On coefficients of vector valued Bloch functions

Oscar Blasco*

Abstract

Let X be a complex Banach space and let $\operatorname{Bloch}(X)$ denote the space of X-valued analytic functions on the unit disc verifying that $\sup _{|z|<1}\left(1-|z|^{2}\right)| | f^{\prime}(z) \|<\infty$. A sequence $\left(T_{n}\right)_{n}$ of bounded operators between two Banach spaces X and Y is said to be an operator-valued multiplier between $\operatorname{Bloch}(X)$ and $\ell_{1}(Y)$ if the map $\sum_{n=0}^{\infty} x_{n} z^{n} \rightarrow$ $\left(T_{n}\left(x_{n}\right)\right)_{n}$ defines a bounded linear operator from $\operatorname{Bloch}(X)$ into $\ell_{1}(Y)$. It is shown that if X is a Hilbert space then $\left(T_{n}\right)_{n}$ is a multiplier from $\operatorname{Bloch}(X)$ into $\ell_{1}(Y)$ if and only $\sup _{k} \sum_{n=2^{k}}^{2^{k+1}}\left\|T_{n}\right\|^{2}<\infty$. Several results about Taylor coefficient of vector-valued Bloch functions depending on properties on X, such as Rademacher and Fourier type p, are presented.

AMS Subj. Class: 46E40, 46B20
Key words: Bloch functions, type and cotype

1 Introduction.

Throughout the paper X stands for a complex Banach space and we write $\operatorname{Bloch}(X)$ for the space of X-valued analytic functions on the unit disc verifying that $\|f\|_{\text {Bloch }(X)}=\|f(0)\|+\sup _{|z|<1}\left(1-|z|^{2}\right)\left\|f^{\prime}(z)\right\|<\infty$. We write Bloch instead of Bloch (\mathbb{C}).

Clearly, $f \in \operatorname{Bloch}(X)$ if and only if $x^{*} f(z)=\left\langle f(z), x^{*}\right\rangle \in$ Bloch for all $x^{*} \in X^{*}$ and $\|f\|_{\text {Bloch }(X)} \approx \sup _{\left\|x^{*}\right\|=1}\left\|x^{*} f\right\|_{\text {Bloch }}$.

For $1 \leq p, q \leq \infty$ we denote by $\ell(p, q, X)$ the spaces of sequences $\left(x_{n}\right)_{n}$ in X such that $\left(\left\|\left(\left\|x_{n}\right\|\right)_{n \in I_{k}}\right\|_{\ell_{p}}\right)_{k} \in \ell_{q}$, where $I_{k}=\left\{n \in \mathbb{N} ; 2^{k-1} \leq n<2^{k}\right\}$ for $k \in \mathbb{N}$ and $I_{0}=\{0\}$. We keep the notation $\ell_{p}(X)$ for $\ell(p, p, X)$.

[^0]For $1 \leq p, q \leq \infty$ we write $\left\|\left(x_{n}\right)\right\|_{p, q}=\left\|\left(\left\|\left(\left\|x_{n}\right\|\right)_{n \in I_{k}}\right\|_{\ell_{p}}\right)_{k}\right\|_{\ell_{q}}$. As usual, when $X=\mathbb{C}$ we simply write $\ell(p, q)$. These classes were first introduced for the scalar-valued case by C.N. Kellog in [25].

Let us recall the following well known facts on Taylor coefficients of Bloch functions. There exist $C_{1}, C_{2}>0$ such that

$$
\begin{equation*}
C_{1}\left\|\left(x_{n}\right)\right\|_{\infty} \leq\|f\|_{\text {Bloch }(X)} \leq C_{2}\left\|\left(x_{n}\right)\right\|_{1, \infty}, \tag{1}
\end{equation*}
$$

for any $f(z)=\sum_{n=0}^{\infty} x_{n} z^{n}$ with $x_{n} \in X$.
Indeed, for each n and $r \in(0,1)$,

$$
x_{n} r^{n}=\frac{1}{2 \pi} \int_{-\pi}^{\pi} f\left(r e^{i \theta}\right) e^{-i n \theta} d \theta
$$

Hence $n\left\|x_{n}\right\| r^{n-1} \leq \sup _{|z|=r}\left\|f^{\prime}(z)\right\|$ for all $n \in \mathbb{N}$ and $0<r<1$. Now selecting $r=1-1 / n$ we obtain $\left\|\left(x_{n}\right)\right\|_{\infty} \leq C\|f\|_{\text {Bloch(X) }}$.

For the other inequality, observe that

$$
\left\|f^{\prime}(z)\right\| \leq\left.\sum_{k} \sum_{n \in I_{k}} n\left\|x_{n}\right\|| | z\right|^{n-1} \leq\left\|\left(x_{n}\right)_{n}\right\|_{1, \infty} \sum_{k} 2^{k}|z|^{2^{k}-1} \leq C \frac{\left\|\left(x_{n}\right)_{n}\right\|_{1, \infty}}{1-|z|}
$$

The reader is referred to $[2,3,7]$ for the general theory on Bloch functions.
Let $1 \leq p, q<\infty$, it is easy to see that $(\ell(p, q, X))^{*}=\ell\left(p^{\prime}, q^{\prime}, X^{*}\right)$ for $1 / p+1 / p^{\prime}=1 / q+1 / q^{\prime}=1$, under the natural pairing

$$
\begin{equation*}
\left\langle\left(x_{n}\right),\left(x_{n}^{*}\right)\right\rangle=\sum_{n}\left\langle x_{n}, x_{n}^{*}\right\rangle \tag{2}
\end{equation*}
$$

(where we also use $\langle.,$.$\rangle for the dual pairing in X$). Due to the fact that we would like to identify the analytic functions with the sequences corresponding to their Taylor coefficients, it is convenient to get a predual of $\operatorname{Bloch}\left(X^{*}\right)$ under the previous pairing.

We shall be denoting $J_{1}(X)$ the space of X-valued analytic functions f on the disc \mathbb{D} such that $\int_{0}^{1} M_{1}\left(f^{\prime}, r\right) d r<\infty$, where $M_{p}(f, r)=\left(\int_{0}^{2 \pi}\left\|f\left(e^{i t}\right)\right\|^{p} \frac{d t}{2 \pi}\right)^{1 / p}$ for $1 \leq p \leq \infty$. Endowing the space with the norm $\|f\|_{J_{1}(X)}=\|f(0)\|+$ $\int_{0}^{1} M_{1}\left(f^{\prime}, r\right) d r$ one gets $\left(J_{1}(X)\right)^{*}=\operatorname{Bloch}\left(X^{*}\right)$ under the pairing

$$
\begin{equation*}
\langle f, g\rangle=\sum_{n=0}^{\infty}\left\langle x_{n}^{*}, x_{n}\right\rangle \tag{3}
\end{equation*}
$$

for any $g(z)=\sum_{n=0}^{\infty} x_{n}^{*} z^{n} \in \operatorname{Bloch}\left(X^{*}\right)$ and $f(z)=\sum_{n=0}^{\infty} x_{n} z^{n} \in J_{1}(X)$.
The reader is referred to [2] for this duality result in the scalar-valued case and to $[8,9]$ for its vector valued extension. Another predual can be achieved in terms of Bergman spaces, that is $\left(A_{1}(X)\right)^{*}=\operatorname{Bloch}\left(X^{*}\right)$ (see [35], [6]) where $A_{1}(X)$ denotes the space of X-valued analytic functions f on the disc \mathbb{D} such that $\int_{\mathbb{D}}\|f(z)\| d A(z)<\infty$ and $d A(z)$ stands for the normalized area measure on \mathbb{D}, although in this dualily the pairing is different from (2).

Hence from (1) and (3) we can conclude that there exist $C_{1}, C_{2}>0$ such that

$$
\begin{equation*}
C_{1}\left\|\left(x_{n}\right)\right\|_{\infty, 1} \leq\|f\|_{J_{1}(X)} \leq C_{2}\left\|\left(x_{n}\right)\right\|_{1} \tag{4}
\end{equation*}
$$

for any $f \in J_{1}(X)$ with Taylor coefficients $\left(x_{n}\right)$.
Vector valued Bloch functions have been used in different papers and for different reasons (see $[4,5,8,9,10,11,12,13]$). We refer the reader to $[6,14]$ for new results on the subject.

In this paper we shall deal with the vector-valued analogues of the following result on multipliers due to J.M. Anderson and A.L.Shields (see [3]):

$$
\begin{equation*}
\left(\text { Bloch }, \ell_{1}\right)=\ell(2,1) \tag{5}
\end{equation*}
$$

where (Bloch, ℓ_{1}) stands for the space of sequences $\lambda=\left(\lambda_{n}\right)$ such that the operator $T_{\lambda}(f)=\left(\lambda_{n} \alpha_{n}\right)_{n}$ for $f(z)=\sum_{n} \alpha_{n} z^{n}$ is bounded from Bloch into ℓ_{1}.

A consequence of (5) one gets the following improvement of (1): There exists a constant $C>0$ such that

$$
\begin{equation*}
\left\|\left(\alpha_{n}\right)_{n}\right\|_{2, \infty} \leq C\|\phi\|_{\text {Bloch }} \tag{6}
\end{equation*}
$$

for any $\phi(z)=\sum_{n=0}^{\infty} \alpha_{n} z^{n}$.
We first observe that (6) does not hold in the vector-valued situation. Note that if e_{n} stands for the canonical basis of c_{0} then $f(z)=\sum_{n=1}^{\infty} e_{n} z^{n}=$ $\left(z^{n}\right)_{n}$ is a bounded c_{0}-valued analytic function. In particular $f \in \operatorname{Bloch}\left(c_{0}\right)$, and $\left(e_{n}\right) \notin \ell\left(p, \infty, c_{0}\right)$ for any $p<\infty$. Hence (5) does not hold for general Banach spaces.

The aim of this paper is to understand whether (6) and (5) have natural extensions to vector-valued functions and how the vector-valued analogues of them depend on some geometrical properties on the Banach space X.

Problem 1: For which Banach spaces X does it hold that

$$
\begin{equation*}
f(z)=\sum_{n=0}^{\infty} x_{n} z^{n} \in B \operatorname{loch}(X) \Rightarrow\left(x_{n}\right)_{n} \in \ell(2, \infty, X) ? \tag{7}
\end{equation*}
$$

To this aim let us give the following definition.
Definition 1.1 Let X be a complex Banach space. We define $\Lambda_{\text {Bloch }, \ell_{1}}(X)$ as the space of scalar-valued sequences $\lambda=\left(\lambda_{n}\right)_{n}$ such that the operator $T_{\lambda}(f)=\left(\lambda_{n} x_{n}\right)_{n}$ for $f(z)=\sum_{n=0}^{\infty} x_{n} z^{n}$ is bounded from Bloch (X) into $\ell_{1}(X)$.

Obviously, taking $f(z)=x \phi(z)$ where $x \in X$ and $\phi \in$ Bloch one gets $\Lambda_{\text {Bloch }, \ell_{1}}(X) \subseteq\left(\right.$ Bloch,$\left.\ell_{1}\right)=\ell(2,1)$.

A dual argument shows that, for $1<p \leq 2$, the inequality

$$
\left\|\left(x_{n}\right)_{n}\right\|_{p^{\prime}, \infty} \leq C\left\|\sum x_{n} z^{n}\right\|_{B l o c h(X)}
$$

is equivalent to

$$
\ell(p, 1) \subseteq \Lambda_{B l o c h, \ell_{1}}(X) .
$$

Hence Problem 1 can be rephrased as follows: For which Banach spaces X does it hold that $\Lambda_{\text {Bloch }, \ell_{1}}(X)=\ell(2,1)$?

The example given after (6) shows that $\ell(p, 1)$ in not contained in $\Lambda_{\text {Bloch }, \ell_{1}}\left(c_{0}\right)$ for any $p>1$. This actually leads to a more general question.

Problem 2: Find $\Lambda_{\text {Bloch }, \ell_{1}}(X)$ for a given a Banach space X.
Similar problems and descriptions for vector-valued Hardy and Bergman spaces were considered in previous papers by the author (see [16], [5]).

Another possible generalization of (5) is to consider sequences of bounded operators $\left(T_{n}\right)_{n}$ in $\mathcal{L}(X, Y)$ between two Banach spaces X and Y and to define operator-valued multipliers. This approach for different spaces of analytic functions and multipliers can be found in $[4,5,10,11,13,14]$.

Definition 1.2 A sequence $\left(T_{n}\right)_{n}$ in $\mathcal{L}(X, Y)$ is said to be a multiplier between $\operatorname{Bloch}(X)$ and $\ell_{1}(Y)$, to be denoted $\left(T_{n}\right) \in\left(\operatorname{Bloch}(X), \ell_{1}(Y)\right)$, if $\left(T_{n}\left(x_{n}\right)\right)_{n}$ belongs to $\ell_{1}(Y)$ whenever $f(z)=\sum_{n=0}^{\infty} x_{n} z^{n}$ belongs to $\operatorname{Bloch}(X)$.

This is equivalent to the existence of a constant $C>0$ such that

$$
\begin{equation*}
\sum_{n=0}^{N}\left\|T_{n}\left(x_{n}\right)\right\| \leq \operatorname{Csup}_{|z|<1}\left(1-|z|^{2}\right)| | \sum_{n=1}^{N} n x_{n} z^{n-1}| | \tag{8}
\end{equation*}
$$

for any $N \in \mathbb{N}$ and $x_{0}, x_{1}, \ldots, x_{N}$ elements in X.
The infimum of the constants C verifying (9) is the multiplier norm, which coincides with the norm of $\Phi_{T}\left(\sum x_{n} z^{n}\right)=\left(T_{n}\left(x_{n}\right)\right)$ as the operator from $\operatorname{Bloch}(X)$ and $\ell_{1}(Y)$.

We shall address in the paper some partial answers to the more general problem of finding conditions on the Banach spaces X and Y to have

$$
\begin{equation*}
\left(\operatorname{Bloch}(X), \ell_{1}(Y)\right)=\ell(2,1, \mathcal{L}(X, Y)) . \tag{9}
\end{equation*}
$$

Let us now collect several definitions of properties of Banach spaces to be used in the sequel.

Definition 1.3 Let $1 \leq p \leq 2 \leq q<\infty$ and let X be a complex Banach space. X is said to have Fourier type p if there exists a constant C such that

$$
\begin{equation*}
\left(\sum_{n=-\infty}^{\infty}\|\hat{f}(n)\|^{p^{\prime}}\right)^{1 / p^{\prime}} \leq C\|f\|_{L^{p}(\mathbb{T}, X)} \tag{10}
\end{equation*}
$$

for all functions $f \in L^{p}(\mathbb{T}, X)$.
X is said to have Rademacher type p (respect. Rademacher cotype q) if there exists a constant C such that

$$
\begin{gathered}
\int_{0}^{1}\left\|\sum_{j=1}^{n} x_{j} r_{j}(t)\right\| d t \leq C\left(\sum_{j=1}^{n}\left\|x_{j}\right\|^{p}\right)^{1 / p} \\
\left(\text { respect. }\left(\sum_{j=1}^{n}\left\|x_{j}\right\|^{q}\right)^{1 / q} \leq C \int_{0}^{1}\left\|\sum_{j=1}^{n} x_{j} r_{j}(t)\right\| d t\right)
\end{gathered}
$$

for any finite family $x_{1}, x_{2}, \ldots x_{n}$ of vectors in X where r_{j} stand for the Rademacher functions on $[0,1]$.

The notion of Fourier type was first introduced by J. Peetre ([28]) and we refer the reader to the survey [20] for a complete study and references about this property. Just mention that X has Fourier type p if and only if X^{*} does have it. In particular, if X has Fourier type p then

$$
\begin{equation*}
\|f\|_{L^{p^{\prime}}(\mathbb{T}, X)} \leq C\left(\sum_{n=-\infty}^{\infty}\|\hat{f}(n)\|^{p}\right)^{1 / p} \tag{11}
\end{equation*}
$$

The notions of Rademacher type and cotype were introduced by B. Maurey and G. Pisier (see [27]) and were shown to be rather important in Banach space theory. Let simply recall that Fourier type p implies Rademacher type p and that if X^{*} has type p then X has cotype p^{\prime}.

The main examples of spaces of Fourier type p are $L^{r}(\mu)$ for any $p \leq r \leq$ p^{\prime} or interpolation spaces $\left[X_{0}, X_{1}\right]_{\theta}$ between any Banach space X_{0} and any Hilbert space X_{1} where $1 / p=1-\theta / 2$.

Recall also that $L^{r}(\mu)$ has Rademacher type $\min \{p, 2\}$ and Rademacher cotype $\max \{p, 2\}$.

2 Taylor coefficients.

We start by mentioning a couple of examples of vector valued Bloch functions to be used later on.

Example 2.1 (see [14], Example 3.1) Let $1 \leq p \leq \infty$ and define $f_{p}: \mathbb{D} \rightarrow \ell_{p}$ by $f_{p}(z)=\sum_{n=1}^{\infty} n^{-1 / p} e_{n} z^{n}$ where e_{n} stands for the canonical basis. Then $f_{p} \in \operatorname{Bloch}\left(\ell_{p}\right)$.

Note that $f_{p}(z)=\sum_{n=1}^{\infty} x_{n} z^{n}$ with $\left\|x_{n}\right\|=n^{-1 / p}$ and that $\left(x_{n}\right) \in$ $\ell\left(2, \infty, \ell_{p}\right)$ if and only if $p \geq 2$.

Example 2.2 (see [14] Example 3.2) Let $1 \leq p<\infty$ and define $F_{p}: \mathbb{D} \rightarrow$ $L^{p}(\mathbb{T})$ by $F_{p}(z)(\xi)=(1-\bar{\xi} z)^{-1 / p}$. Then $F_{p} \in \operatorname{Bloch}\left(L^{p}(\mathbb{T})\right)$.

Note that $F_{p}(z)=\sum_{n=1}^{\infty} x_{n}^{\prime} z^{n}$ with $\left\|x_{n}^{\prime}\right\| \approx n^{-1 / p^{\prime}}$ and that $\left(x_{n}\right) \in$ $\ell\left(2, \infty, L^{p}(\mathbb{T})\right)$ if and only if $p \leq 2$.

These examples show that

$$
\Lambda_{\text {Bloch }, \ell_{1}}\left(\ell_{p}\right) \subsetneq \ell(2,1) \text { for } p<2
$$

and

$$
\Lambda_{B l o c h, \ell_{1}}\left(L^{p}(\mathbb{T})\right) \subsetneq \ell(2,1) \text { for } p>2 .
$$

We now show that (7) holds for Hilbert spaces. The proof that we shall present here is based upon Grothendieck's inequality.

Theorem 2.1 Let H be a Hilbert space. Then there exists a constant $C>0$ such that

$$
\left\|\left(x_{n}\right)_{n}\right\|_{2, \infty} \leq C\|f\|_{\text {Bloch }(H)}
$$

for all $f(z)=\sum_{n=0}^{\infty} x_{n} z^{n} \in$ Bloch (H). Hence $\Lambda_{\text {Bloch }, \ell_{1}}(H)=\ell(2,1)$.

PROOF. Given $f \in \operatorname{Bloch}(H)$ we start defining $T_{f}: B_{1} \rightarrow H$ by the formula $T_{f}\left(u_{n}\right)=x_{n}$, where $u_{n}(z)=(n+1) z^{n}$, and extending the definiton to all polynomials, by linearity. That is

$$
T_{f}(\phi)=\sum_{n} \frac{x_{n} \alpha_{n}}{n+1}=\int_{\mathbb{D}} \phi(\bar{z}) f(z) d A(z)
$$

for $\phi(z)=\sum_{n=0}^{N} \alpha_{n} z^{n}$.
Using that

$$
\begin{equation*}
\langle\phi, \psi\rangle=\sum_{n=0}^{\infty} \frac{\alpha_{n} \bar{\beta}_{n}}{n+1}=\int_{\mathbb{D}} \phi(z) \overline{\psi(z)} d A(z), \tag{12}
\end{equation*}
$$

for any $\phi(z)=\sum_{n=0}^{N} \alpha_{n} z^{n}$ and $\psi(z)=\sum_{n=0}^{\infty} \beta_{n} z^{n}$, gives the duality $\left(A_{1}\right)^{*}=$ Bloch (see [35]), together with the facts that $\left\langle T_{f}(\phi), x^{*}\right\rangle=\left\langle x^{*} f, \phi\right\rangle$ and polynomials are dense in A_{1} we can continuously extend T_{f} to A_{1} as a bounded operator and $\left\|T_{f}\right\| \leq C\|f\|_{\text {Bloch }(H)}$.

On the other hand it is known (see [33] or [35]) that A_{1} is isomorphic to ℓ_{1}. Hence by invoking Grothendieck theorem (see [17]) we obtain that T_{f} is absolutely summing.

Let $\left\|\left(\lambda_{n}\right)\right\|_{2,1} \leq 1$. It follows from (5) that

$$
\sup _{\|g\|_{\left(A_{1}\right)^{*} \leq 1}} \sum_{n}\left|\left\langle\lambda_{n} u_{n}, g\right\rangle\right| \leq C .
$$

This leads to

$$
\sum_{n}\left|\lambda_{n}\right|| | T\left(u_{n}\right)| | \leq C
$$

for all $\left\|\left(\lambda_{n}\right)\right\|_{2,1} \leq 1$. Or in other words $\left(x_{n}\right) \in \ell(2, \infty, X)$ and

$$
\left\|\left(x_{n}\right)_{n}\right\|_{2, \infty} \leq C\left\|T_{f}\right\|=C\|f\|_{\text {Bloch }(H)} .
$$

We shall try to see how some geometrical properties of the space X help to describe $\Lambda_{B l o c h, \ell_{1}}(X)$.

We first improve the estimates in (4) under some assumtions on the Banach space X. To do that we use the following lemma.

Lemma 2.2 (see [12] or [27]) Let $\left(\alpha_{n}\right)$ be sequence of non negative numbers and $0<q, \beta<\infty$. Then

$$
\begin{equation*}
\int_{0}^{1}(1-r)^{\beta q-1}\left(\sum_{n=1}^{\infty} \alpha_{n} r^{n}\right)^{q} d r \approx \sum_{k=1}^{\infty}\left(\sum_{n \in I_{k}} \frac{\alpha_{n}}{n^{\beta}}\right)^{q} . \tag{13}
\end{equation*}
$$

Theorem 2.3 Let $1 \leq p \leq 2$ and X be a Banach space of Fourier type p.
(i) There exists a constant $C>0$ such that

$$
\|f\|_{J_{1}(X)} \leq C\left\|\left(x_{n}\right)\right\|_{p, 1}
$$

for all $\left(x_{n}\right) \in \ell(p, 1, X)$ and $f(z)=\sum_{n=1}^{\infty} x_{n} z^{n}$.
(ii) There exists a constant $C>0$ such that

$$
\left\|\left(x_{n}\right)\right\|_{p^{\prime}, \infty} \leq C\|f\|_{\text {Bloch }(X)}
$$

for all $f(z)=\sum_{n=1}^{\infty} x_{n} z^{n} \in \operatorname{Bloch}(X)$.
PROOF. (i) Note that, using (??),
$\|f\|_{J_{1}(X)} \leq\|f(0)\|+\int_{0}^{1} M_{p^{\prime}}\left(f^{\prime}, r\right) d r \leq C\left(\|f(0)\|+\int_{0}^{1}\left(\sum_{n} n^{p}\left\|x_{n}\right\|^{p} r^{n p}\right)^{1 / p} d r\right)$.
Now apply Lemma 2.2 for $\beta=p$ and $q=1 / p$ to get $\|f\|_{J_{1}(X)} \leq$ $C\left\|\left(x_{n}\right)\right\|_{p, 1}$.
(ii) Using that $\operatorname{Bloch}(X)$ is isometrically included into $\left(J_{1}\left(X^{*}\right)\right)^{*}$ together with (i) and the fact that X^{*} also has Fourier type p one gets, for $f(z)=$ $\sum_{n=1}^{\infty} x_{n} z^{n}$,that

$$
\begin{aligned}
\left\|\left(x_{n}\right)\right\|_{p^{\prime}, \infty} & =\sup \left\{\sum_{n}<x_{n}, x_{n}^{*}>:\left\|\left(x_{n}^{*}\right)\right\|_{p, 1}=1\right\} \\
& \leq C \sup \left\{<f, g>:\|g\|_{J_{1}\left(X^{*}\right)}=1\right\} \\
& \leq C\|f\|_{\text {Bloch }(X)} .
\end{aligned}
$$

Theorem 2.4 Let $1<p<2$ and let X be a Banach space.

(ii) If $\ell(2,1)=\Lambda_{\text {Bloch, }, \ell_{1}}(X)$ then X has Orlicz property, i.e. there exists $C>0$ so that $\left(\sum_{n}\left\|x_{n}\right\|^{2}\right)^{1 / 2} \leq C \sup _{\left\|x^{*}\right\|=1} \sum_{n}\left|\left\langle x_{n}, x^{*}\right\rangle\right|$.

PROOF. We shall see in both cases that $\ell(p, 1) \subseteq \Lambda_{\text {Bloch, } \ell_{1}}(X)$ implies that if $\sup _{\left\|x^{*}\right\|=1} \sum_{n}\left|\left\langle x_{n}, x^{*}\right\rangle\right|<\infty$ then $\sum_{n}\left\|x_{n}\right\|^{p^{\prime}}<\infty$. This, in the case $p<2$, is equivalent to X having cotype p^{\prime} (see [30,31]).

Let $x_{1}, . ., x_{N} \in X$ such that $\sup _{\left\|x^{*}\right\|=1} \sum_{n=1}^{N}\left|\left\langle x_{n}, x^{*}\right\rangle\right|=1$. Take k such that $2^{k-1} \leq N<2^{k}$ and construct $f(z)=\sum_{n=2^{k}+1}^{2^{k}+N} x_{n-2^{k}} z^{n}$. Hence f belongs to $\operatorname{Bloch}(X)$ (because $x^{*} f \in \operatorname{Bloch}$ for all $x^{*} \in X^{*}$). Therefore $\sum_{k=1}^{N}\left\|\lambda_{n} x_{n}\right\| \leq C$ for all $\left(\lambda_{n}\right)$ such that $\left\|\left(\lambda_{n}\right)_{n \in I_{k}}\right\|_{p}=1$. Hence $\sum_{n=1}^{N}\left\|x_{n}\right\|^{p^{\prime}} \leq C$.

Corollary 2.5 Let X be a Banach space and $1 \leq p \leq 2$.
X has Fourier type $p \Rightarrow \ell(p, 1) \subseteq \Lambda_{\text {Bloch }, \ell_{1}}(X) \Rightarrow X$ has cotype p^{\prime}.

3 Multipliers.

Now we analyze the interplay between geometry of Banach spaces and questions (7) and (10).

Repeating the argument in Theorem 2.4 with $T_{n}=\lambda_{n} T$ for a fixed operator T we obtain the following result.

Proposition 3.1 Let $1 \leq p \leq 2$ and let X and let Y be Banach spaces. If

$$
\ell(p, 1, \mathcal{L}(X, Y)) \subseteq\left(B \operatorname{loch}(X), \ell_{1}(Y)\right)
$$

then $\Pi_{p^{\prime}, 1}(X, Y)=\mathcal{L}(X, Y)$, where $\Pi_{p^{\prime}, 1}(X, Y)$ stands for the space of $\left(p^{\prime}, 1\right)$ summing operators (see [17]).

Proposition 3.2 Let X and Y be Banach spaces and assume that X has Fourier type p. Then

$$
\ell(p, 1, \mathcal{L}(X, Y)) \subseteq\left(B \operatorname{loch}(X), \ell_{1}(Y)\right)
$$

PROOF. This follows easily from Theorem 2.3, since

$$
\sum_{n=1}^{\infty}\left\|T_{n}\left(x_{n}\right)\right\| \leq\left\|\left(T_{n}\right)\right\|_{p, 1}\left\|\left(x_{n}\right)\right\|_{p^{\prime}, \infty} \leq C\|f\|_{\text {Bloch }(X)}
$$

for $f(z)=\sum_{n=1}^{\infty} x_{n} z^{n}$.

Proposition 3.3 Let X^{*} be a complex Banach space of Rademacher cotype p^{\prime} and Y be any Banach space. Then

$$
\left(\operatorname{Bloch}(X), \ell_{1}(Y)\right) \subset \ell\left(p^{\prime}, 1, \mathcal{L}(X, Y)\right)
$$

PROOF. Let $\left(T_{n}\right)$ be a sequence of operators in $\left(\operatorname{Bloch}(X), \ell_{1}(Y)\right)$. Using a simple duality argument we have that

$$
\left\|\sum_{n=1}^{\infty} \epsilon_{n} T_{n}^{*}\left(y_{n}^{*}\right) z^{n}\right\|_{J_{1}\left(X^{*}\right)} \leq C
$$

for all $\epsilon_{n} \in\{-1,1\}$ and $\left\|y_{n}^{*}\right\|=1$.
Now writting $\epsilon_{n}=r_{n}(t)$ for $t \in[0,1]$, and $f_{t}(z)=\sum_{n=1}^{\infty} r_{n}(t) T_{n}^{*}\left(y_{n}^{*}\right) z^{n}$ we have

$$
\begin{aligned}
\int_{0}^{1}\left\|f_{t}\right\|_{J_{1}\left(X^{*}\right)} d t & =\int_{0}^{1} \int_{0}^{1}\left|M_{1}\left(f_{t}^{\prime}, r\right)\right| d r d t \\
& =\int_{0}^{1} \int_{0}^{2 \pi} \int_{0}^{1}\left|\sum_{n=1}^{\infty} n r_{n}(t) T_{n}^{*}\left(y_{n}^{*}\right) r^{n-1} e^{i(n-1) \theta}\right| d t \frac{d \theta}{2 \pi} d r \\
& \geq C \int_{0}^{1}\left(\sum_{n} n^{p^{\prime}} \| T_{n}^{*}\left(y_{n}^{*}\right)| |^{p^{\prime}} r^{n p^{\prime}}\right)^{1 / p^{\prime}} d r .
\end{aligned}
$$

Applying Lemma 2.2 for $\beta=p^{\prime}$ and $q=1 / p^{\prime}$, we obtain $\left(T_{n}^{*}\left(y_{n}^{*}\right)\right) \in$ $\ell\left(p^{\prime}, 1, X^{*}\right)$ uniformly for $\left\|y_{n}^{*}\right\|=1$. Hence $\left(T_{n}\right) \in \ell\left(p^{\prime}, 1, \mathcal{L}(X, Y)\right)$.

Combining now Propositions 3.2 and 3.3 we get our final corollary
Corollary 3.4 Let H be a Hilbert space and let Y be a Banach space. Then

$$
\left(\operatorname{Bloch}(H), \ell_{1}(Y)\right)=\ell(2,1, \mathcal{L}(X, Y))
$$

References

[1] J.M. Anderson, Coefficient multipliers and Sobolev spaces, J. Analysis, 1 (1993), 13-19.
[2] J.M. Anderson, J. Clunie and C.Pommerenke, On Bloch functions and normal functions, J. Reine Angew. Math., 270 (1974), 12-37.
[3] J.M. Anderson, A.L. Shields, Coefficient multipliers of Bloch functions, Trans. Amer. Math. Soc., 224 (1976), 256-265.
[4] J.L Arregui, O. Blasco, Convolution of three functions by means of bilinear maps and applications, Illinois Math. J., 43 (2) (1999), 264-280.
[5] J.L Arregui, O. Blasco, Multipliers on vector valued Bergman spaces, Canad. J. Math., 54(6) (2002), 1165-1186.
[6] J.L Arregui, O. Blasco, Bergman and Bloch spaces of vector valued functions, Math. Nachr., (2003).
[7] G. Bennett, D.A. Stegenga, R.M. Timoney, Coefficient of Bloch and Lipschizt functions, Illinois Math. J., 25 (1981), 520-531.
[8] O. Blasco, Spaces of vector valued analytic functions and applications, London Math. Soc. Lecture Notes Series 158, (1990), 33-48.
[9] O. Blasco, Operators on weighted Bergman spaces and applications, Duke Math. J., 66 , (1992), 443-467.
[10] O. Blasco, A characterization of Hilbert spaces in terms of multipliers between spaces of vector valued analytic functions, Michigan Math. J., 42 (1995), 537-543.
[11] O. Blasco, Vector valued analytic functions of bounded mean oscillation and geometry of Banach spaces, Illinois J., 41 , (1997), 532-558.
[12] O. Blasco, Multipliers on spaces of analytic functions, Canad. J. Math., 47 (1995), 44-64.
[13] O. Blasco, Convolution by means of bilinear maps, Contemp. Math., 232 (1999), 85-103.
[14] O. Blasco, Remarks on vector-valued BMOA and vector-valued multipliers, Positivity, 4 (2000), 339-356.
[15] O. Blasco, Vector-valued Hardy inequality and B-convexity, Ark. Mat., 38 (2000), 21-36.
[16] O. Blasco, A. Pelczynski, Theorems of Hardy and Paley for vector-valued for vector valued analytic functions and related classes of Banach spaces, Trans. Amer. Math. Soc., 323 (1991), 335-367.
[17] J. Diestel,H. Jarchow, A. Tonge, Absolutely summing operators, Cambrigde Univ. Press, Cambrigde, 1995.
[18] P. Duren, H^{p}-spaces Academic Press, New York, 1970.
[19] P.L. Duren and A.L. Shields Coefficient multipliers of H^{p} and B^{p} spaces, Pacific J. Math., 32 (1970), 69-78.
[20] J. García-Cuerva, K.S. Kazarian, V.I. Kolyada, J.L. Torrea Vector-valued Hausdorff-Young inequality and applications, Russian Math. Surveys 53 (1998), 435-513.
[21] J.B. Garnett, Bounded analytic functions, Academic Press, New York, 1981.
[22] M. Jevtic and I. Jovanovic, Coefficient multipliers of mixed norm spaces, Canad. Math. Bull., 36 (1993), 283-285.
[23] M. Jevtic and M. Pavlovic, Coefficient multipliers on spaces of analytic functions, Acta Sci. Math. (Szeged) 64 (1998), 531-545.
[24] C.N. Kellogg, An extension of Hausdorff-Young theorem,Michigan Math. J., 18 (1971), 121-127.
[25] M. Mateljevic, M. Pavlovic, L^{p}-behaviour of the integral means of analytic functions, Studia Math., 77 (1984), 219-237.
[26] B. Maurey and G. Pisier, Séries de variables aléatories vectorielles indépendantes et propiétés géométriques des espaces de Banach, Studia Math., 58 (1976), 45-90.
[27] J. Peetre, Sur la transformation de Fourier des fonctions à valeurs vectorielles, Rend. Sem. Mat. Univ. Padova 42 (1969), 15-46.
[28] A.L. Shields, D.L. Williams, Bounded projections, duality and multipliers in spaces of analytic functions, Trans. Amer. Math. Soc., 162, (1971), 287-302.
[29] M. Talagrand, Cotype operators from $C(K)$, Invent. Math., 107 (1992), 1-40.
[30] M. Talagrand, Cotype and ($q, 1$)-summing norm in a Banach space, Invent. Math., 110 (1992), 545-556.
[31] D. Vukotic, On the coefficient multipliers of Bergman spaces, J. London Math. Soc., 50 (1994), 341-348.
[32] P. Wojtaszczyk, Banach spaces for analysts, Cambrigde Univ. Press, Cambridge,1991.
[33] P. Wojtaszczyk, On multipliers into Bergman spaces and Nevalinna class, Canad. Math. Bull., 33 (1990), 151-161.
[34] K. Zhu, Operators on Bergman spaces, Marcel Dekker, Inc., New York, 1990.
[35] A. Zygmund, Trigonometric series, Cambrigde Univ. Press, New York, 1959.

Departamento de Análisis Matemático
Universidad de Valencia
46100 Burjassot
Valencia
Spain
oblasco@uv.es

[^0]: *Partially supported by Proyecto BMF2002-04013

