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Discretization versus transference for bilinear operators

Earl Berkson, Oscar Blasco, Maŕıa J. Carro, and T. Alastair Gillespie

Abstract. A very general transference method for bilinear operators is pre-
sented and used to show that discretization techniques can also be obtained

from transference methods. It is applied to show the boundedness of the

discrete version of the bilinear fractional operator and the bisublinear Hardy-
Littlewood maximal operator. Also a method for bilinear vector-valued trans-

ference is presented.

1. Introduction.

In 1977, a very general and abstract method of transference was introduced by
R. Coifman and G. Weiss in [8] . Their procedure showed that if a “convolution
type” operator defined on a group is bounded on Lp(G) and the group G is repre-
sented in the space of bounded linear operators B(Lp(µ)) for some measure µ then
a transferred operator, defined by means of the representation, is also bounded on
the corresponding Lp(µ) spaces. Their method relies on the following result: Let
G be an amenable group with left Haar measure m, 1 ≤ p <∞ and let u→ Ru be
strongly continuous uniformly bounded representations of the group in B(Lp(µ)).
If K ∈ L1(G) is compactly supported and the operator

T (g)(v) =
∫

G

g(u−1v)K(u)dm(u),

has norm Np(K) in B(Lp(G)) then the transferred operator

T̃ (f)(x) =
∫

G

(Ruf)(x)K(u)dm(u),

defined for f in some dense subset of Lp(µ), extends to bounded operator on Lp(µ)
with norm bounded by CNp(K).

Since then, this method has been developed and extended by many other people
(see for example [3] or [4]) and has shown to be an extremely useful tool to prove the
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boundedness of many operators defined in the setting of measure spaces assuming
that we know the boundedness of appropriately related convolution operators in
the context of amenable groups.

In 1996, L. Grafakos and G. Weiss (see [13]) proved a first result concerning
a transference method for multilinear operators. They considered a multilinear
operator T defined on an amenable group G by

T (g1, ..., gk)(v) =
∫

Gk

K(u1, ..., uk)g1(u−1
1 v)...gk(u−1

k v)dm(u1)...dm(uk),

with gj in some dense subset of Lpj (G) and where K is a kernel on Gk which
may not be integrable, and they were able to transfer the boundedness of T :
Lp1(G)×...×Lpk(G) → Lp0(G) whenever 1/p0 = 1/p1+...+1/pk to the boundedness
of operator T̃ : Lp1(µ)× ...Lpk(µ) → Lp0(µ) where (M,µ) is a measure space and

T̃ (f1, ..., fk)(x) =
∫

Gk

K(u1, ..., uk)(R1
u1
f1)(x)...(Rk

uk
fk)(x)dm(u1)...dm(uk),

where fj is in some dense subset of Lpj (µ), and Rj : G→ B(Lpj (µ)) (j = 0, 1, ..., k)
are representations which are connected through R0

vR
j
u = Rj

uv for all u, v ∈ G and
1 ≤ j ≤ k, and satisfy certain boundedness conditions.

Recently, pursuing the transference to other groups and measure spaces of the
results obtained for the bilinear Hilbert transform and other bilinear multipliers
some methods have been developed. In particular, the reader is referred to [5, 7,
10, 11] for some different approaches, using DeLeeuw type methods, which also
allow to transfer the boundedness of bilinear multipliers from one group to another
one.

A technique extending Coiffman-Weiss transference method was introduced in
[6] for the bilinear situation. Namely, if G is a locally compact abelian group with
Haar measure m, K ∈ L1(G) is a kernel with compact support, 0 < p1, p2, p3 <∞
with 1

p3
= 1

p1
+ 1

p2
and the bilinear map

BK(φ, ψ)(v) =
∫

G

φ(u−1v)ψ(uv)K(u)du,

is bounded from Lp1(G) × Lp2(G) → Lp3(G) then one can define the transference
bilinear map TK : Lp1(µ)× Lp2(µ) → Lp3(µ) by

TK(f, g)(x) =
∫

G

(R1
u−1f)(x)(R2

ug)(x)K(u)du,

where Rj : G → B(Lpj (µ)) are strongly continuous and uniformly bounded repre-
sentations for j = 1, 2 and (M,µ) is a σ-finite measure space.

Observe that if p3 ≥ 1, then TK(f, g)(x) is well defined at almost every x, but
this is not the case if p3 < 1 since it is not true, in general, that if f ∈ Lp1(µ),
g ∈ Lp2(µ) and K ∈ L1(G), then TK(f, g) ∈ Lp3(µ) or even that it is well defined.
Hence, in this case, we may have to assume something else in the mappings Rj such
as, for example, that our operators Rj act also continuously in L2(µ). Moreover,
whenever p3 < 1, we have to consider f ∈ Lp1(µ) ∩ L2(µ) and g ∈ Lp2(µ) ∩ L2(µ)
in order to have that the transferred operator is well defined.

The following result was shown and applied to obtain some new results acting
on other groups or measure spaces.
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Theorem 1.1. ([6, Theorem 2.1]) Under the above conditions, if, for j = 1, 2
and every v ∈ G, there exist Aj > 0 such that

(1.1) ‖Rj
vf‖Lpj ≤ Aj‖f‖Lpj

and there exists a strongly continuous mapping R3 : G→ B(Lp3(µ)) satisfying that,
for every u, v ∈ G and every f ∈ Lp1(µ) and g ∈ Lp2(µ),

(1.2) R3
v(R1

u−1fR2
ug) = R1

vu−1fR2
vug,

and such that, for every v ∈ G, there exists B > 0 satisfying

(1.3) ‖f‖Lp3 (µ) ≤ B‖R3
vf‖Lp3 (µ).

then, the bilinear operator TK : Lp1(µ) × Lp2(µ) → Lp3(µ) is bounded and it has
norm bounded by Np1,p2(K)A1A2B where Np1,p2(K) stands for the norm of the
bilinear map BK in the corresponding spaces.

One of the basic aims of the transference methods is to provide machinery for
translating estimates in harmonic analysis into discretized counterparts for ergodic
operator theory. For the bilinear setting the procedure can, in principle, take
the form of direct discretization of bilinear operators initially defined for the real
line, and then application of abstract results such as Theorem 1.1. to transfer
individual discrete bilinear operators, along with their bounds, to the ergodic theory
setting. In [6] direct discretization techniques were initiated for the bilinear Hilbert
transform, and this approach was advanced in [1], where general discretization
and transference of bilinear maximal estimates were developed. In particular, the
discretization techniques in [1] were used to obtain the following counterpart for
the integers of the bilinear Hilbert transform for the real line [19].

Theorem 1.2. (see [6, Proposition 2] and [1, Theorem 1.6]) Let 1 < p1, p2 <∞
and 1/p1 + 1/p2 = 1/p3 < 3/2. Then for a ≡ {aj}∞j=−∞ ∈ `p1 (Z), b ≡ {bj}∞j=−∞ ∈
`p2 (Z), the series

(1.4) (HZ (a, b)) (k) ≡
∞∑

j=−∞,j 6=0

ak+jbk−j

j

converges absolutely for each k ∈ Z, and the bilinear operator HZ defined on
`p1 (Z)× `p2 (Z) satisfies

‖HZ (a, b)‖`p3 (Z) ≤ Ap1,p2 ‖a‖`p1 (Z) ‖b‖`p2 (Z) ,

for all a ∈ `p1 (Z) , b ∈ `p2 (Z) , where Ap1,p2 is a constant depending only on p1 and
p2.

For a ≡ {aj}∞j=−∞ ∈ `p1 (Z), b ≡ {bj}∞j=−∞ ∈ `p2 (Z), and N ∈ N, let

(1.5) HN,Z(a, b) (k) =
∑

0<|j|≤N

ak+jbk−j

j
,

for all k ∈ Z. Then {HN,Z(a, b)}∞N=1 converges to HZ (a, b) in the metric topology
of `p3 (Z).

In [1] the discretization of the bisublinear maximal operators of [16] furnishes
the following extension of Theorem 1.2.
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Theorem 1.3. (See [1, Theorems 1.4 and 1.5]) Let 1 < p1, p2 <∞ and 1/p1 +
1/p2 = 1/p3 < 3/2. For a ≡ {aj}∞j=−∞ ∈ `p1 (Z), b ≡ {bj}∞j=−∞ ∈ `p2 (Z), let

(1.6) HZ (a, b) (k) = sup
N∈N

∣∣∣∣∣∣
∑

0<|j|≤N

ak+jbk−j

j

∣∣∣∣∣∣ , for all k ∈ Z.

(1.7) MZ (a, b) (k) = sup
N≥1

1
2N + 1

N∑
n=−N

|am−n||bm+n|, for all k ∈ Z.

Then there are constants Bp1,p2 and Cp1,p2 , depending only on p1 and p2, such that

(1.8) ‖HZ (a, b)‖`p3 (Z) ≤ Bp1,p2 ‖a‖`p1 (Z) ‖b‖`p2 (Z)

(1.9) ‖MZ (a, b)‖`p3 (Z) ≤ Cp1,p2 ‖a‖`p1 (Z) ‖b‖`p2 (Z)

for all a ∈ `p1 (Z) , b ∈ `p2 (Z) .

Remark 1.4. The boundedness result for the discrete bisublinear Hardy-Littlewood
maximal operator in (1.9) is included in Proposition 14.1 of [9], which is an article
devoted to the treatment of generalized multisublinear Hardy-Littlewood maximal
operators, and their transference by measure-preserving transformations to discrete
dynamical systems.

The main goal of this paper is to show that the boundedness of some of the
discrete versions previously mentioned can be also seen as particular cases of the
general method of transference from G = R to operators acting on `p(Z) when
replacing the use of representations by general measurable functions.

To motivate this approach, let us point out that if G = R and we assume that
the bilinear map

BK(φ, ψ)(x) =
∫

R
φ(x− y)ψ(x+ y)K(y)dy,

given by an integrable kernel K is bounded from Lp1(R) × Lp2(R) → Lp3(R) for
some values of 0 < p1, p2, p3 <∞ then we can consider the map R : R → B(`p(Z))
given by Ru(xn) = xn+[u+1/2] for which the corresponding transferred bilinear map
TK becomes

TK((αn), (βn))(m) =
∑

n

αm−nβm+nKn

for finite sequences (αn) and (βn) where Kn =
∫
[n−1/2,n+1/2)

K(u)du.
However neither u → Ru is a representation of R in the space of operators

on `p(Z), nor the map u → Ru((αn)) is continuous from R → `p(Z) for a given
(αn) ∈ `p(Z). Nevertheless it is still measurable in the strong operator topology.

In this paper we shall present a generalization of Theorem 1.1 where the as-
sumptions are relaxed to obtain the discretization actually as special cases of the
general transference principle. A careful look to the proof in Theorem 1.1 allows to
see that there are three aspects of the result that can be exploited better and are
relevant for applications. First of all the continuity in the strong operator topol-
ogy of the map u → Ru is not really needed and actually the fact that Ru are
representations is not important once condition (1.2) is assumed. Second of all the
conditions (1.1) and (1.3) can be weakened up to new conditions which can be seen
as u → Ru belonging to certain vector-valued spaces. Although only (1.1) and
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(1.3) will be needed for applications in this paper we believe that the new and more
general conditions can be used in further applications. Finally one observes that
the setting where it has been used, that is transferring bounded bilinear operators
acting from Lp1(G) × Lp2(G) → Lq3(G) where q3 = p3 and 1/p3 = 1/p1 + 1/p2

to the case of operators B(Lp(µ)) can be easily extended, under the assumption
q3 ≥ p3, to the case of operators B(`p(Z)) or, under the assumption q3 ≤ p3, to the
case of operators B(Lp(µ)) whenever µ(M) <∞.

One of the new applications of our result is the discrete version of boundedness
of the bilinear fractional integration obtained by C. Kenig and E. Stein ([15]) (see
also the work of N. Kalton and L. Grafakos [12]).

The paper is organized as follows. We first establish and present the general
transference method for bilinear maps and obtain some corollaries in the case of
positive kernels. Later we also present similar approach to transfer also maxi-
mal bisublinear operators and recover the results about the discrete version of the
bisublinear maximal Hardy-Littlewood operator. Finally we present another gen-
eral transference method in the setting of general bilinear maps acting on Banach
spaces, whose application to Lp-spaces allows to recover the result in [6].

Throughout the paper G stands for a locally compact abelian topological group,
m denotes the Haar measure and we use either m(A) or |A| and

∫
A
f(u)dm(u) or∫

A
f(u)du for the measure of a set and the integral of a function, 1 < p1, p2 < ∞,

1/p3 = 1/p1 + 1/p2 and C stands for a constant that may vary from line to line.

2. A general bilinear transference method.

Let us start by giving the following definition, which is related to the amenabil-
ity condition in the classical theory and that will be convenient for our general
framework.

Definition 2.1. A collection V of measurable sets in G is said to be complete
if the following condition holds: for every ε > 0 and every compact set C (that we
shall always assume to be symmetric and contain the unit e), there exist V0 ∈ V
and V1 ∈ V such that V0C ⊂ V1 and

1 ≤ |V1|
|V0|

≤ 1 + ε.

Examples:
1.- If G is a compact group, then every V containing G is obviously complete.
2.- Let G = (Rn,+) and let VM = {(−R,R)n, R > M}. Then VM is complete,

for every M > 0.
3.- Let G = (R+, .) and let V = {( 1

R , R), R > 1}.
4.- Let G = (Z,+) and let V = {[−N,N ] ∩ Z, N ≥ 1}.
5.- If the group is amenable the collection of neighborhoods of zero is a complete

class.
For our theorems we shall see that we can restrict ourselves to complete families

of measurable sets V .

Definition 2.2. Let 0 < p < ∞, let X be a quasi-Banach space and V be a
complete collection of measurable sets in G. We denote by Ap(X) = Ap(G,V;X)
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the space of (strongly) measurable functions F : G→ X such that

sup
V ∈V

( 1
|V |

∫
V

||F (u)||pXdu
)1/p

= ||F ||Ap(X) <∞·

If X = B(Y ) for a quasi-Banach space Y we denote by Ap
s(Y ) = Ap

s(G,V;Y )
the space of functions F : G → B(Y ) such that u → F (u)(y) measurable for all
y ∈ Y , and satisfy

sup
V ∈V

sup
‖y‖=1

( 1
|V |

∫
V

||F (u)(y)||pY du
)1/p

= ||F ||Ap
s(Y ) <∞·

Of course these classes satisfy Ap2(X) ⊂ Ap1(X) (respect. Ap2
s (Y ) ⊂ Ap1

s (Y ))
for all 0 < p1 ≤ p2 <∞.

Also it is clear that for all 0 < p <∞ and any V one has

L∞(G,B(Y )) ⊂ Ap(G,V,B(Y )) ⊂ Ap
s(G,V, Y ).

Examples:
1. Let G = R, X = C and denote by Bp the space of functions such that

lim
R→∞

1
2R

∫ R

R

|F (u)|pdu <∞.

Hence for Ap(R,V,C) ⊂ Bp, for V = {(−R,R);R > 1}.
Particular examples of functions in Bp are the almost periodic functions F (x) =

µ̂(x) for a finite Borel measure on R with finite support, say F (x) =
∑
αte

itx. If
F ∈ Ap(R,C) then α =

∑
αtχt belongs to Lp(D̂) .

This follows from the fact that ||F ||Bp = ||α||Lp(D̂)(see [20]) where D stands

for the group R with the discrete topology, D̂ stands for the dual group of D, which
coincides with the Bohr compactification of R (see [21], 1.8) and α =

∑
αtχt where

χt stands for the corresponding character in D.
2.- Let V = {Z∩(−N,N);N > 1}. A sequence (xn) inX belongs to Ap(Z,V, X)

if

sup
N∈N

( 1
2N

N∑
−N

||xn||pX
)1/p

<∞.

A sequence of operators (Tn) in B(X) belongs to Ap
s(Z,V,B(X)) if

sup
N∈N

sup
‖y‖=1

( 1
2N

N∑
−N

||Tn(y)||pY
)1/p

<∞.

Definition 2.3. Let (M,µ) be a σ-finite measure space and 0 < p1, p2, q3 <∞.
Let K ∈ L1(G) compactly supported and denote

BK(φ, ψ)(v) =
∫

G

φ(u−1v)ψ(uv)K(u)du,

for φ ∈ Lp1(G) ∩ L∞(G) and ψ ∈ Lp2(G) ∩ L∞(G).
We assume that BK extends to a bounded bilinear operator from Lp1(G) ×

Lp2(G) to Lq3(G) with norm N(K).
Let Ri : G → B(Lpi(µ)) be functions which are measurable in the strong

operator topology of B(Lpi(µ)) for i = 1, 2, i.e. u → Ri
uf is measurable for any

f ∈ Lpi(µ). Assume also that, for all measurable sets A with µ(A) < ∞, one has
that Ri

uχA ∈ L2(µ) for u ∈ G and u→ ‖Ri
uχA‖2 is bounded over compact sets.
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Now define the transference operator TK : Lp1(µ)× Lp2(µ) → Lq3(µ) by

TK(f, g)(x) =
∫

G

(R1
u−1f)(x)(R2

ug)(x)K(u)du,

for simple functions f and g.
Note that u → (R1

u−1f)(R2
ug)K(u) belongs to L1(G,L1(µ)) if f and g are

simple functions, and then TK(f, g) ∈ L1(µ) in this case.

Let us now state the main result of the paper.

Theorem 2.4. Let (M,µ) be a σ-finite space, 0 < p1, p2, q3 < ∞, 1/p3 =
1/p1 + 1/p2, K ∈ L1(G) compactly supported and BK and TK are defined as above
where

(1) q3 = p3 for the general case,
(2) q3 ≥ p3 in the case (Z, ν) for the counting measure ν,
(3) q3 ≤ p3 in the case µ(M) <∞.

Let us denote X1 = B(Lp1(µ)),X2 = B(Lp2(µ)) and X3 = B(Lp3(µ)) and assume
that:

• There exist bounded functions φi with supp(φi) = Gi such that
∑n

i=1 φi(u) =
1 for any u ∈ G and there exists a complete family V in G and γ > 0 for
which |V | ≤ γ|V ∩Gi| for all i and for all V ∈ V.

• There exist functions (measurable in the strong operator topology) R : G→
X3, Si : G → X1 and T i : G → X2 satisfying that, for every f ∈ Lp1(µ)
and g ∈ Lp2(µ),

(2.1) Rv(R1
u−1fR2

ug) = Si
vu−1fT i

vug, u, v ∈ Gi

where Ru are invertible operators for all u ∈ G and R−1 ∈ Ap(G,V, X3)
for some 0 < p ≤ 1, where R−1(u) = R−1

u , Si ∈ Ap1
s (G,V, Lp1) and

T i ∈ Ap2
s (G,V, Lp2) for i = 1, 2..., n.

Then, the bilinear operator TK can be extended to a bounded operator

TK : Lp1(µ)× Lp2(µ) → Lq3(µ)

with norm bounded by C(n, γ)A1A2A3 sup1≤i≤nN(Kφi) where

A1 = ‖R−1‖Ap(X3),

A2 = sup
1≤i≤n

‖Si‖A
p1
s (Lp1 )

and

A3 = sup
1≤i≤n

‖T i‖A
p2
s (Lp2 ).

Proof. Let f, g be simple functions and let V ∈ V and denote ki = Kφi, Vi =
V ∩Gi and Ci = C∩Gi, with C = suppK. Now, for fixed (v1, ..., vn) ∈ V1× ...×Vn,
one has
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TK(f, g) =
n∑

i=1

∫
Gi

R1
u−1fR2

ugki(u)du

=
n∑

i=1

R−1
vi

( ∫
Gi

Rvi
(R1

u−1fR2
ug)ki(u)du

)

=
n∑

i=1

R−1
vi

( ∫
Gi

Si
viu−1fT i

viugki(u)du
)

=
n∑

i=1

R−1
vi

( ∫
G

Si
viu−1fχViC

−1
i

(viu
−1)T i

viugχViCi
(viu)ki(u)du

)

Hence, for every (v1, ..., vn) ∈ V1 × ...× Vn, we have that

TK(f, g) =
n∑

i=1

R−1
vi
Bki

((Si
uf)χViCi

, (T i
ug)χViCi

)(vi).

Therefore, if q3 ≥ 1,

‖TK(f, g)‖q3 ≤
n∑

i=1

‖R−1
vi
‖X3‖Bki

((Si
uf)χViC

−1
i
, (T i

ug)χViCi
)(vi)‖Lq3 (µ)

and, for 0 < q3 < 1,

‖TK(f, g)‖q3
q3
≤

n∑
i=1

‖R−1
vi
‖q3

X3
‖Bki

((Si
ufχViC

−1
i

), (T i
ug)χViCi

)(vi)‖q3
Lq3 (µ).

In particular, for any 0 < α ≤ min{1, q3},

‖TK(f, g)‖α
q3
≤

n∑
i=1

‖R−1
vi
‖α

X3
‖Bki

((Si
ufχViC

−1
i

), (T i
ug)χViCi

)(vi)‖α
Lq3 (µ).

Let q = 1+ p
q3

and α = pq3
p+q3

. Clearly 0 < α ≤ min{1, q3}, q > 1, 1/q+α/q3 = 1
and qα = p.
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Now integrate over V1 × ...× Vn and denote β =
∏n

j=1 |Vj | and βi =
∏

j 6=i |Vj |.
Hence, we can write

‖TK(f, g)‖α
q3
≤

≤ 1
β

n∑
i=1

βi

∫
Vi

‖R−1
v ‖α

X3
‖Bki((S

i
ufχViC

−1
i

), (T i
ug)χViCi)(v)‖α

Lq3 (µ)dv

= n
n∑

i=1

βi|Vi|
nβ

1
|Vi|

∫
Vi

‖R−1
v ‖α

X3
‖Bki((S

i
ufχViC

−1
i

), (T i
ug)χViCi)(v)‖α

Lq3 (µ)dv

≤ n sup
1≤i≤n

1
|Vi|

( ∫
Vi

‖R−1
v ‖αq

X3
dv

)1/q

( ∫
Vi

‖Bki
((Si

ufχViC
−1
i

), (T i
ug)χViCi

)(v)‖q3
Lq3 (µ)dv

)α/q3

≤ n‖R−1‖α
Ap(X3)

sup
1≤i≤n

(
1
|Vi|

∫
G

‖Bki
((Si

ufχViC
−1
i

), (T i
ug)χViCi

)(v)‖q3
Lq3 (µ)dv

)α/q3

= n‖R−1‖α
Ap(X3)

sup
1≤i≤n

( ∫
M

1
|Vi|

∫
G

|Bki
((Si

ufχViC
−1
i

)(x), (T i
ug)(x)χViCi

)(v)|q3dvdµ(x)
)α/q3

≤ n‖R−1‖α
Ap(X3)

sup
1≤i≤n

Nα(ki)
( ∫

M

(
1
|Vi|

∫
ViC

−1
i

|Si
uf(x)|p1du

)q3/p1

.

(
1
|Vi|

∫
ViCi

|T i
ug(x)|p2du

)q3/p2

dµ(x)
)α/q3

.

Now, for each 1 ≤ i ≤ n, we denote

Ii =
∫

M

(
1
|Vi|

∫
ViC

−1
i

|Si
uf(x)|p1du

)q3/p1
(

1
|Vi|

∫
ViCi

|T i
ug(x)|p2du

)q3/p2

dµ(x).

Hence

(2.2) ‖Tk(f, g)‖q3 ≤ n1/α‖R−1‖Ap(X3) sup
1≤i≤n

N(ki)I
1/q3
i

Now the proof splits depending the cases for q3.
Assume first that q3 = p3. Using now that 1/p3 = 1/p1 + 1/p2 and Hölder

inequality one gets

Ii ≤
(

1
|Vi|

∫
ViC

−1
i

‖Si
uf‖p1

p1
du

)p3/p1
(

1
|Vi|

∫
ViCi

‖T i
ug‖p2

p2
du

)p3/p2

.

Assume now that q3 ≥ p3 and (M,µ) = (Z, ν). Write q3 = δp3 for some δ ≥ 1.
Hence

Ii ≤
( ∫

M

(
1
|Vi|

∫
ViC

−1
i

|Si
uf(x)|p1du

)p3/p1
(

1
|Vi|

∫
ViCi

|T i
ug(x)|p2du

)p3/p2

dµ(x)
)δ

.

This shows that

I
1/δ
i ≤

(
1
|Vi|

∫
ViC

−1
i

‖Si
uf‖p1

p1
du

)p3/p1
(

1
|Vi|

∫
ViCi

‖T i
ug‖p2

p2
du

)p3/p2

.
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Assume now that q3 ≤ p3 and µ(M) < ∞. Write q3 = ρp3 for some ρ ≤ 1.
Hence

Ii ≤ µ(M)1−ρ
( ∫

M

(
1
|Vi|

∫
ViC

−1
i

|Si
uf(x)|p1du

)p3/p1
(

1
|Vi|

∫
ViCi

|T i
ug(x)|p2du

)p3/p2

dµ(x)
)ρ

.

This shows that

I
1/ρ
i ≤ µ(M)1/ρ−1

(
1
|Vi|

∫
ViC

−1
i

‖Si
uf‖p1

p1
du

)p3/p1
(

1
|Vi|

∫
ViCi

‖T i
ug‖p2

p2
du

)p3/p2

.

In any case

I
1/q3
i ≤ A

(
γ

|V |

∫
V C

‖Si
u(

f

‖f‖p1

)‖p1
p1
du

)1/p1

.

(
γ

|V |

∫
V C

‖T i
u(

g

‖g‖p2

)‖p2
p2
du

)1/p2

‖f‖p1‖g‖p2 .

Finally for every ε > 0, let V0, V1 ∈ V such that V0C ⊂ V1 and |V1|
|V0| ≤ 1 + ε.

Therefore, applying the previous estimates for V0, one gets

‖TK(f, g)‖q3 ≤ C(n, γ) sup
1≤i≤n

N(ki)(1 + ε)1/p3‖R−1‖Ap(X3)

.( sup
1≤i≤n

‖Si‖A
p1
s (Lp1 )‖T i‖A

p2
s (Lp2 ))‖f‖p1‖g‖p2 .

Taking limits as ε goes to zero the proof is complete. �

Let us formulate now a corollary from which one can actually get most appli-
cations in this paper.

Corollary 2.5. Let 1 < p1, p2 <∞ and let (M,µ) be either a finite measure
space or Z with the counting measure. Let K be positive, integrable and with
compact support defining a bounded bilinear map BK : Lp1(G)×Lp2(G) → Lq3(G)
where q3 ≤ p3 (in case µ(M) <∞) or p3 ≤ q3 forM = Z. Let us consider a bounded
and measurable in the strong operator topology function R : G → B(Lpi(µ)) for
i = 1, 2, 3 and whereRu are invertible operators for all u ∈ G such thatR−1

u = Ru−1 .
(1) Assume that there exist G = ∪n

i=1Gi for some pairwise disjoint measurable
sets and a complete family V in G and γ > 0 for which m(V ) ≤ γm(V ∩Gi) for all
i and for all V ∈ V.

(2) Assume that there exist bounded and measurable in the strong operator
topology functions Si : G→ B(Lp1(µ)) and T i : G→ B(Lp2(µ)) satisfying that for
every f ∈ Lp1(M) and g ∈ Lp2(M),

(2.3) Rv(Ru−1fRug) = Si
vu−1fT i

vug, u, v ∈ Gi

Then, the bilinear operator TK(f, g) =
∫

G
RufRu−1gK(u)dm(u) can be ex-

tended to a bounded operator TK : Lp1(µ)× Lp2(µ) → Lq3(µ) with norm bounded
by C(n, γ)A1A2A3 sup1≤i≤nN(K) where

A1 = sup
u∈G,1≤i≤n

‖Si
u‖B(Lp1 (µ)),

A2 = sup
u∈G,1≤i≤n

‖T i
u‖B(Lp2 (µ)) and

A3 = sup
u∈G

‖Ru‖B(Lq3 (µ)).
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In particular one has the following application:

Corollary 2.6. Let q3 ≥ p3, let K be positive, integrable and with compact
support defined in R such that

BK(φ, ψ)(v) =
∫

R
φ(v − u)ψ(v + u)K(u)dm(u),

is bounded from Lp1(R)× Lp2(R) → Lq3(R).
Define Kn =

∫
An

K(u)du where A0 = [− 1
4 ,

1
4 ], An = (n − 3

4 , n + 1
4 ] for n ∈ N

and A−n = −An.
Then the ”discrete bilinear” transform associated to K

TZ,K(a, b)(m) =
∑
n∈Z

am+nbm−nKn

is bounded from `p1(Z)× `p2(Z) to `q3(Z) and ‖TZ,K‖ ≤ CN(K).

Proof. We shall apply Corollary 2.5 for G = R. Denote Ik = [k − 1
4 , k + 1

4 ]
for k ∈ Z, Jk = (k − 3

4 , k −
1
4 ) and J ′k = (−k + 1

4 ,−k + 3
4 ) for k ∈ N. Define

G1 = ∪k∈ZIk, G2 = ∪k∈NJk and G3 = ∪k∈NJ
′
k

Consider now V = {(−N,N) : N ∈ N}.
It is clear that m((−N,N) ∩G2) = m((−N,N) ∩G3) = 1

2m((−N,N) ∩G1) =
1
4m((−N,N)) . This gives γ = 2.

Let us define R : R → B(`pi
(Z)) given by

Ru = S(u)χG1(u) + S(u+ 1
2 )χG2(u) + S(u− 1

2 )χG3(u)

where S stands for the Shift operator S((xn)) = (xn+1) and (u) stands for the
closest integer to u respectively.

Observe that, for k ∈ Z, and u ∈ Ik then Ru = Sk. Also, for k ∈ N, if u ∈ Jk

then Ru = Sk and if u ∈ J ′k then Ru = S−k.
Observe that Ru(ab) = Ru(a)Ru(b) for any sequences a and b.
If u, v ∈ G1 then −u ∈ G1 and one has (v + u) = (v) + (u) and (v − u) =

(v) + (−u).
Hence Rv(RuaR−ub) = S(u+v)aS(v−u)b for u, v ∈ G1. This allows to take

S1
u = T 1

u = S(u).
If u, v ∈ G2 then −u ∈ G3 and we have that −u− 1

2 , u+ 1
2 , v+

1
2 ∈ G1. Therefore

(v + u+ 1) = (v + 1
2 ) + (u+ 1

2 ) and (v − u) = (v + 1
2 ) + (−u− 1

2 ).
Hence Rv(RuaR−ub) = S(u+v+1)aS(v−u)b for u, v ∈ G2. This allows to take

S2
u = S(u+1) and T 2

u = S(u).
If u, v ∈ G3 then −u ∈ G2 and we have that −u+ 1

2 , u−
1
2 , v−

1
2 ∈ G1. Therefore

(v + u− 1) = (v − 1
2 ) + (u− 1

2 ) and (v − u) = (v − 1
2 ) + (−u+ 1

2 ).
Hence Rv(RuaR−ub) = S(u+v−1)aS(v−u)b for u, v ∈ G3. This allows to take

S3
u = S(u−1) and T 3

u = S(u).
Since all operators appearing are norm 1 on `p(Z) for any value of p and for any

u ∈ R, then one gets, using Corollary 2.5, that TK is bounded from `p1(Z)× `p2(Z)
to `q3(Z) and ‖TK‖ ≤ 2N(K).
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Let us finally compute TK in this case

TK(a, b) =
∫

R
R−uaRubK(u)du

=
∑
k∈Z

∫
Ik

R−uaRubK(u)du+
∑
k∈N

∫
Jk∪J′k

R−uaRubK(u)du

= ab

∫
I0

K(u)du+
∑
k∈N

S−kaSkb

∫
Ik∪Jk

K(u)du+
∑
k∈N

SkaS−kb

∫
I−k∪J′k

K(u)du

= ab

∫
I0

K(u)du+
∑
k∈N

S−kaSkb

∫
(k− 3

4 ,k+ 1
4 ]

K(u)du

+
∑
k∈N

SkaS−kb

∫
[−k− 1

4 ,−k+ 3
4 )

K(u)du

=
∑
k∈Z

SkaS−kb

∫
Ak

K(u)du

and therefore
TK(a, b)(m) =

∑
n∈Z

am+nbm−nKn.

�

Now one can obtain the following application.

Theorem 2.7. Let 1 < p1, p2 <∞, 1/p3 = 1/p1 +1/p2, 0 < α < min{1, 1/p3},
and 1/q3 = 1/p3 − α. For a ≡ {aj}∞j=−∞ ∈ `p1 (Z), b ≡ {bj}∞j=−∞ ∈ `p2 (Z), let

Iα(a, b)(m) =
∑
n∈N

am+nbm−n

n1+α

Then there is a constant Dp1,p2 , depending only on p1 and p2, such that

(2.4) ‖Iα (a, b)‖`q3 (Z) ≤ Dp1,p2 ‖a‖`p1 (Z) ‖b‖`p2 (Z) .

Proof. Assume first p3 ≥ 1
α+1 , that is q3 ≥ 1. This case follows from the

vector-valued inequality

‖Iα (a, b) ‖`q3 (Z) ≤
∑
n∈N

‖a.+nb.−n‖`q3 (Z)

n1+α
≤

∑
n∈N

‖a.+nb.−n‖`p3 (Z)

n1+α

≤ ‖a‖`p1 (Z)‖b‖`p2 (Z)

∑
n∈N

1
n1+α

≤ C‖a‖`p1 (Z)‖b.−n‖`p2 (Z).

In the case p3 <
1

α+1 we use transference. It was shown by C. Kenig and E.
Stein that for 0 < α < min{1, 1/p3} the operator Iα : Lp1(R) × Lp2(R) → Lq3(R)
defined by

Iα(f, g)(x) =
∫

R

f(x− t)g(g + t)
|t|α+1

dt

is bounded for 1/q3 = 1/p3 − α. Apply Corollary 2.6 to the Kernels KN (t) =
1

|t|1+αχ(−N,N)(t) for G = R and notice that KN
n ≈ 1

|n|1+α for 0 < |n| ≤ N . �
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3. Transference for maximal operators

In this section we do not give complete proofs since the arguments are quite
similar to the previous ones. For a complete treatment of maximal bisublinear
discretization and transference without the special assumptions used below, see [1].

Theorem 3.1. Let us assume the hypotheses in Theorem 2.4 in the case q3 = p3

and that R−1
u are positive operators. Let {Kj}j be a family of kernels in L1(G)

with compact supports {Cj}j and assume that, for i = 1, ..., n, the corresponding
bisublinear maximal operator

(3.1) B∗
K(φ, ψ)(v) = sup

j∈N,1≤i≤n
|
∫

G

φ(vu−1)ψ(vu)Kj(u)φi(u)dm(u)|,

is bounded from Lp1(G)×Lp2(G) to Lp3(G) with norm less than or equal to N({Kj}j).
Then we have that the maximal operator

T ∗(f, g) = sup
j
|TKj

(f, g)| = sup
j
|
∫

G

R1
ufR

2
u−1gKj(u)dm(u)|

is bounded from Lp1(µ)×Lp2(µ) to Lp3(µ) and it has norm bounded by C(n, p)A1A2A3N({Kj}j)
where Ai for i = 1, 2, 3 are the same constants appearing in Theorem 2.4.

Proof. Denote kj
i (u) = Kj(u)φi(u). As shown in Theorem 2.4, for every

(v1, ..., vn) ∈ V1 × ...× Vn, and j ∈ N we have that

TKj (f, g) =
n∑

i=1

R−1
vi
Bkj

i
((Si

uf)χViCi , (T
i
ug)χViCi)(vi).

Hence, using the positivity of R−1
vi

one has

sup
1≤j≤N

|TKj
(f, g)| ≤

n∑
i=1

R−1
vi

sup
1≤j≤N

|Bkj
i
((Si

uf)χViCi
, (T i

ug)χViCi
)(vi))|.

Therefore

T ∗(f, g) ≤
n∑

i=1

R−1
vi

(B∗
K((Si

uf)χViCi , (T
i
ug)χViCi)(vi)).

Now repeat the argument in the Theorem 2.4. �

Similarly it is not difficult to show the following maximal version of Corollary
2.6.

Theorem 3.2. Let K̄ = {Kj}j be a family of positive and integrable functions
defined in R such that

B∗
K̄(φ, ψ)(v) = sup

j

∣∣∣∣ ∫
R
φ(v − u)ψ(v + u)Kj(u)du

∣∣∣∣
is bounded from Lp1(R)× Lp2(R) → Lp3(R), with norm N(B∗).

Define Kj
n =

∫ n+1/4

n−1/4
Kj(u)du. Then the maximal “discrete bisublinear” trans-

form associated to K̄

T ∗K̄(a, b)(m) = sup
j

∣∣∣∣ ∑
n∈Z

am−nbm+nK
j
n

∣∣∣∣
is bounded from `p1(Z)× `p2(Z) to `p3(Z) and ‖T ∗

K̄
‖ ≤ CN(B∗).
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Then one can transfer the bisublinear Hardy-Littlewood maximal operator in
R. It was shown by M. Lacey (see [16] ) that

M(f, g)(x) = sup
R>0

1
2R

∫ R

R

|f(x+ t)||g(x− t)|dt

maps Lp1(R)×Lp2(R) → Lp3(R) for p1, p2 > 1 and 1/p1 +1/p2 = 1/p3 < 3/2. The
reader should be aware that the case p3 > 1 is elementary, and only the case p3 ≤ 1
is relevant.

We can now give the following alternative proof of (1.9) whose statement we
repeat as the next corollary.

Corollary 3.3. Let p1, p2 > 1 and 1/p1 + 1/p2 = 1/p3 < 3/2. Then

M(a, b)(m) = sup
N≥1

1
2N

N∑
n=−N

|am−n||bm+n|.

is bounded from `p1(Z)× `p2(Z) into `p3(Z).

Proof. Let us consider Kj = 1
2jχ(−j− 1

4 ,j+ 1
4 ). Clearly

B∗
K(φ, ψ)(v) = sup

j∈N,1≤i≤n
|
∫

Gi

φ(v − u)ψ(v + u)Kj(u)du|

≤ sup
j∈N

| 1
2j

∫ j+ 1
4

−j− 1
4

φ(v − u)ψ(v + u)Kj(u)du|

≤ 2M(φ, ψ)(v).

Notice that

Kj
n =

∫
An

Kj(u)du =
1
2j
χ{|n|≤j}(n)m(An)

where A0 = [− 1
4 ,

1
4 ], An = (n− 3

4 , n+ 1
4 ] and A−n = [−n− 1

4 ,−n+ 3
4 ) for n ∈ N.

Therefore

TZ,Kj (a, b) =
1
2j

∑
|k|≤j

SkaS−kb− 1
4j
ab

Then the ”maximal discrete bilinear” transform can be estimated, for a, b ≥ 0,
as follows

M(a, b)(m) = sup
j≥1

1
2j

j∑
k=−j

|am−k||bm+k|

≤ sup
j
|TZ,Kj

(a, b)(m)|+ a(m)b(m)

And the result follows from Theorem 3.2 �

In turn, Corollary 3.3 can be transferred so as to yield the bisublinear ergodic
maximal operator, which we formulate here in the following special case of [1,
Theorem 4.3].

Theorem 3.4. Let (Ω,Σ, µ) be a σ-finite measure space, τ : Ω → Ω be an
invertible measure-preserving transformation and define T (f) = f ◦ τ .
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Then the ”bilinear ergodic maximal transform”

Mτ (f, g)(x) = sup
N∈N

1
2N

∑
|n|≤N

|Tnf(x)||T−ng(x)|

is bounded from Lp1(Ω)×Lp2(Ω) into Lp3(Ω) whenever p1, p2 > 1 and 1/p1+1/p2 =
1/p3 < 3/2.

In particular, let A be a matrix with |det(A)| = 1 and consider Tf(x) = f(Ax)
for x ∈ Rn one obtains the following:

Corollary 3.5. (see [1]) The maximal transform

MA(f, g)(x) = sup
N∈N

1
2N

∑
|n|≤N

|f(Anx)||g(A−nx)|

is bounded from Lp1(Rn)× Lp2(Rn) into Lp3(Rn) whenever p1, p2 > 1 and 1/p1 +
1/p2 = 1/p3 < 3/2.

4. Bilinear vector-valued transference

Throughout this section X, Y , and Z will be arbitrary Banach spaces, and β
will be a bounded bilinear mapping of X × Y into Z and G will be an arbitrary
locally compact abelian group with given Haar measure m (sometimes abbreviated
by du) , and K will be an arbitrary m-integrable complex-valued function on G.
When (Ω, µ) is a measure space and 1 ≤ p < ∞, we shall denote by Lp

X (µ) the
usual Lebesgue space of X-valued µ-measurable functions ψ such that

‖ψ‖p
Lp

X(µ) ≡
∫

Ω

‖ψ‖p
X dµ <∞.

In the special case when µ is the Haar measure m of G (respectively, in the special
case when X is the field of complex numbers C), Lp

X (µ) will also be symbolized by
Lp

X (G) (respectively, by Lp (µ)).
R

(1)
(·) , R(2)

(·) , and R
(3)
(·) will designate given functions defined on G which take

values in B (X), B (Y ), and B (Z), respectively, while satisfying the following hy-
potheses (a) through (d).

(a) For j = 1, 2, 3, R(j)
(·) is a strongly continuous function on G.

(b) For j = 1, 2,

(4.1) Aj ≡ sup
u∈G

∥∥∥R(j)
u

∥∥∥ <∞.

(c) There is a positive real constant A3 such that

(4.2) ‖z‖ ≤ A3

∥∥∥R(3)
u z

∥∥∥ , for all z ∈ Z, u ∈ G.

(d) For all u ∈ G, v ∈ G, x ∈ X, y ∈ Y,

(4.3) R(3)
v

(
β

(
R

(1)
u−1x,R

(2)
u y

))
= β

(
R

(1)
vu−1x,R

(2)
vu y

)
.

Under the foregoing assumptions and notation, we now use Z-valued Bochner
integration to define the bilinear mapping HK : X × Y → Z by putting

(4.4) HK (x, y) =
∫

G

β
(
R

(1)
u−1x,R

(2)
u y

)
K (u) du, for all x ∈ X, y ∈ Y .
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Notice that HK is a bounded bilinear mapping, with

(4.5) ‖HK‖ ≤ ‖β‖A1A2 ‖K‖L1(G) .

Since L1-norms of integration kernels tend to have higher orders of magnitude than
corresponding integration operators defined by them, it is desirable to replace the
factor ‖K‖L1(G) in the majorant of (4.5) with a quantity which has a milder size in
principle. This will be accomplished in our main transference result below (Theorem
4.3), where vector-valued transference methods effectively replace ‖K‖L1(G) in (4.5)
with the norm of the bilinear mapping BK,β defined as follows.

Definition 4.1. Suppose that 1 < p1, p2 <∞, 1
p3

= 1
p1

+ 1
p2

and 1 ≤ p3 <∞.
This notation will be tacitly in effect henceforth. In terms of the preceding notation
forX, Y , Z, β, G, andK, we use Z-valued Bochner integration to define the bilinear
mapping BK,β : Lp1

X (G)× Lp2
Y (G) → Lp3

Z (G) by writing

BK,β (f, g) (v) =
∫

G

β
(
f

(
u−1v

)
, g (uv)

)
K (u) du,(4.6)

for all f ∈ Lp1
X (G) , g ∈ Lp2

Y (G) .

Remark 4.2. It is straightforward to see that the integral on the right of (4.6)
exists for m-almost all v ∈ G and defines a Z-valued m-measurable function of v
satisfying the crude estimate

(4.7) ‖BK,β (f, g)‖L
p3
Z (G) ≤ ‖K‖L1(G) ‖β‖ ‖f‖L

p1
X (G) ‖g‖L

p2
Y (G) .

In the special case where X, Y , and Z coincide with the complex field C, and
β (x, y) ≡ xy, we shall denote the bounded bilinear mapping BK,β : Lp1 (G) ×
Lp2 (G) → Lp3 (G) by sK . (When K has compact support, sK coincides with the
bilinear operator BK defined in Section 1.)

We are now ready to take up the result of this section, which is stated as
follows(compare with Theorem (3.2) of [2]).

Theorem 4.3. Let p1, p2, p3 be as in Definition 4.1. Then in terms of the
above hypotheses and notation, we have

‖HK (x, y)‖ ≤ A1A2A3 ‖BK,β‖ ‖x‖ ‖y‖ ,(4.8)
for all x ∈ X, y ∈ Y .

Proof. In view of (4.5), (4.7), together with standard approximations in
L1 (G), it suffices to establish (4.8) in the special case wherein K is compactly
supported (which we now assume). Let C be a compact subset of G such that K
vanishes outside of C. Temporarily fix vectors x ∈ X, y ∈ Y . By (4.2) and (4.3),
we see that

(4.9) ‖HK (x, y)‖p3 ≤ Ap3
3

∥∥∥∥∫
G

β
(
R

(1)
vu−1x,R

(2)
vu y

)
K (u) du

∥∥∥∥p3

, for all v ∈ G.

Now let ε > 0 be arbitrary, and use that G is a l.c.a. group to get an open
neighborhood V of the identity in G such that V has compact closure, and

(4.10)
|m

(
V

(
C ∪ C−1

))
|

m (V )
< 1 + ε.
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Denote by χ the characteristic function, defined on G, of V
(
C ∪ C−1

)
. Integrating

(4.9) over V with respect to dv, we see that
(4.11)

‖HK (x, y)‖p3 ≤ Ap3
3

m (V )

∫
V

∥∥∥∥∫
G

β
(
R

(1)
vu−1x,R

(2)
vu y

)
χ

(
vu−1

)
χ (vu)K (u) du

∥∥∥∥p3

dv.

Next, let us define f ∈ Lp1
X (G) and g ∈ Lp2

Y (G) by writing, for all u ∈ G,

(4.12) f (u) = χ (u)R(1)
u x; g (u) = χ (u)R(2)

u y.

We can accordingly rewrite (4.11) in the following form:

‖HK (x, y)‖p3 ≤ Ap3
3

m (V )

∫
V

‖BK,β (f, g) (v)‖p3 dv.

Consequently,

‖HK (x, y)‖ ≤ A3

[m (V )]1/p3
‖BK,β (f, g)‖L

p3
Z (G)(4.13)

≤ A3

[m (V )]1/p3
‖BK,β‖ ‖f‖L

p1
X (G) ‖g‖L

p2
Y (G) .

By (4.12),

‖f‖L
p1
X (G) ≤ A1 ‖x‖

[
m

(
V

(
C ∪ C−1

))]1/p1 ;

‖g‖L
p2
Y (G) ≤ A2 ‖y‖

[
m

(
V

(
C ∪ C−1

))]1/p2
.

Applying these estimates to (4.13), we see directly that

‖HK (x, y)‖ ≤ A1A2A3

[m (V )]1/p3
‖BK,β‖

[
m

(
V

(
C ∪ C−1

))]1/p3 ‖x‖ ‖y‖ ,

and hence by (4.10),

(4.14) ‖HK (x, y)‖ ≤ (1 + ε)1/p3 A1A2A3 ‖BK,β‖ ‖x‖ ‖y‖ .

We can now let ε→ 0 in (4.14) to obtain (4.8), and thereby complete the proof of
Theorem 4.3. �

We now specialize our last result to the Lp (µ)-spaces. Actually, we show that
the estimate in the general transference result for bilinear maps (Theorem 4.3)
can be refined when we specialize the general Banach spaces X, Y , and Z to be,
respectively, Lp1 (µ), Lp2 (µ), and Lp3 (µ). This refinement is accomplished by the
following lemma which can be demonstrated by suitably adapting the reasoning of
Lemma (4.2) of [2].

Lemma 4.4. Let p1, p2, p3 be as in Definition 4.1, and let (Ω, µ) be an arbitrary
measure space. Specialize the preceding hypotheses and notation surrounding the
arbitrary function K ∈ L1 (G) to the case where X = Lp1 (µ), Y = Lp2 (µ), and
Z = Lp3 (µ), and let the bounded bilinear form β : X × Y → Z be defined in this
case as the pointwise product on Ω: β (f, g) = fg (in particular, it is automatic
that ‖β‖ ≤ 1 here). Then, in terms of the bilinear mapping sKdefined in Remark
4.2 above, we have

(4.15) ‖BK,β‖ ≤ ‖sK‖ .



18 EARL BERKSON, OSCAR BLASCO, MARÍA J. CARRO, AND T. ALASTAIR GILLESPIE

Remark 4.5. When the hypotheses of Theorem 4.3 are specialized in accor-
dance with the statement of Lemma 4.4, the theorem and lemma combine to furnish
the following transference estimate in the resultant measure-theoretic context (The-
orem 2.1 of [6]):

‖HK‖ ≤ A1A2A3 ‖sK‖ .

This estimate has the pleasant feature that ‖sK,p1,p2‖ is independent of the abstract
measure µ (in contrast to ‖BK,β‖).
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