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Abstract

Let X be a complex Banach space and let Bloch(X) denote the
space of X-valued analytic functions on the unit disc verifying that
sup|z|<1(1−|z|2)||f ′(z)|| < ∞. A sequence (Tn)n of bounded operators
between two Banach spaces X and Y is said to be an operator-valued
multiplier between Bloch(X) and �1(Y ) if the map

∑∞
n=0 xnzn →

(Tn(xn))n defines a bounded linear operator from Bloch(X) into �1(Y ).
It is shown that if X is a Hilbert space then (Tn)n is a multiplier from
Bloch(X) into �1(Y ) if and only supk

∑2k+1

n=2k ||Tn||2 < ∞. Several
results about Taylor coefficient of vector-valued Bloch functions de-
pending on properties on X, such as Rademacher and Fourier type p,
are presented.

AMS Subj. Class: 46E40, 46B20
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1 Introduction.

Throughout the paper X stands for a complex Banach space and we write
Bloch(X) for the space of X-valued analytic functions on the unit disc ver-
ifying that ||f ||Bloch(X) = ||f(0)|| + sup|z|<1(1 − |z|2)||f ′(z)|| < ∞. We write
Bloch instead of Bloch(C).

Clearly, f ∈ Bloch(X) if and only if x∗f(z) = 〈f(z), x∗〉 ∈ Bloch for all
x∗ ∈ X∗ and ||f ||Bloch(X) ≈ sup||x∗||=1 ||x∗f ||Bloch.

For 1 ≤ p, q ≤ ∞ we denote by �(p, q,X) the spaces of sequences (xn)n
in X such that

(
‖(‖xn‖)n∈Ik

‖p
)
k
∈ �q, where Ik = {n ∈ N; 2k−1 ≤ n < 2k}

for k ∈ N and I0 = {0}. We keep the notation �p(X) for �(p, p,X).
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For 1 ≤ p, q ≤ ∞ we write ‖(xn)‖p,q = ‖
(
‖(‖xn‖)n∈Ik

‖p
)
k
‖q . As usual,

when X = C we simply write �(p, q). These classes were first introduced for
the scalar-valued case by C.N. Kellog in [25].

Let us recall the following well known facts on Taylor coefficients of Bloch
functions. There exist C1, C2 > 0 such that

C1‖(xn)‖∞ ≤ ‖f‖Bloch(X) ≤ C2‖(xn)‖1,∞, (1)

for any f(z) =
∑∞

n=0 xnz
n with xn ∈ X.

Indeed, for each n and r ∈ (0, 1),

xnr
n =

1

2π

∫ π

−π

f(reiθ)e−inθdθ.

Hence n||xn||rn−1 ≤ sup|z|=r||f ′(z)|| for all n ∈ N and 0 < r < 1. Now
selecting r = 1 − 1/n we obtain ‖(xn)‖∞ ≤ C‖f‖Bloch(X).

For the other inequality, observe that

||f ′(z)|| ≤
∑
k

∑
n∈Ik

n||xn|||z|n−1 ≤ ||(xn)n||1,∞
∑
k

2k|z|2k−1 ≤ C
||(xn)n||1,∞

1 − |z| .

The reader is referred to [2, 3, 7] for the general theory on Bloch functions.
Let 1 ≤ p, q < ∞, it is easy to see that (�(p, q,X))∗ = �(p′, q′, X∗) for

1/p+ 1/p′ = 1/q + 1/q′ = 1, under the natural pairing

〈(xn), (x∗n)〉 =
∑
n

〈xn, x∗n〉 (2)

(where we also use 〈., .〉 for the dual pairing in X). Due to the fact that we
would like to identify the analytic functions with the sequences corresponding
to their Taylor coefficients, it is convenient to get a predual of Bloch(X∗)
under the previous pairing.

We shall be denoting J1(X) the space of X-valued analytic functions f on

the disc D such that
∫ 1

0
M1(f

′, r)dr <∞, whereMp(f, r) = (
∫ 2π

0
‖f(eit)‖p dt

2π
)1/p

for 1 ≤ p ≤ ∞. Endowing the space with the norm ||f ||J1(X) = ||f(0)|| +∫ 1

0
M1(f

′, r)dr one gets (J1(X))∗ = Bloch(X∗) under the pairing

〈f, g〉 =
∞∑
n=0

〈x∗n, xn〉 (3)
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for any g(z) =
∑∞

n=0 x
∗
nz

n ∈ Bloch(X∗) and f(z) =
∑∞

n=0 xnz
n ∈ J1(X).

The reader is referred to [2] for this duality result in the scalar-valued
case and to [8, 9] for its vector valued extension. Another predual can be
achieved in terms of Bergman spaces, that is (A1(X))∗ = Bloch(X∗) (see [35],
[6]) where A1(X) denotes the space of X-valued analytic functions f on the
disc D such that

∫
D
||f(z)||dA(z) < ∞ and dA(z) stands for the normalized

area measure on D, although in this dualily the pairing is different from (2).
Hence from (1) and (3) we can conclude that there exist C1, C2 > 0 such

that

C1

∥∥∥(
xn

)∥∥∥
∞,1

≤ ||f ||J1(X) ≤ C2

∥∥∥(
xn

)∥∥∥
1

(4)

for any f ∈ J1(X) with Taylor coefficients (xn).
Vector valued Bloch functions have been used in different papers and for

different reasons (see [4, 5, 8, 9, 10, 11, 12, 13]). We refer the reader to [6, 14]
for new results on the subject.

In this paper we shall deal with the vector-valued analogues of the fol-
lowing result on multipliers due to J.M. Anderson and A.L.Shields (see [3]):

(Bloch, �1) = �(2, 1) (5)

where (Bloch, �1) stands for the space of sequences λ = (λn) such that the
operator Tλ(f) = (λnαn)n for f(z) =

∑
n αnz

n is bounded from Bloch into
�1.

A consequence of (5) one gets the following improvement of (1): There
exists a constant C > 0 such that

‖(αn)n‖2,∞ ≤ C‖φ‖Bloch (6)

for any φ(z) =
∑∞

n=0 αnz
n.

We first observe that (6) does not hold in the vector-valued situation.
Note that if en stands for the canonical basis of c0 then f(z) =

∑∞
n=1 enz

n =
(zn)n is a bounded c0-valued analytic function. In particular f ∈ Bloch(c0),
and (en) /∈ �(p,∞, c0) for any p < ∞. Hence (5) does not hold for general
Banach spaces.

The aim of this paper is to understand whether (6) and (5) have natural
extensions to vector-valued functions and how the vector-valued analogues
of them depend on some geometrical properties on the Banach space X.
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Problem 1: For which Banach spaces X does it hold that

f(z) =
∞∑
n=0

xnz
n ∈ Bloch(X) ⇒ (xn)n ∈ �(2,∞, X)? (7)

To this aim let us give the following definition.

Definition 1.1 Let X be a complex Banach space. We define ΛBloch,1(X)
as the space of scalar-valued sequences λ = (λn)n such that the operator
Tλ(f) = (λnxn)n for f(z) =

∑∞
n=0 xnz

n is bounded from Bloch(X) into
�1(X).

Obviously, taking f(z) = xφ(z) where x ∈ X and φ ∈ Bloch one gets
ΛBloch,1(X) ⊆ (Bloch, �1) = �(2, 1).

A dual argument shows that, for 1 < p ≤ 2, the inequality

‖(xn)n‖p′,∞ ≤ C‖
∑

xnz
n‖Bloch(X)

is equivalent to
�(p, 1) ⊆ ΛBloch,1(X).

Hence Problem 1 can be rephrased as follows: For which Banach spaces X
does it hold that ΛBloch,1(X) = �(2, 1)?

The example given after (6) shows that �(p, 1) in not contained in ΛBloch,1(c0)
for any p > 1. This actually leads to a more general question.

Problem 2: Find ΛBloch,1(X) for a given a Banach space X.
Similar problems and descriptions for vector-valued Hardy and Bergman

spaces were considered in previous papers by the author (see [16], [5]).
Another possible generalization of (5) is to consider sequences of bounded

operators (Tn)n in L(X, Y ) between two Banach spacesX and Y and to define
operator-valued multipliers. This approach for different spaces of analytic
functions and multipliers can be found in [4, 5, 10, 11, 13, 14].

Definition 1.2 A sequence (Tn)n in L(X, Y ) is said to be a multiplier be-
tween Bloch(X) and �1(Y ), to be denoted (Tn) ∈

(
Bloch(X), �1(Y )

)
, if

(Tn(xn))n belongs to �1(Y ) whenever f(z) =
∑∞

n=0 xnz
n belongs to Bloch(X).

This is equivalent to the existence of a constant C > 0 such that

N∑
n=0

||Tn(xn)|| ≤ Csup|z|<1(1 − |z|2)||
N∑

n=1

nxnz
n−1|| (8)
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for any N ∈ N and x0, x1, ..., xN elements in X.
The infimum of the constants C verifying (9) is the multiplier norm,

which coincides with the norm of ΦT (
∑
xnz

n) = (Tn(xn)) as the operator
from Bloch(X) and �1(Y ).

We shall address in the paper some partial answers to the more general
problem of finding conditions on the Banach spaces X and Y to have

(
Bloch(X), �1(Y )

)
= �(2, 1,L(X, Y )). (9)

Let us now collect several definitions of properties of Banach spaces to be
used in the sequel.

Definition 1.3 Let 1 ≤ p ≤ 2 ≤ q < ∞ and let X be a complex Banach
space. X is said to have Fourier type p if there exists a constant C such that

(
∞∑

n=−∞
||f̂(n)||p′)1/p′ ≤ C||f ||Lp(T,X) (10)

for all functions f ∈ Lp(T, X).
X is said to have Rademacher type p (respect. Rademacher cotype q) if

there exists a constant C such that

∫ 1

0

||
n∑

j=1

xjrj(t)||dt ≤ C
( n∑

j=1

‖xj‖p
)1/p

(respect.
( n∑

j=1

‖xj‖q
)1/q ≤ C

∫ 1

0

||
n∑

j=1

xjrj(t)||dt)

for any finite family x1, x2, . . . xn of vectors in X where rj stand for the
Rademacher functions on [0, 1].

The notion of Fourier type was first introduced by J. Peetre ([28]) and we
refer the reader to the survey [20] for a complete study and references about
this property. Just mention that X has Fourier type p if and only if X∗ does
have it. In particular, if X has Fourier type p then

||f ||Lp′ (T,X) ≤ C(
∞∑

n=−∞
||f̂(n)||p)1/p. (11)
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The notions of Rademacher type and cotype were introduced by B. Mau-
rey and G. Pisier (see [27]) and were shown to be rather important in Banach
space theory. Let simply recall that Fourier type p implies Rademacher type
p and that if X∗ has type p then X has cotype p′.

The main examples of spaces of Fourier type p are Lr(µ) for any p ≤ r ≤
p′ or interpolation spaces [X0, X1]θ between any Banach space X0 and any
Hilbert space X1 where 1/p = 1 − θ/2.

Recall also that Lr(µ) has Rademacher type min{p, 2} and Rademacher
cotype max{p, 2}.

2 Taylor coefficients.

We start by mentioning a couple of examples of vector valued Bloch functions
to be used later on.

Example 2.1 (see [14], Example 3.1) Let 1 ≤ p ≤ ∞ and define fp : D → �p
by fp(z) =

∑∞
n=1 n

−1/penz
n where en stands for the canonical basis. Then

fp ∈ Bloch(�p).

Note that fp(z) =
∑∞

n=1 xnz
n with ||xn|| = n−1/p and that (xn) ∈

�(2,∞, �p) if and only if p ≥ 2.

Example 2.2 (see [14] Example 3.2) Let 1 ≤ p < ∞ and define Fp : D →
Lp(T) by Fp(z)(ξ) = (1 − ξ̄z)−1/p. Then Fp ∈ Bloch(Lp(T)).

Note that Fp(z) =
∑∞

n=1 x
′
nz

n with ||x′n|| ≈ n−1/p′ and that (xn) ∈
�(2,∞, Lp(T)) if and only if p ≤ 2.

These examples show that

ΛBloch,1(�p) � �(2, 1) for p < 2

and
ΛBloch,1(L

p(T)) � �(2, 1) for p > 2.

We now show that (7) holds for Hilbert spaces. The proof that we shall
present here is based upon Grothendieck’s inequality.

Theorem 2.1 Let H be a Hilbert space. Then there exists a constant C > 0
such that

||(xn)n||2,∞ ≤ C||f ||Bloch(H)

for all f(z) =
∑∞

n=0 xnz
n ∈ Bloch(H). Hence ΛBloch,1(H) = �(2, 1).
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PROOF. Given f ∈ Bloch(H) we start defining Tf : B1 → H by the
formula Tf (un) = xn, where un(z) = (n + 1)zn, and extending the definiton
to all polynomials, by linearity. That is

Tf (φ) =
∑
n

xnαn

n+ 1
=

∫
D

φ(z̄)f(z)dA(z)

for φ(z) =
∑N

n=0 αnz
n.

Using that

〈φ, ψ〉 =
∞∑
n=0

αnβ̄n
n+ 1

=

∫
D

φ(z)ψ(z)dA(z), (12)

for any φ(z) =
∑N

n=0 αnz
n and ψ(z) =

∑∞
n=0 βnz

n, gives the duality (A1)
∗ =

Bloch (see [35]), together with the facts that 〈Tf (φ), x∗〉 = 〈x∗f, φ〉 and poly-
nomials are dense in A1 we can continuously extend Tf to A1 as a bounded
operator and ||Tf || ≤ C||f ||Bloch(H).

On the other hand it is known (see [33] or [35]) that A1 is isomorphic to
�1. Hence by invoking Grothendieck theorem (see [17]) we obtain that Tf is
absolutely summing.

Let ||(λn)||2,1 ≤ 1. It follows from (5) that

sup
||g||(A1)∗≤1

∑
n

|〈λnun, g〉| ≤ C.

This leads to ∑
n

|λn|||T (un)|| ≤ C

for all ||(λn)||2,1 ≤ 1. Or in other words (xn) ∈ �(2,∞, X) and

||(xn)n||2,∞ ≤ C||Tf || = C||f ||Bloch(H).

�
We shall try to see how some geometrical properties of the space X help

to describe ΛBloch,1(X).
We first improve the estimates in (4) under some assumtions on the Ba-

nach space X. To do that we use the following lemma.
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Lemma 2.2 (see [12] or [27]) Let (αn) be sequence of non negative numbers
and 0 < q, β <∞. Then

∫ 1

0

(
1 − r)βq−1(

∞∑
n=1

αnr
n
)q
dr ≈

∞∑
k=1

( ∑
n∈Ik

αn

nβ
)q
. (13)

Theorem 2.3 Let 1 ≤ p ≤ 2 and X be a Banach space of Fourier type p.
(i) There exists a constant C > 0 such that

||f ||J1(X) ≤ C‖(xn)‖p,1
for all (xn) ∈ �(p, 1, X) and f(z) =

∑∞
n=1 xnz

n.

(ii) There exists a constant C > 0 such that

‖(xn)‖p′,∞ ≤ C||f ||Bloch(X)

for all f(z) =
∑∞

n=1 xnz
n ∈ Bloch(X).

PROOF. (i) Note that, using (??),

||f ||J1(X) ≤ ||f(0)||+
∫ 1

0

Mp′(f
′, r)dr ≤ C(||f(0)||+

∫ 1

0

(
∑
n

np||xn||prnp)1/pdr).

Now apply Lemma 2.2 for β = p and q = 1/p to get ||f ||J1(X) ≤
C‖(xn)‖p,1.

(ii) Using that Bloch(X) is isometrically included into (J1(X
∗))∗ together

with (i) and the fact that X∗ also has Fourier type p one gets, for f(z) =∑∞
n=1 xnz

n,that

‖(xn)‖p′,∞ = sup{
∑
n

< xn, x
∗
n >: ‖(x∗n)‖p,1 = 1}

≤ C sup{< f, g >: ‖g‖J1(X∗) = 1}
≤ C‖f‖Bloch(X).

�

Theorem 2.4 Let 1 < p < 2 and let X be a Banach space.
(i) If �(p, 1) ⊆ ΛBloch,1(X) then X has cotype p′.
(ii) If �(2, 1) = ΛBloch,1(X) then X has Orlicz property, i.e. there exists

C > 0 so that (
∑

n ||xn||2)1/2 ≤ C sup‖x∗‖=1

∑
n |〈xn, x∗〉|.
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PROOF. We shall see in both cases that �(p, 1) ⊆ ΛBloch,1(X) implies that
if sup‖x∗‖=1

∑
n |〈xn, x∗〉| <∞ then

∑
n ||xn||p

′
<∞. This, in the case p < 2,

is equivalent to X having cotype p′ (see [30, 31]).
Let x1, .., xN ∈ X such that sup‖x∗‖=1

∑N
n=1 |〈xn, x∗〉| = 1. Take k such

that 2k−1 ≤ N < 2k and construct f(z) =
∑2k+N

n=2k+1 xn−2kzn. Hence f
belongs to Bloch(X) (because x∗f ∈ Bloch for all x∗ ∈ X∗). There-
fore

∑N
k=1 ‖λnxn‖ ≤ C for all (λn) such that ‖(λn)n∈Ik

‖p = 1. Hence∑N
n=1 ||xn||p

′ ≤ C.
�

Corollary 2.5 Let X be a Banach space and 1 ≤ p ≤ 2.
X has Fourier type p ⇒ �(p, 1) ⊆ ΛBloch,1(X) ⇒ X has cotype p′.

3 Multipliers.

Now we analyze the interplay between geometry of Banach spaces and ques-
tions (7) and (10).

Repeating the argument in Theorem 2.4 with Tn = λnT for a fixed oper-
ator T we obtain the following result.

Proposition 3.1 Let 1 ≤ p ≤ 2 and let X and let Y be Banach spaces. If

�(p, 1,L(X, Y )) ⊆
(
Bloch(X), �1(Y )

)

then Πp′,1(X, Y ) = L(X, Y ), where Πp′,1(X, Y ) stands for the space of (p′, 1)-
summing operators (see [17]).

Proposition 3.2 Let X and Y be Banach spaces and assume that X has
Fourier type p. Then

�(p, 1,L(X, Y )) ⊆
(
Bloch(X), �1(Y )

)
.

PROOF. This follows easily from Theorem 2.3, since

∞∑
n=1

‖Tn(xn)‖ ≤ ‖(Tn)‖p,1‖(xn)‖p′,∞ ≤ C‖f‖Bloch(X)

for f(z) =
∑∞

n=1 xnz
n. �
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Proposition 3.3 Let X∗ be a complex Banach space of Rademacher cotype
p′ and Y be any Banach space. Then

(
Bloch(X), �1(Y )

)
⊂ �(p′, 1,L(X, Y )).

PROOF. Let (Tn) be a sequence of operators in
(
Bloch(X), �1(Y )

)
. Using

a simple duality argument we have that

||
∞∑
n=1

εnT
∗
n(y∗n)z

n||J1(X∗) ≤ C

for all εn ∈ {−1, 1} and ||y∗n|| = 1.
Now writting εn = rn(t) for t ∈ [0, 1], and ft(z) =

∑∞
n=1 rn(t)T

∗
n(y∗n)z

n we
have

∫ 1

0

||ft||J1(X∗)dt =

∫ 1

0

∫ 1

0

|M1(f
′
t , r)|drdt

=

∫ 1

0

∫ 2π

0

∫ 1

0

|
∞∑
n=1

nrn(t)T
∗
n(y∗n)r

n−1ei(n−1)θ|dt dθ
2π
dr

≥ C

∫ 1

0

(
∑
n

np
′||T ∗

n(y∗n)||p
′
rnp

′
)1/p′dr.

Applying Lemma 2.2 for β = p′ and q = 1/p′, we obtain (T ∗
n(y∗n)) ∈

�(p′, 1, X∗) uniformly for ||y∗n|| = 1. Hence (Tn) ∈ �(p′, 1,L(X, Y )). �
Combining now Propositions 3.2 and 3.3 we get our final corollary

Corollary 3.4 Let H be a Hilbert space and let Y be a Banach space. Then

(
Bloch(H), �1(Y )

)
= �(2, 1,L(X, Y )).
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[20] J. Garćıa-Cuerva, K.S. Kazarian, V.I. Kolyada, J.L. Tor-
rea Vector-valued Hausdorff-Young inequality and applications,
Russian Math. Surveys 53 (1998), 435-513.

[21] J.B. Garnett, Bounded analytic functions, Academic Press, New
York, 1981.

[22] M. Jevtic and I. Jovanovic, Coefficient multipliers of mixed norm
spaces, Canad. Math. Bull., 36 (1993), 283-285.

[23] M. Jevtic and M. Pavlovic, Coefficient multipliers on spaces of
analytic functions, Acta Sci. Math. (Szeged) 64 (1998), 531-545.

[24] C.N. Kellogg, An extension of Hausdorff-Young theo-
rem,Michigan Math. J., 18 (1971), 121-127.

[25] M. Mateljevic, M. Pavlovic, Lp-behaviour of the integral means
of analytic functions, Studia Math., 77 (1984), 219-237.
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