}, Y)$ converging to $g \in L^1(\mathbb{T}, Y)$.

Of course $f *_B g \in L^1(\mathbb{T}, Z)$ and $||f *_B g||_{L^1(\mathbb{T}, Z)} \le ||f||_{L^1_B(\mathbb{T}, X)} ||g||_{L^1(\mathbb{T}, Y)}$.

Theorem 2.14. Let $n \in \mathbb{Z}$, $f \in L^1_B(\mathbb{T}, X)$ and $g \in L^1(\mathbb{T}, Y)$. Then

$$(f *_B g)(n) = B(\hat{f}^B(n), \hat{g}(n))$$

Proof. Assume first that $g = \phi \otimes y$ for $\phi \in L^{\infty}(\mathbb{T})$ and $y \in Y$. Therefore

$$\begin{array}{rcl} (f *_B g) \widehat{(}n) &=& B(f *^B \phi, y) \widehat{(}n) \\ &=& B((f *^B \phi) \widehat{(}n), y) \\ &=& B(\widehat{f}^B(n) \widehat{\phi}(n), y) \\ &=& B(\widehat{f}^B(n), \widehat{g}(n)). \end{array}$$

This extends to $g \in \mathcal{P}(\mathbb{T}, Y)$ by linearity. Now use the density of $\mathcal{P}(\mathbb{T}, Y)$ in $L^1(\mathbb{T}, Y)$ to obtain

$$(f *_B g)(n) = \lim_{k \to \infty} (f *_B g_k)(n)$$

=
$$\lim_{k \to \infty} B(\hat{f}^B(n), \hat{g}_k(n))$$

=
$$B(\hat{f}^B(n), \hat{g}(n)).$$

3. Young's Theorem

We shall present here several analogues to Young's theorems about convolutions in our setting.

Note that for any $f\in L^1(\mathbb{T},X)$ and $\varphi\in L^1(\mathbb{T})$ the following pointwise estimate holds

$$\|f * \varphi\| \le \|f\| * |\varphi|.$$

Using the scalar-valued Young theorem one clearly obtains that if $f \in L^p(\mathbb{T}, X)$ and $\varphi \in L^q(\mathbb{T})$ then $f * \varphi \in L^r(\mathbb{T}, X)$ with

$$\|f * \varphi\|_{L^r(\mathbb{T},X)} \le \|f\|_{L^p(\mathbb{T},X)} \|\varphi\|_{L^q(\mathbb{T})}$$

where $1 \le p, q, r \le \infty$ with $\frac{1}{r} = \frac{1}{p} + \frac{1}{q} - 1$. Using Remark 2.7 and the previous observation we can formulate the following extension.

Proposition 3.1. Let $1 \leq p < \infty$, $1 \leq q \leq \infty$ with $\frac{1}{p} + \frac{1}{q} \geq 1$ and let $\frac{1}{r} = \frac{1}{p} + \frac{1}{q} - 1$. If $f \in L^p_B(\mathbb{T}, X)$ and $\varphi \in L^q(\mathbb{T})$ then $f *^B \varphi \in L^r_B(\mathbb{T}, X)$. Moreover

$$\|f *^B \varphi\|_{L^r_B(\mathbb{T},X)} \le \|f\|_{L^p_B(\mathbb{T},X)} \|\varphi\|_{L^q(\mathbb{T})}.$$

Let us establish the dualities to be used in our bilinear setting.

Lemma 3.2. Let $B: X \times Y \to Z$ bounded bilinear map and $B_*: Y \times Z^* \to X^*$ given by $\langle B(x,y), z^* \rangle = \langle x, B_*(y,z^*) \rangle.$

If $f \in \mathcal{P}(\mathbb{T}, X)$, $g \in \mathcal{P}(\mathbb{T}, Y)$ and $h \in \mathcal{P}(\mathbb{T}, Z^*)$ then

$$\langle f *_B \bar{g}, h \rangle = \langle f, g *_{B_*} h \rangle \text{ and } \langle f *_B g, h \rangle = \langle f *_{B^*} h, g \rangle,$$

where $\bar{g}(e^{i\theta}) = g(e^{-i\theta})$.

Proof. Observe that if F and G are polynomial with values in a Banach space and its dual respectively then

$$\langle F, G \rangle = \int_{-\pi}^{\pi} \langle F(e^{i\theta}), G(e^{i\theta}) \rangle \frac{d\theta}{2\pi} = \sum \langle \hat{F}(n), \hat{G}(-n) \rangle$$

Taking into account that

$$f *_B \bar{g}(e^{it}) = \sum B(\hat{f}^B(n), \hat{g}(-n))e^{int}$$

one obtains

$$\begin{split} \langle f \ast_B \bar{g}, h \rangle &= \sum \langle B(\hat{f}(n), \hat{g}(-n)), \hat{h}(-n) \rangle \\ &= \sum \langle \hat{f}(n), B_*(\hat{g}(-n), \hat{h}(-n)) \rangle \\ &= \sum \langle \hat{f}(n), (g \ast_{B_*} h) (-n) \rangle \\ &= \langle f, g \ast_{B_*} h \rangle. \end{split}$$

Similarly

$$\begin{split} \langle \bar{f} *_B g, h \rangle &= \sum \langle B(\hat{f}(-n), \hat{g}(n)), \hat{h}(-n) \rangle \\ &= \sum \langle B^*(\hat{f}(-n), \hat{h}(-n)), \hat{g}(n) \rangle \\ &= \sum \langle (f *_{B^*} h) (-n), \hat{g}(n) \rangle \\ &= \langle f *_{B^*} h, g \rangle. \end{split}$$

Let us now present the version of Young's theorem in our general setting.

Theorem 3.3. *Let* 1*.* (i) If $f \in L^p_B(\mathbb{T}, X)$ and $g \in L^1(\mathbb{T}, Y)$ then $f *_B g \in L^p(\mathbb{T}, Z)$. Moreover $\|f *_B g\|_{L^p(Z)} \le \|f\|_{L^p_{\mathcal{D}}(X)} \|g\|_{L^1(Y)}.$

(ii) If
$$f \in L^{p}_{B^{*}}(\mathbb{T}, X)$$
 and $g \in L^{p'}(\mathbb{T}, Y)$ then $f *_{B} g \in L^{\infty}(\mathbb{T}, Z)$. Moreover
 $\|f *_{B} g\|_{L^{\infty}(Z)} \leq \|f\|_{L^{p}_{B^{*}}(X)} \|g\|_{L^{p'}(Y)}.$
(iii) If $f \in L^{p'}(\mathbb{T}, X)$ and $g \in L^{p}_{B_{*}}(\mathbb{T}, Y)$ then $f *_{B} g \in L^{\infty}(\mathbb{T}, Z)$. Moreover
 $\|f *_{B} g\|_{L^{\infty}(Z)} \leq \|f\|_{L^{1}(X)} \|g\|_{L^{p}_{B^{*}}(Y)}.$

(iv) If $f \in L^p_B(\mathbb{T}, X) \cap L^p_{B^*}(\mathbb{T}, X)$, and $g \in L^q(\mathbb{T}, Y)$ for $1 \leq q \leq p'$ then $f *_B g \in L^r(\mathbb{T}, Z)$ where $\frac{1}{r} = \frac{1}{p} + \frac{1}{q} - 1$. Moreover

$$\|f *_B g\|_{L^r(\mathbb{T},Z)} \le \|f\|_{L^p_B(\mathbb{T},X)}^{p/r'} \|f\|_{L^p_{B^*}(\mathbb{T},X)}^{1-p/r'} \|g\|_{L^q(\mathbb{T})}.$$

Proof. (i) Assume $g = \sum_{k=0}^{M} y_k \phi_k$ where $\phi_k = \chi_{I_k}$ for pairwise disjoint intervals. Hence

$$\begin{split} \|f *_B g\|_{L^p(Z)} &\leq \sum_{k=0}^M \|B(f *^B \phi_k, y_k)\|_{L^p(Z)} \\ &= \sum_{k=0}^M \|B^{y_k}(f) * \phi_k\|_{L^p(Z)} \\ &= \sum_{k=0}^M \|B^{\frac{y_k}{\|y_k\|}}(f)\|_{L^p(Z)} \|y_k\| \|\phi_k\|_{L^1} \\ &\leq \|f\|_{L^p_B(X)} \|g\|_{L^1(Y)}. \end{split}$$

As usual one extends to general functions $g \in L^1(\mathbb{T}, Y)$ using the density of simple functions. (ii) Using Lemma 2.2 and (i) one gets for $f \in \mathcal{P}(\mathbb{T}, Y)$ and $g \in \mathcal{P}(\mathbb{T}, Y)$ that

(ii) Using Lemma 3.2 and (i) one gets, for
$$f \in \mathcal{P}(\mathbb{T}, X)$$
 and $g \in \mathcal{P}(\mathbb{T}, Y)$, that
 $\|f *_B g\|_{L^{\infty}(Z)} = \sup\{|\langle f *_B g, h \rangle| : h \in \mathcal{P}(\mathbb{T}, Z^*), \|h\|_{L^1(Z^*)} = 1\}$
 $= \sup\{|\langle \bar{f} *_{B^*} h, g \rangle| : h \in \mathcal{P}(\mathbb{T}, Z^*), \|h\|_{L^1(Z^*)} = 1\}$
 $\leq \sup\{\|g\|_{L^{p'}(Y)}\|\bar{f} *_{B^*} h\|_{L^p(Y^*)} : h \in \mathcal{P}(\mathbb{T}, Z^*), \|h\|_{L^1(Z^*)} = 1\}$
 $\leq \|f\|_{L^p_{B^*}(X)}\|g\|_{L^{p'}(Y)}.$

Using the density of polynomials the result is completed.

(iii) is analogous to (ii).

(iv) follows from interpolation using (i) and (ii).

Remark 3.4. For $\mathcal{D}: X \times X^* \to \mathbb{K}$ given by $\mathcal{D}(x, x^*) = \langle x, x^* \rangle$ and $\mathcal{B}: X \times \mathbb{K} \to X$ given by $\mathcal{B}(x, \lambda) = \lambda x$ one has that $\mathcal{B}^* = \mathcal{D}$ and $\mathcal{D}^* = \mathcal{B}$. Therefore $L^p_{\mathcal{B}}(\mathbb{T}, X) \subset L^p_{\mathcal{B}^*}(\mathbb{T}, X)$, and there exists $f \in L^p_{\mathcal{D}}(\mathbb{T}, X) \setminus L^p_{\mathcal{D}^*}(\mathbb{T}, X)$.

We shall now observe that Young's theorem (see Theorem 3.3, (iv)) does not hold without the extra assumption $f \in L^p_{B^*}(\mathbb{T}, X)$.

Proposition 3.5. For any infinite dimensional Banach space X there exists $f \in L^1_{\mathcal{D}}(\mathbb{T}, X)$ and $g \in L^{\infty}(\mathbb{T}, X^*)$ such that $f *_{\mathcal{D}} g \notin L^{\infty}(\mathbb{T})$.

Proof. Assume the result does not hold true. Then if $f \in \mathcal{P}(\mathbb{T}, X)$ we have that for any $g \in \mathcal{P}(\mathbb{T}, X^*)$

$$|f *_{\mathcal{D}} g(0)| = |\int_{-\pi}^{\pi} \langle f(e^{-i\theta}), g(e^{i\theta}) \rangle \frac{d\theta}{2\pi}| \le C ||f||_{L^{1}_{\mathcal{B}}(X)} ||g||_{L^{\infty}(Y)}.$$

This would imply that $||f||_{L^1(\mathbb{T},X)} \leq C ||f||_{P^1(\mathbb{T},X)}$ for any polynomial, and then X would be finite dimensional.

Let us point out an application of our convolution which extends the bilinear Marcinkiewicz-Zygmund theorem (see [5], Corollary 2.7).

Theorem 3.6. Let $1 \le p_i < \infty$ and (Ω_i, μ_i) be σ -finite measure spaces for i = 1, 2. If X is $(L^{p_1}(\mu_1), L^{p_2}(\mu_2), B)$ -normed then there exists C > 0 such that

$$\|(\sum_{j=1}^{n} |B(x_{j},\phi_{j})|^{2})^{1/2}\|_{L^{p_{2}}} \leq C \sup_{\|\varphi\|_{p_{1}}=1} \|(\sum_{j=1}^{n} |B(x_{j},\varphi)|^{2})^{1/2}\|_{L^{p_{2}}} \|(\sum_{j=1}^{n} |\phi_{j}|^{2})^{1/2}\|_{L^{p_{1}}}$$

for all $x_1, ..., x_n \in X$, $\phi_1, ..., \phi_n \in L^{p_1}(\mu_1)$, $n \in \mathbb{N}$.

Proof. Let $f(e^{it}) = \sum_{j=1}^{n} x_j e^{i2^j t} \in \mathcal{P}(\mathbb{T}, X)$ and $g(e^{it}) = \sum_{j=1}^{n} \phi_j e^{i2^j t} \in \mathcal{P}(\mathbb{T}, L^{p_1}(\mu_1))$. Hence $f *_B g(e^{it}) = \sum_{j=1}^{n} B(x_j, \phi_j) e^{i2^j t}$. Now use Kintchine's inequalities (see [10]), which assert that

$$\|\sum_{j=1}^{n}\varphi_{j}e^{i2^{j}t}\|_{L^{1}(\mathbb{T},L^{p}(\mu))} \approx \|(\sum_{j=1}^{n}|\varphi_{j}|^{2})^{1/2}\|_{L^{p}(\mu)}$$

for any $0 and <math>\varphi_1, \dots, \varphi_n \in L^p(\mu)$, together with

$$\|f *_B g\|_{L^1(\mathbb{T}, L^{p_2}(\mu_2))} \le \|f\|_{L^1_B(\mathbb{T}, X)} \|g\|_{L^1(\mathbb{T}, L^{p_1}(\mu_2))}$$

to obtain the result.

Corollary 3.7. Let (Ω, μ) be σ -finite measure space and $1 \le p_i < \infty$ for i = 1, 2, 3 such that $1/p_3 = 1/p_1 + 1/p_2$. Then there exists C > 0 such that

$$\|(\sum_{j=1}^{n} |\psi_{j}\phi_{j}|^{2})^{1/2}\|_{L^{p_{3}}} \leq C \|(\sum_{j=1}^{n} |\psi_{j}|^{2})^{1/2}\|_{L^{p_{1}}}\|(\sum_{j=1}^{n} |\phi_{j}|^{2})^{1/2}\|_{L^{p_{2}}}$$

for all $\psi_1, ..., \psi_n \in L^{p_1}(\mu), \phi_1, ..., \phi_n \in L^{p_2}(\mu), n \in \mathbb{N}.$

Proof. Apply Theorem 3.6 for $B: L^{p_1}(\mu) \times L^{p_2}(\mu) \to L^{p_3}(\mu)$ given by $(\phi, \psi) \to \phi \psi$ and use the fact

$$\sup_{\|\varphi\|_{p_2}=1} \|(\sum_{j=1}^n |B(\phi_j,\varphi)|^2)^{1/2}\|_{L^{p_3}} = \sup_{\|\varphi\|_{p_2}=1} \|(\sum_{j=1}^n |\phi_j|^2)^{1/2}|\varphi|\|_{L^{p_3}} = \|(\sum_{j=1}^n |\phi_j|^2)^{1/2}\|_{L^{p_3}}$$

Corollary 3.8. Let (\mathbb{R}, m) be the Lebesgue measure space and $1 \leq p < \infty$. Then there exists C > 0 such that

$$\|(\sum_{j=1}^{n} |\psi_{j} * \phi_{j}|^{2})^{1/2}\|_{L^{p}} \le C \sup_{\|\varphi\|_{1}=1} \|(\sum_{j=1}^{n} |\psi_{j} * \varphi|^{2})^{1/2}\|_{L^{p}} \|(\sum_{j=1}^{n} |\phi_{j}|^{2})^{1/2}\|_{L^{p}}$$

for all $\psi_1, ..., \psi_n \in L^p(\mathbb{R}), \ \phi_1, ..., \phi_n \in L^1(\mathbb{R}), \ n \in \mathbb{N}.$

Proof. Apply Theorem 3.6 for $B: L^p(\mathbb{R}) \times L^1(\mathbb{R}) \to L^p(\mathbb{R})$ given by $(\phi, \psi) \to \phi * \psi$.

We now present the following different generalization of the Marcinkiewizc-Zygmund Theorem (see [10]).

Theorem 3.9. Let $1 \le p_i < \infty$ and (Ω_i, μ_i) be σ -finite measure spaces for i = 1, 2. Then there exists C > 0 such that

$$\|(\sum_{j=1}^{n} |T_{j}(\phi_{j})|^{2})^{1/2}\|_{L^{p_{2}}} \leq C \sup_{\|\varphi\|_{p_{1}}=1} \|(\sum_{j=1}^{n} |T_{j}(\varphi)|^{2})^{1/2}\|_{L^{p_{2}}} \|(\sum_{j=1}^{n} |\phi_{j}|^{2})^{1/2}\|_{L^{p_{1}}}$$

for all $\phi_1, ..., \phi_n \in L^{p_1}(\mu_1), T_j : L^{p_1}(\mu_1) \to L^{p_2}(\mu_2)$ bounded linear operators for $1 \leq j \leq n$, and $n \in \mathbb{N}$.

Proof. Apply Theorem 3.6 for $B : \mathcal{L}(L^{p_1}(\mu_1), L^{p_2}(\mu_2)) \times L^{p_1}(\mu_1) \to L^{p_2}(\mu_2)$ given by $(T, \psi) \to T(\psi)$.

4. HAUSSDORFF-YOUNG INEQUALITY

We recall that for $1 \le p \le 2$ a complex Banach space X is said have Fourier type p if there exists C > 0 such that

$$(\sum_{k \in \mathbb{Z}} \|\hat{f}(k)\|^{p'})^{1/p'} \le C \|f\|_{L^p(\mathbb{T},X)}$$

for any $f \in \mathcal{P}(\mathbb{T}, X)$ and p', as usual, verifies 1/p + 1/p' = 1.

This notion was first introduced in [13] and it has been extensively studied by different authors (see [11] for a survey on that). It is well known that X has Fourier type 2 if and only if X is isomorphic to a Hilbert space ([9]) and that X has Fourier type p if and only if X^* has.

Definition 4.1. Let $1 \le p \le 2$. X is said to have B-Fourier type p if there exists C > 0 such that

$$\sup_{\|y\|=1} \|(B(\hat{f}^B(k), y))_{k \in \mathbb{Z}}\|_{\ell_{p'}(Z)} \le C \|f\|_{L^p_B(\mathbb{T}, X)}$$

for any $f \in \mathcal{P}(\mathbb{T}, X)$.

Remark 4.2. Every Banach space X has B-Fourier type 1.

Proposition 4.3. If Z has Fourier type p then X has B-Fourier type p. In particular every Banach space X has \mathcal{D} -Fourier type 2.

Proof. Let $f \in \mathcal{P}(\mathbb{T}, X)$ and $y \in Y$. From the assumption

$$\begin{aligned} \| (B(\hat{f}^{B}(k), y))_{k \in \mathbb{Z}} \|_{\ell_{p'}(Z)} &= \| (B^{y}(f)(k))_{k \in \mathbb{Z}} \|_{\ell_{p'}(Z)} \\ &\leq C \| B^{y}(f) \|_{L^{p}(Z)} \\ &\leq C \| y \| \| f \|_{L^{p}(\mathbb{T}, X)} \end{aligned}$$

Taking suprema one gets the result.

It is well known that ℓ_q has Fourier-type min $\{q, q'\}$.

Proposition 4.4. Let $2 \le q \le \infty$. For each $r \in [q', 2]$ there exists B such that ℓ_q has B-Fourier type r.

Proof. For r = 2 take $B = \mathcal{D}$ and for r = q' take $B = \mathcal{B}$. Assume now q' < r < 2 < q.

Consider $B = \ell_q \times \ell_p \to \ell_r$ given by $((\alpha_n), (\beta_n)) \to (\alpha_n \beta_n)$ for 1/p = 1/r - 1/q. Using Proposition 4.3 and $F(\ell_r) = r$ one obtains the result. \Box We now present some applications. theorems. **Theorem 4.5.** Let $1 \le p < \infty$ and (Ω, μ) be σ -finite measure space. If $T_n : X \to L^p(\mu)$ be a sequence of bounded linear operator then there exists C > 0 such that

$$\sup_{\|x\|=1} \left(\sum_{j=1}^{n} \|T_j(x)\|_{L^p}^{\max\{p,p'\}}\right)^{1/\max\{p,p'\}} \le C \sup_{\|x\|=1} \|\left(\sum_{j=1}^{n} |T_j(x)|^2\right)^{1/2}\|_{L^p}$$

for all $n \in \mathbb{N}$.

Proof. Since $L^p(\mu)$ has Fourier-type min $\{p, p'\}$, applying Proposition 4.3 for the bilinear map $B : \mathcal{L}(X, L^p(\mu)) \times X \to L^p(\mu)$ given by $(T, x) \to T(x)$ one has that $\mathcal{L}(X, L^p(\mu))$ has B-Fourier type min $\{p, p'\}$. Now apply the result to the function $f(e^{it}) = \sum_{i=1}^{n} T_j e^{i2^j t}$ and Kintchine's inequality one more time.

Remark 4.6. The previous result is immediate for $p \ge 2$, since

$$\|(\sum_{j=1}^{n} |T_{j}(x)|^{p})^{1/p}\|_{L^{p}} \leq \|(\sum_{j=1}^{n} |T_{j}(x)|^{2})^{1/2}\|_{L^{p}}.$$

Corollary 4.7. Let $1 and denote <math>\Delta_j(f)(e^{i\theta}) = \sum_{n=2^j+1}^{2^{j+1}} \hat{f}(n)e^{in\theta}$. Then there exists C > 0 such that

$$\left(\sum_{j} \|\Delta_{j}(f)\|_{L^{p}(\mathbb{T})}^{p'}\right)^{1/p'} \leq C \|f\|_{L^{p}(\mathbb{T})}.$$

Proof. Apply Theorem 4.5 for $T_j : L^p(\mathbb{T}) \to L^p(\mathbb{T})$ given by $T_j(f) = \Delta_j(f)$ together with Littlewood-Paley inequalities

$$\|(\sum_{j=1}^{n} |\Delta_{j}(f)|^{2})^{1/2}\|_{L^{p}} \approx \|f\|_{L^{p}}.$$

References

- [1] Amann., Operator-valued Fourier multipliers, vector-valued Besov spaces and applications, *Math. Nachr. 186* (1997), 15-56
- [2] Arregui, J.L., Blasco, O., On the Bloch space and convolutions of functions in the L^p-valued case, Collect. Math. 48 (1997), 363-373
- [3] Arregui, J.L., Blasco, O., Convolutions of three functions by means of bilinear maps and applications, *Illinois J. Math.* 43 (1999), 264-280
- [4] Blasco, O., Convolutions by means of bilinear maps, Contemp. Math. 232 (1999), 85-103
- [5] Blasco, O., Bilinear maps and convolutions, Research and Expositions in Math. 24 (2000), 45-55
- [6] Diestel J, Uhl J. J., Vector measures, American Mathematical Society, Mathematical Surveys, Number 15 (1977).
- [7] Blasco, O., Calabuig Jose M., Vector valued functions integrable with respect to bilinear maps , *Preprint*
- [8] Duren, P., Theory of H^p-spaces, Pure and Applied Mathematics 38, Academic Press (1970)
- [9] Kwapien, S., Isomorphic characterizations of inner product spaces by orthogonal series with vector coefficients, Studia Math. 44 (1972), 583-595
- [10] García-Cuerva, J, Rubio de Francia, J.L., Weighted norm inequalities and related topics, North-Holland, Amsterdam (1985).
- [11] García-Cuerva, J. Kazarian, K. S., Kolyada, V. I., Torrea, J.L., Vector-valued Hausdorff-Young inequality and applications, *Russian Math. Surveys* 53 (1998), 435-513

OSCAR BLASCO AND JOSÉ M. CALABUIG

- [12] Girardi, M.; Weis, L., Integral operators with operator-valued kernels, J. Math. Anal. Appl. 290 (2004), 190-212
- [13] J. Peetre, Sur la transformation de Fourier des fonctions a valeurs vectorielles, Rend. Sem. Mat. Univ. Padova 42 (1969), 15-46
- [14] Piesch, A., Wenzel, J., Orthonormal systems and Banach space geometry, Cambrigde Univ. Press (1998)
- [15] Ryan R. A., Introduction to tensor products of Banach spaces, Springer Monographs in Mathematics. Springer (2002).

Department of Mathematics, Universitat de Valencia, Burjassot 46100 (Valencia) Spain

 $E\text{-}mail\ address: \verb"oscar.blasco@uv.es"$

Department of Mathematics, Universitat Politécnica de Valencia (46022) Valencia , Spain