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§0 Introduction.

When dealing with spaces of vector-valued analytic functions there is a natural way
to understand multipliers between them. If X and Y are Banach spaces and L(X,Y )
stands for the space of linear and continuous operators we may consider the convolution of
L(X,Y )-valued analytic functions, say F (z) =

∑
n=0∞ Tnz

n, and X-valued polynomials,
say f(z) =

∑m
n=0 xnz

n, to get the Y -valued function F ∗ f(z) =
∑
Tn(xn)zn. The second

author considered such a definition and studied multipliers betweenH1(X) and BMOA(Y )
in [5].

When the functions take values in a Banach algebra A then the natural extension of
multiplier is simply that if f(z) =

∑
anz

n and g(z) =
∑
bnz

n, then f ∗ g(z) =
∑
an.bnz

n

where a.b stands for the product in the algebra A. Of course, similarly one can consider
an ∈ Lp(R), bn ∈ Lq(R) and the convolution an ∗ bn ∈ Lr(R) (where p, q, r verifies the
condition on Young’s theorem). The reader is referred to [3] for results along these lines.

In this paper we shall consider a much more general notion of convolutions coming from
general bilinear maps and that will extend the previous examples.

Assume X,Y, Z are Banach spaces and let u : X × Y → Z be a bounded bilinear
map. Given a X-valued polynomial f(z) =

∑m
n=0 xnz

n and given a Y -valued polynomial
g(z) =

∑k
n=0 ynz

n we define the u-convolution of f an g as the polynomial given by

f ∗u g(z) =
min{m,k}∑

n=0

u(xn, yn)zn.

This will make sense also for general vector valued analytic functions and we shall study
this convolution for functions in certain vector valued Besov spaces.

Throughout the paper we denote by P(X) and H(X) the set of polynomials and holo-
morphic functions from the unit disc D into a Banach space X respectively. As usual,
we write Mp(f, r) = ( 1

2π

∫ π

−π
||f(reit)||pdt) 1

p , and Hp(X) stands for the Hardy space of
X-valued functions, understood as the subspace of Lp(T, X) of those functions f with
f̂(n) = 0 for n < 0, or in other words the closure of polynomials under the norm given by
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sup
0<r<1

Mp(f, r). For 1 ≤ p, q ≤ ∞, we shall be also dealing with the spaces Λp,q(X) given

by those functions in H(X) such that

∫ 1

0

(1 − r)q−1Mq
p (f ′, r)dr <∞ ,

with the obvious modification for the case q = ∞ (see Section 1).
These spaces were considered first (in the scalar valued case) by Hardy-Littlewood and

Flett (see [12, 9] ). The main reason for their consideration comes from the following two
results:

Let 2 ≤ p < ∞. It was shown by Littlewood and Paley (see [14]) that there exists a
constant C > 0 such that

(0.1)
( ∫ 1

0

(1 − r)p−1Mp
p (f ′, r)dr

) 1
p ≤ C||f ||p.

Now let 1 ≤ p ≤ 2. It was shown by Hardy and Littlewood (see [12]) that there exists
a constant C > 0 such that

(0.2)
( ∫ 1

0

(1 − r)M2
p (f ′, r)dr

) 1
2 ≤ C||f ||p.

In other words, Hp ⊂ Λp,2 for 1 ≤ p ≤ 2, and Hp ⊂ Λp,p for 2 ≤ p <∞.
We shall see that some results, known for Hardy spaces, actually hold in the setting of

Λp,q-spaces. The aim of this paper is to give an improvement of a Young’s type theorem
for convolution of three functions in the setting of vector valued analytic functions and in a
very wide sense of convolution which allows to recover several known results and produces
a lot of applications. Our main result is as follows:

Let 1 ≤ p1, p2, p3 ≤ ∞ such that 1
p1

+ 1
p2

+ 1
p3

≥ 2 and 1 ≤ q1, q2, q3 ≤ ∞ such that
1
q1

+ 1
q2

+ 1
q3

= 1.
Let u : X × Y → E and v : Z × E → F be bounded bilinear maps where X,Y, Z,E, F

are complex Banach spaces.
If 1 ≤ p ≤ ∞ is such that 1

p = 1
p1

+ 1
p2

+ 1
p3

− 2, then there exists a constant C > 0 such
that

||
N∑

n=0

v(zn, u(xn, yn))zn||p ≤ C||u||||v||||f ||p1,q1 ||g||p2,q2 ||h||p3,q3

for any f(z) =
∑N

n=0 xnz
n ∈ P(X), g(z) =

∑N
n=0 ynz

n ∈ P(Y ) and h(z) =
∑N

n=0 znz
n ∈

P(Z).

The paper is divided into six sections. In section 1 we introduce the convolution, the
spaces and the property (H)p corresponding to the vector-valued formulation of (0.1) and
(0.2). We present some elementary examples and geometric properties of spaces having
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property (H)p. In the second section we prove the main theorem and give the corresponding
corollary for vector-valued Hardy spaces. Section 3 is devoted to some applications to the
scalar valued case. Section 4 deals with the bilinear map between Lp(Rn)-spaces given by
convolution u(f, g) = f ∗ g. In section 5 we give some properties on the Taylor coefficients
of functions in Hardy spaces with values in spaces with (H)p property. In Section 6 we take
u : X × Y → X⊗̂Y and achieve certain results for projective tensor products. Finally, we
get new results on the space of multipliers between vector valued Hardy spaces in Section
7.

§1 Preliminaries.

Definition 1.1. Let u : X × Y → Z be a bounded bilinear map. Let f ∈ H(X) and
g ∈ H(Y ) given by f(z) =

∑∞
n=0 xnz

n and g(z) =
∑∞

n=0 ynz
n. We define the u-convolution

of f an g as the function in H(Z) given by

f ∗u g(z) =
∞∑
n=0

u(xn, yn)zn.

Lemma 1.1. Let f ∈ P(X) and g ∈ P(Y ). Then

(1.1) f ∗u g(r2eiθ) =
1
2π

∫ π

−π

u(f(rei(θ−t)), g(reit))dt.

(1.2) [S(f ∗u g)]′(r2eiθ) =
1
2π

∫ π

−π

u(f(rei(θ−t)), g′(reit))dt,

where Sf(z) = zf(z).

(1.3) [S2(f ∗u g)]′′(r2eiθ) =
1
2π

∫ π

−π

u((Sf)′(rei(θ−t)) + f(rei(θ−t)), (Sg)′(reit))dt,

where S2f(z) = z2f(z).

Proof. (1.1) follows from the orthonormality of the system eint.
(1.2) follows from the fact

[S(f ∗u g)]′(z) =
∞∑
n=0

u(xn, (n+ 1)yn)zn = f ∗u (Sg)′(z).

(1.3) follows by writing

[S2(f ∗u g)]′′(z) =
∞∑
n=0

u((n+ 1)xn, (n+ 1)yn)zn +
∞∑
n=0

u(xn, (n+ 1)yn)zn

= [(Sf)′ + f ] ∗u (Sg)′(z).

�
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Definition 1.2. Let 1 ≤ p < ∞. A complex Banach space X is said to have property
(H)p, to be denoted X ∈ (H)p, if there exists a constant C > 0 such that

(1.4) (
∫ 1

0

(1 − r)max{2,p}−1Mmax{2,p}
p (f ′, r)dr)

1
max{2,p} ≤ C||f ||p

for any polynomial f ∈ P(X).

Remark 1.1. The property (H)1 was already defined and studied in [5], denoted there by
(HL).

Definition 1.3. Let 1 ≤ p ≤ ∞ and 1 ≤ q < ∞. We shall denote by Λp,q(X) the space
of functions f ∈ H(X) such that

(1 − r)Mp(f ′, r) ∈ Lq(
dr

1 − r ),

and set ||f ||p,q = ||f(0)|| + (
∫ 1

0

(1 − r)q−1Mq
p (f ′, r)dr)

1
q .

Accordingly, we shall denote by Λp,∞(X) the space of functions f ∈ H(X) such that

Mp(f ′, r) = O(
1

1 − r ) (r → 1),

and set ||f ||p,∞ = ||f(0)|| + sup
0<r<1

(1 − r)Mp(f ′, r).

Remark 1.2.
Λ∞,∞(X) = Bloch(X) = {f ∈ H(X) : supz∈D(1 − |z|)|f ′(z)| <∞}.

Let us point out some elementary embeddings:

Proposition 1.1. Let 1 ≤ p, q ≤ ∞ and let X be a complex Banach space.
(i) Hp(X) ⊂ Λp,∞(X).
(ii) Λp,q(X) ⊂ Λp,∞(X).
(iii) If X ∈ (H)p then Hp(X) ⊂ Λp,q(X) for q ≥ max{p, 2}.

Proof. (i) follows from the estimate

Mp(f ′, r2) ≤ C
Mp(f, r)

1 − r .

(ii) Since Mp(f, r) is increasing, we have

1
q
Mq

p (f ′, r)(1 − r)q ≤
∫ 1

r

(1 − s)q−1Mq
p (f ′, s)ds ,

what actually gives that if f ∈ Λp,q(X) then Mp(f ′, r) = o( 1
1−r ).

(iii) follows from (i) and the inclusion L∞( dr
1−r ) ∩ Lmax{p,2}( dr

1−r ) ⊆ Lq( dr
1−r ). �

Let us now compute the norm of f(z) =
∑∞

n=0 xnz
2n

in Λp,q(X).
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Proposition 1.2. Let 1 ≤ p ≤ ∞, 1 ≤ q <∞ and let f(z) =
∑∞

n=0 xnz
2n

, where xn ∈ X.
Then

(1.5) ||f ||p,∞ ≈ sup
n∈N

||xn||,

and

(1.6) ||f ||p,q ≈ (
∞∑
n=0

||xn||q)
1
q .

Proof. Note that

(1.7) r2
n−12n||xn|| ≤M1(f ′, r)

and

(1.8) M∞(f ′, r) ≤
∞∑
n=0

2n||xn||r2
n−1.

To get (1.5) assume first that sup
n∈N

||xn|| ≤ 1; then we have, from (1.8),

Mp(f ′, r) ≤M∞(f ′, r) ≤
∞∑
n=0

2nr2
n−1 ≤ C

1 − r .

On the other hand, if Mp(f ′, r) ≤ C
1−r then (1.7) gives (taking r = 1 − 2−n) that

(1 − 2−n)2
n−12n||xn|| ≤ C2n ,

what shows that sup
n∈N

||xn|| ≤ C.

To get (1.6) first use (1.7) to obtain

( ∞∑
n=1

||xn||q
) 1

q ≤ C
( ∞∑
n=0

(
∫ 1−2−(n+1)

1−2−n

2nq(1 − r)q−1r(2
n−1)qdr)||xn+1||q

) 1
q

≤ C
( ∫ 1

0

(1 − r)q−1Mq
p (f ′, r)dr

) 1
q

= C||f ||p,q.

To see the other inequality, consider the operator given by

T ({xn}) = (1 − r)f ′(reit).
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Note that (1.5) gives, for any 1 ≤ p ≤ ∞, the boundedness of T as an operator from *∞(X)
into L∞( dr

(1−r) , L
p(T, X)) (where, as usual, Lp( dr

1−r , Y ) stands for the space of Y -valued
functions on (0, 1) that are p-integrable with respect to the measure dr

1−r ).
It follows from (1.8) that it is also bounded from *1(X) into L1( dr

(1−r) , L
p(T, X)).

Now use interpolation (see [4]) to get that

T : lq(X) → Lq(
dr

(1 − r) , L
p(T, X))

is bounded as well. �

Recall that for 2 ≤ q < ∞ a Banach space is said to have cotype q (see [17]) if there
exists a constant C > 0 such that, for any finite family {xn}n≥0 in X,

(
∑
n≥0

||xn||q)
1
q ≤ C||

∑
n≥0

xnz
2n ||1.

Also recall that Kahane’s inequalites can be stated as

||
∑
n≥0

xnz
2n ||p ≈ ||

∑
n≥0

xnz
2n ||1

for any 0 < p <∞.
Using this and Proposition 1.2 we get the following corollary.

Corollary 1.1. Let q = max{p, 2}. If X ∈ (H)p then X has cotype q.

Let us give the Lq-spaces satisfying the property (H)p.

Proposition 1.3. Let H be a complex Hilbert space. Then H ∈ (H)2.

Proof. Let f(z) =
∑∞

n=0 xnz
n ∈ H(H). From Plancherel’s we get

||f ||2 ≈
(
||x0||2 +

∫ 1

0

(1 − r)M2
2 (f ′, r)dr

) 1
2
.

�
Proposition 1.4. Let (Ω,Σ, µ) be a σ-finite measure space.

(i) If p ≥ 2 and p′ ≤ q ≤ p then Lq(µ) ∈ (H)p.
(ii) If 1 ≤ p ≤ 2 and p ≤ q ≤ 2 then Lq(µ) ∈ (H)p.

Proof. Observe that the (H)p property can be stated in terms of the boundedness of the
operator T : Hp(X) → Lmax{2,p}( dr

1−r , L
p(T, X)) given by

T (f)(r, t) = (1 − r)f ′(reit).
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Note first that
T : H2

(
L2(µ)

)
→ L2

( dr

1 − r , L
2
(
T, L2(µ)

))

is bounded by Proposition 1.3. Both results then follow by interpolation (see [7]).
To see (i), choose θ = 1 − 2

p and s = θ( 1
q − 1

p )−1, so that 1
p = 1−θ

2 and 1
q = 1−θ

2 + θ
s ,

which gives
[H2

(
L2(µ)

)
, BMOA

(
Ls(µ)

)
]θ = Hp

(
Lq(µ)

)

and

[L2
( dr

1 − r , L
2
(
T, L2(µ)

))
, L∞

( dr

1 − r , L
∞(

T, Ls(µ)
))

]θ = Lp
( dr

1 − r , L
p
(
T, Lq(µ)

))
.

In order to interpolate, just note that BMOA(X) ⊂ Bloch(X) for any X, so

T : BMOA
(
Ls(µ)

)
→ L∞

( dr

1 − r , L
∞(T, Ls(µ)

)

is bounded for any value 1 ≤ s ≤ ∞.
To see (ii), let θ be such that 1

p = 1 − θ
2 and s such that 1

q = 1−θ
s + θ

2 . Then

[H1
(
Lr(µ)

)
, H2

(
L2(µ)

)
)]θ = Hp

(
Lq(µ)

)

and

[L2
( dr

1 − r , L
1
(
T, Ls(µ)

))
, L2

( dr

1 − r , L
2
(
T, L2(µ)

))
]θ = L2

( dr

1 − r , L
p
(
T, Lq(µ)

))
.

It follows from our assumptions that 1 ≤ s ≤ 2; then Ls(µ) ∈ (H)1 (see [5]), and by
interpolation we get Lq(µ) ∈ (H)p. �

§2 The theorem and its proof.

Let us start off with the following formulation of the convolution.

Lemma 2.1. Let f ∈ P(X) and g ∈ P(Y ). Then

f ∗u g(z) = u(f(0), g(0))

+
3
4π

∫ 1

0

∫ π

−π

(1 − s3)2ze−itu(f ′(zse−it), (S2g)′′(s2eit)dtds.

Proof. Let us use that

∫ 1

0

(1 − s3)2s3n−1ds =
2

3(n+ 2)(n+ 1)n
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and write, if f(z) =
∑

n≥0 xnz
n and g(z) =

∑
n≥0 ynz

n,

f ∗u g(z) = u(x0, y0) +
3
2

∞∑
n=1

∫ 1

0

(1 − s3)2s3n−1(n+ 2)(n+ 1)nu(xn, yn)znds,

where the last sum equals

3
2

∞∑
n=1

∫ 1

0

(1 − s3)2zu(nzn−1sn−1xn, (n+ 2)(n+ 1)s2nyn)ds

=
3
4π

∫ 1

0

∫ π

−π

(1 − s3)2ze−itu(
∑
n≥1

nzn−1sn−1xne
−i(n−1)t,

∑
k≥0

(k + 2)(k + 1)s2kykeikt)dtds

=
3
4π

∫ 1

0

∫ π

−π

(1 − s3)2ze−itu(f ′(zse−it), (S2g)′′(s2eit)dtds.

�
Theorem 2.1. Let 1 ≤ p1, p2, p3 be such that 1

p1
+ 1

p2
+ 1

p3
≥ 2 and 1 ≤ q1, q2, q3 be such

that 1
q1

+ 1
q2

+ 1
q3

= 1. Take p such that 1
p = 1

p1
+ 1

p2
+ 1

p3
− 2.

Let X,Y, Z,E, F be complex Banach spaces and let u : X ×Y → E and v : Z ×E → F
be bounded bilinear maps.

Then there exists a constant C > 0 such that

||h ∗v (f ∗u g)||p ≤ C||u||||v||||f ||p1,q1 ||g||p2,q2 ||h||p3,q3

for any f ∈ P(X), g ∈ P(Y ) and h ∈ P(Z).

Proof. Let us call, for f1 ∈ P(X), f2 ∈ P(Y ) and f3 ∈ P(Z),

A(f1, f2, f3) = Sf3 ∗v (f1 ∗u f2).

Applying (1.1) twice for r = 1 we get

A(f1, f2, f3)(eiθ) =
1
2π

∫ π

−π

1
2π

∫ π

−π

ei(θ−t)v(f3(ei(θ−t)), u(f1(ei(t−t′)), f2(eit
′
)))dt′dt ,

and by Young’s theorem we have

||A(f1, f2, f3)||p ≤ ||u||||v||||f1||p1 ||f2||p2 ||f3||p3 .

Observe now that, if we write fr(z) = f(rz), Lemma 2.1 and (1.3) give for f , g and h
that

h ∗v (f ∗u g)(reiθ) = v(z0, u(x0, y0))

+
3r
2

∫ 1

0

(1 − s3)2A((Sf)′s, (Sg)
′
s, h

′
rs)(e

iθ)ds

+
3r
2

∫ 1

0

(1 − s3)2A(fs, (Sg)′s, h
′
rs)(e

iθ)ds.
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Therefore, using the vector-valued Minkowsky’s inequality, we get

||f ∗v (g ∗u h)||p ≤ ||v(z0, u(x0, y0))||F

+
3
2
||u||||v||

∫ 1

0

(1 − s3)2Mp1((Sf)
′, s)Mp2((Sg)

′, s)Mp3(h
′, s)ds

+
3
2
||u||||v||

∫ 1

0

(1 − s3)2Mp1(f, s)Mp2((Sg)
′, s)Mp3(h

′, s)ds.

Let us bound each of them separately.
On the one hand

||v(z0, u(x0, y0))||F ≤ ||u||||v||||x0||X ||y0||Y ||z0||Z
≤ ||u||||v||||f ||p1,q1 ||g||p2,q2 ||h||p3,q3 .

On the other hand, using that 1 − s3 ≤ 3(1 − s) for 0 < s ≤ 1 and splitting (1 − s)2 =
(1 − s)1−

1
q1 (1 − s)1−

1
q2 (1 − s)1−

1
q3 , we have by Hölder’s inequality that∫ 1

0

(1 − s3)2Mp1((Sf)
′, s)Mp2((Sg)

′, s)Mp3(h
′, s)ds ≤

9||(Sf)||p1,q1 ||Sg||p2,q2 ||h||p3,q3 .

Since
f(seit) − f(0) =

∫ s

0

eitf ′(reit)dr,

it’s easy to see that Mp1(f, s) ≤ Mp1(f
′, s) + ||f(0)||, and thus ||(Sf)||p1,q1 ≤ C||f ||p1,q1 ;

the same is valid for g, so∫ 1

0

(1 − s3)2Mp1((Sf)
′, s)Mp2((Sg)

′, s)Mp3(h
′, s)ds ≤

C||f ||p1,q1 ||g||p2,q2 ||h||p3,q3 .

Dealing with the last summand is similar, and then the result follows. �

Corollary 2.1. Let 1 ≤ p1, p2, p3 be such that 1
p1

+ 1
p2

+ 1
p3

≥ 2 and 1 ≤ p1 ≤ 2.

Let X,Y, Z,E, F be complex Banach spaces such that X ∈ (H)p1 and Y ∈ (H)p2 , and
let u : X × Y → E and v : Z × E → F be bounded bilinear maps.

(i) If 1 ≤ p2 ≤ 2, then for p such that 1
p = 1

p1
+ 1

p2
+ 1

p3
−2 there exists a constant C > 0

such that

||h ∗v (f ∗u g)||p ≤ C||u||||v||||f ||p1 ||g||p2 ||h||p3,∞

for any f ∈ P(X), g ∈ P(Y ) and h ∈ P(Z).
(ii) If 2 < p2 ≤ ∞, then for p such that 1

p = 1
p1

+ 1
p2

+ 1
p3

− 2, and q = 2p2
p2−2 , there exists

a constant C > 0 such that

||h ∗v (f ∗u g)||p ≤ C||u||||v||||f ||p1 ||g||p2 ||h||p3,q

for any f ∈ P(X), g ∈ P(Y ) and h ∈ P(Z).
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Corollary 2.2. Let 1 ≤ q ≤ ∞. There exists a constant C > 0 such that, given a bounded
bilinear map u:X × Y → Z between complex Banach spaces, and given two polynomials
f(z) =

∑
n≥0 xnz

n ∈ P(X) and g(z) =
∑

n≥0 ynz
n ∈ P(Y ), we have that

∑
n≥0

‖u(x2n , y2n)‖ ≤ C‖u‖‖f‖1,q‖g‖1,q′ .

Proof. Apply Theorem 2.1 for v : Z∗ × Z → C given by the dual pairing, p1 = p2 = 1,
q1 = q, q2 = q′, q3 = p3 = ∞ and h(z) =

∑
n≥0 z

∗
nz

2n

, with z∗n of norm one and verifying
< z∗n, u(x2n , y2n) >= ‖u(x2n , y2n)‖. Note that ‖h‖∞,∞ is bounded by a constant, due to
Proposition 1.2. �

In the applications of Theorem 2.1 (or Corollaries 2.1 and 2.2) that follow, sometimes
polynomials are replaced by functions defined by power series. In all such cases the justi-
fication for doing so requires at most easy arguments, involving density of polynomials in
the corresponding function space, that will be omitted.

§3 Applications to the scalar valued case.

Let us consider X = Y = Z = C, u(λ, µ) = v(λ, µ) = λ · µ.
The following result is known but, in particular it provides another proof of Paley’s

inequality for functions in H1 (see [8]).

Theorem 3.1. Let 1 ≤ q ≤ 2. Then, for any f(z) =
∑∞

n=0 anz
n ∈ Hq, we have

(3.1) (
∑
k∈N

(
2k∑

n=2k−1

|an|q
′
)

2
q′ )

1
2 ≤ C||f ||q

(with the obvious modification for q′ = ∞).

Proof. Assume q = 1 and take λn ≥ 0 be such that sup
k∈N

∑
2k−1≤n<2k

λn ≤ 1. Let h(z) =

∑
λnz

n. One easily sees that M∞(h′, r) ≤ C
1−r and therefore we obtain that h ∈ Λ∞,∞.

Now apply Corollary 2.1 to f , g and h, where g(z) =
∑
ānz

n (so that ‖g‖1 = ‖f‖1),
and get

||
∞∑
n=0

λn|an|2zn||∞ ≤ C||f ||21.

In particular it follows that

(
∞∑
n=0

λn|an|2)
1
2 ≤ C||f ||1

for any (λn) satisfying supk∈N

∑
2k−1≤n<2k λn ≤ 1.
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This implies, using duality, that

(
∑
k

max
2k−1≤n<2k

|an|2)
1
2 ≤ C||f ||1.

Now using interpolation with the trivial case q = 2 we get (3.1). �
Our next results shows that Paley’s inequality holds not only for functions in H1 but

also in the Besov class Λ1,2.

Theorem 3.2. Let 1
p1

+ 1
p2

+ 1
p3

= 2 and 1
q1

+ 1
q2

+ 1
q3

= 1.

Then

(3.2)
( ∑
k∈N

|a2n |q′3 |b2n |q′3
) 1

q′3 ≤ C||f ||p1,q1 ||g||p2,q2

for any holomorphic functions f(z) =
∑∞

n=0 anz
n, g(z) =

∑∞
n=0 bnz

n.
In particular, if 2 ≤ q then

(3.3) (
∑
k∈N

|a2n |q) 1
q ≤ C||f ||p,q

for any f(z) =
∑∞

n=0 anz
n.

Proof. To see (3.2) we just have to use Hölder’s inequality after Theorem 2.1 for f , g and
a suitable h(z) =

∑∞
n=0 αnz

2n

(by (1.6) we have that ||h||p3,q3 ≈ (
∑∞

n=0 |αn|q3)
1

q3 ).
To see (3.3) take f = g in (3.2), with p = p1 = p2 and q = q1 = q2. �

§4 Applications to Lp-spaces and convolution.

In this section we let X,Y, Z be Lp-spaces, and consider the bilinear map given by
Young’s theorem, that is for 1

p + 1
q ≥ 1 and 1

r = 1
p + 1

q − 1 we have the bounded bilinear
map u : Lp(R) × Lq(R) → Lr(R) given by u(f, g) = f ∗ g. The reader is referred to [3] for
particular cases and some applications.

Theorem 4.1. Let 1 ≤ pi, qi such that 1
p1

+ 1
p2
> 1, 1

p1
+ 1

p2
+ 1

p3
> 2 and 1

q1
+ 1

q2
+ 1

q3
= 1.

If 1
p1

+ 1
p2

+ 1
p3

− 2 = 1
p then, for fn ∈ Lp1(R), gn ∈ Lp2(R) and hn ∈ Lp3(R), we have

||(
∑
n≥0

|fn ∗ gn ∗ hn|2)
1
2 ||p ≤ C(

∑
n≥0

||fn||q1p1
)

1
q1 (

∑
n≥0

||gn||q2p2
)

1
q2 (

∑
n≥0

||hn||q3p3
)

1
q3

(with the corresponding modification if qi = ∞ for some i).

Proof. Take u : Lp1(R)×Lp2(R) → Lr1(R), where 1
r1

= 1
p1

+ 1
p2
−1, given by u(f, g) = f ∗g,

and v : Lp3(R)×Lr1(R) → Lp(R) given by v(h, k) = h ∗ k. Now apply Theorem 2.1 to the
Lpi-valued functions F (z) =

∑∞
n=0 fnz

2n

, G(z) =
∑∞

n=0 gnz
2n

and H(z) =
∑∞

n=0 hnz
2n

.
Proposition 1.2 allows us to write

||
∑
n≥0

(fn ∗ gn ∗ hn)z2
n ||Hp(Lp) ≤ C(

∑
n≥0

||fn||q1p1
)

1
q1 (

∑
n≥0

||gn||q2p2
)

1
q2 (

∑
n≥0

||hn||q3p3
)

1
q3 .

Now, since p < ∞, the proof is finished by a simple application of Khintchine’s inequal-
ity. �
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Theorem 4.2. If 1 ≤ p ≤ 2 ≤ q <∞ are such that 1
p + 1

q > 1 and if 1
r = 1

p + 1
q − 1, then

there exists a constant C > 0 such that

sup
||φ||r′≤1

( ∑
n≥0

| < φ, fn ∗ gn > |
2q

q+2
) 1

2+ 1
q ≤ C||(

∑
n≥0

|fn|2)
1
2 ||p||(

∑
n≥0

|gn|2)
1
2 ||q

for any two finite sequences (fn) ⊂ Lp(R)), (gn) ⊂ Lq(R).

Proof. Take u : Lp(R)×Lq(R) → Lr(R) given by u(f, g) = f∗g and v : Lr(R)×Lr′(R) → C

given by v(f, g) =< f, g >=
∫

R
f(x)g(x)dx. Take now p1 = p, p2 = q and p3 = r′.

Therefore (ii) in Corollary 2.1 gives

||
∑
n≥0

< φn, fn ∗ gn > z2
n ||∞ ≤

C||
∑
n≥0

fnz
2n ||Hp(Lp)||

∑
n≥0

gnz
2n ||Hq(Lq)||

∑
n≥0

φnz
2n ||Λ

r′, 2q
q−2

(Lr′ ).

Now Proposition 1.2 applied to X = Lr′ , together with standard estimates, gives
∑
n≥0

| < φn, fn ∗ gn > | ≤ C||(
∑
n≥0

|fn|2)
1
2 ||p||(

∑
n≥0

|gn|2)
1
2 ||q(

∑
n≥0

||φn||
2q

q−2
r′ )

q−2
2q .

Taking now φn = αnφ, for (αn) ∈ l
2q

q−2 and φ ∈ Lr′(R), gives the result. �

§5 Applications to the geometry of Banach spaces

In this section we deal with the case Y = C, Z = X∗, u : X × C → X given by
u(x, λ) = λx and v : X∗ ×X → C given by v(x∗, x) =< x∗, x >.

In [6] it was investigated the connection of the vector-valued formulation of inequalities
in the setting of Hardy spaces, such as Paley’s or Hardy’s inequalities, with properties in
the geometry of Banach spaces such us type, cotype or Fourier type. Later in [5] it was
observed that behind Paley’s inequality is actually the embedding H1(X) ⊂ Λ1,2(X). Let
us give a brief proof of this fact.

Theorem 5.1. (see [5]) If X ∈ (H)1 then X satisfies Paley’s inequality, i.e. there exists
a constant C > 0 such that

(
∞∑
n=0

||x2n ||2) 1
2 ≤ C||f ||1

for any f(z) =
∑∞

n=0 xnz
n ∈ H1(X).

Proof. It follows from Corollary 2.2 and Proposition 1.2 that for any finite sequence (λn) ∈
*2 we have ∑

n≥0

‖λnx2n‖ ≤ C‖f‖1,2‖
∞∑
n=0

λnz
2n‖1,2

≤ C‖f‖1.

This clearly implies the desired inequality. �
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Theorem 5.2. Let 1 ≤ q1 ≤ 2, X ∈ (H)q1 and 1
q1

+ 1
q2

= 3
2 . Then there exists a constant

C > 0 such that
(
∑
n≥0

| < xn, x∗n > |2) 1
2 ≤ C||f ||q1 ||g||q2,∞

for any f(z) =
∑

n≥0 xnz
n ∈ P(X) and g(z) =

∑
n≥0 x

∗
nz

n ∈ P(X∗).

Proof. Assume f(z) =
∑

n≥0 xnz
n ∈ P(X) and g(z) =

∑
n≥0 x

∗
nz

n ∈ P(X∗). Take p1 = 2,
p2 = q1, p3 = q2 and p = ∞. Applying part (i) in Corollary 2.1 we have

||
∞∑
n=0

λn < xn, x
∗
n > z

n||∞ ≤ C||
∞∑
n=0

λnz
n||2||f ||q1 ||g||q2,∞.

Therefore

(
∞∑
n=0

| < xn, x∗n > |2) 1
2 ≤ C||f ||q1 ||g||q2,∞.

�

§6 Applications to projective tensor products

Another interesting and useful bilinear map corresponds to the embedding X × Y →
X⊗̂Y . A similar result to the next one was shown in [5] under slightly different assump-
tions.

Theorem 6.1. (see [5]) Let X,Y ∈ (H)1. There exists a constant C > 0 such that

∫ 1

0

∫ π

−π

||
n∑

k=1

kxk ⊗ ykskeikt||X⊗̂Y

dt

2π
ds ≤ C||

n∑
k=1

xkz
k||1.||

n∑
k=1

ykz
k||1

for any x1, ..., xn ∈ X and y1, ..., yn ∈ Y .

Proof. Consider u : X×Y → X⊗̂Y given by u(x, y) = x⊗y and v : X⊗̂Y ×(X⊗̂Y )∗ → C

given by v(z, z∗) =< z, z∗ >. Take p1 = p2 = 1 and p3 = p = ∞.
For any h(z) =

∑∞
n=0 Tnz

n ∈ Bloch((X⊗̂Y )∗) we have

||
n∑

k=1

< Tk, xk ⊗ yk > zk||∞ ≤ C||h||Bloch||
n∑

k=1

xkz
k||1 ||

n∑
k=1

ykz
k||1.

Use now the fact (see [1], [5]) that the predual of Bloch(E∗) can be identified with the set
of E−valued analytic functions on the disc such that the integral

∫ 1

0

∫ π

−π
||f ′(reit)||E dt

π ds

is finite, under the pairing that for polynomials f(z) =
∑n

k=1 ekz
k and g =

∑∞
n=0 e

∗
kz

k is
given by < f, g >=

∑n
k=1 < e

∗
k, ek >. By choosing z = 1 we get the desired result. �
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Theorem 6.2. Let 1 ≤ p1, p2, p3 such that 1
p1

+ 1
p2

+ 1
p3

= 2.

Let X,Y, Z be complex Banach spaces such that X ∈ (H)p1 and Y ∈ (H)p2 . Set q = ∞
if p2 ≤ 2 and q = 2p2

p2−2 if 2 < p2. Then

||
∑
n≥0

zn ⊗ (xn ⊗ yn)||X⊗̂Y ⊗̂Z ≤ C||f ||p1 ||g||p2 ||h||p3,q,

for any f(z) =
∑

n≥0 xnz
n ∈ P(X), g(z) =

∑
n≥0 ynz

n ∈ P(Y ) and h(z) =
∑

n≥0 znz
n ∈

P(Z)

Proof. Use u : X × Y → X⊗̂Y given by u(x, y) = x ⊗ y and v : Z ×X⊗̂Y → Z⊗̂X⊗̂Y
given by v(z, w) = z ⊗ w. �

§7 Applications to multipliers for vector valued functions.

One of the main motivations for the new formulation of convolution comes from the
study of multipliers between vector valued Hardy spaces. A sequence of operators Tn ∈
L(X,Y ) is called a multiplier between Hp(X) into Hq(Y ), to be denoted by (Tn) ∈
(Hp(X), Hq(Y )), if

∑∞
n=0 Tn(xn)zn ∈ Hq(Y ) for any f(z) =

∑∞
n=0 xnz

n ∈ Hp(X). In
[5] it was studied the case (H1(X), BMOA(Y )).

A simple application of Young’s theorem gives that, if 1
p + 1

q ≥ 1 and 1
r = 1

p + 1
q − 1,

then
Hr(L(X,Y )) ⊂ (Hp(X), Hq(Y )).

Theorem 7.1. Let X,Y be complex Banach spaces, and let 1 ≤ p, q, r be such that
1
q = 1

p + 1
r − 1. Assume that X ∈ (H)p, and let s = ∞ if p ≤ 2 and s = 2p

p−2 if 2 < p. Then

we have
(λnTn) ∈ (Hp(X), Hq(Y ))

whenever
∑∞

n=0 λnz
n ∈ H1 and

∑∞
n=0 Tnz

n ∈ Λr,s(L(X,Y )).

Proof. Take v : C × X → X given by v(λ, x) = λx and u : X × L(X,Y ) → Y given by
u(x, T ) = T (x).

Let φ(z) =
∑∞

n=0 λnz
n and h(z) =

∑∞
n=0 Tnz

n, and f(z) =
∑

n≥0 xnz
n ∈ P(X). It is

clear that ∑
n≥0

λn(Tnxn)zn = φ ∗v (f ∗u h)(z).

Thus we have, by Theorem 2.1,

‖
∑
n≥0

λn(Tnxn)zn‖q ≤ C‖φ‖1,2‖f‖p,max{p,2}‖h‖r,s

≤ C‖φ‖1‖f‖p‖h‖r,s.

�
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Theorem 7.2. Let X,Y be complex Banach spaces, and let 1 ≤ p ≤ q be such that
X ∈ (H)p. Let Z be another complex Banach space. Then, for any 1 ≤ p1, p2, q1, q2 such
that 1

p1
+ 1

p2
= 2 + 1

q − 1
p and 1

q1
+ 1

q2
= 1 − 1

max{p,2} , we have that if
∑∞

n=0 Tnz
n ∈

Λp1,q1(L(X,Z)) and
∑∞

n=0 Snz
n ∈ Λp2,q2(L(Z, Y )) then

(SnTn) ∈ (Hp(X), Hq(Y )).

Proof. Take u : X×L(X,Z) → Z given by u(x, T ) = T (x) and v : Z×L(Z, Y ) → Y given
by v(z, S) = S(z) and use Theorem 2.1, combined with the (H)p1 property of X. �
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