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§0.-Introduction.

Given a complex Banach space (X, ||.||) we shall denote by H1(X) the space of
X-valued Bochner integrable function on the circle T = {|z| = 1} whose negative
Fourier coefficients vanish, that is

H1(X) = {f ∈ L1(T, X) : f̂(n) = 0 for n < 0}.

We write ||f ||1,X =
∫ 2π

0
||f(eit)|| dt

2π for the norm in H1(X).
We shall also denote by BMOA(X) the space of vector valued BMO functions

on the circle with analytic extension to the unit disc D, that is f ∈ L1(T, X) with
f̂(n) = 0 for n < 0 such that

||f ||∗,X = sup
I

(
1
|I|

∫
I

||f(eit) − fI ||2
dt

2π

) 1
2

<∞,

where the supremum is taken over all intervals I ∈ T and |I| stands for the nor-
malized Lebesgue measure of I and fI = 1

|I|
∫

I
f(eit) dt

2π .
The norm in the space is given by

||f ||BMO(X) = ||
∫ 2π

0

f(eit)
dt

2π
|| + ||f ||∗,X .

Finally we shall use the notation Bloch(X) for the space of X-valued analytic
functions on D, say f(z) =

∑∞
n=0 xnz

n, such that sup|z|<1(1−|z|)||f ′(z)|| <∞. To
avoid constant functions having zero norm we consider

||f ||Bloch(X) = ||f(0)|| + sup
|z|<1

(1 − |z|)||f ′(z)||.

Now given two complex Banach spaces X,Y and denoting by B(X,Y ) the space
of bounded operatos from X into Y , simply B(X) when X = Y , we can formulate
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the following definition which is the natural analogue of the scalar-valued notion of
convolution multiplier.

Given F ∈ Bloch (B(X,Y )), say F (z) =
∑∞

n=0 Tnz
n and f ∈ H1(X), say f(z) =∑∞

n=0 xnz
n we shall define

F ∗ f(z) =
∞∑

n=0

Tn(xn)zn =
∫ 2π

0

F (zeit)
(
f(e−it)

) dt
2π
.

Let us write
(
H1(X), BMOA(Y )

)
for the space of functions F : D → B(X,Y )

such that F ∗ f ∈ BMOA(Y ) for any f ∈ H1(X).
The norm on it is induced by the norm as subspace of B

(
H1(X), BMOA(Y )

)
.

It was proved in [6] that the space of multipliers from H1 into BMOA can be
identified with the space of Bloch functions, i.e.

(0.1)
(
H1, BMOA

)
= Bloch.

It is not hard to see that the vector valued formulation does not hold for general
Banach spaces. The aim of this note is to show that the vector-valued extension
for X = Y holds only for Hilbert spaces. We shall prove the following theorem.

Theorem. Let X be a complex Banach space.(
H1(X), BMOA(X)

)
= Bloch (B(X)) if and only ifX is isomorphic to a Hilbert

space.

Throughtout the paper all Banach spaces appearing are assumed to be vector
spaces on the complex field and C will stand for a constant which may vary form
line to line.

§1.-Preliminary results

Let us recall some known facts on vector valued analytic functions that we shall
need for the proof.

First of all let us recall the characterization of BMO functions in terms of Car-
leson measures (see [ 4,Theorem 3.4 ]) that we shall use later on. This is still valid
for functions taking values in Hilbert spaces (since it simply relies on Plancherel’s
theorem). Given a Hilbert space X and an analytic function f : D → X we have

(1.1) ||f ||∗,X ≈ sup
z∈D

(∫ 1

0

∫ 2π

0

(1 − s)(1 − |z|2)||f ′(seit)||2
|1 − z̄seit|2

dt

2π
ds

) 1
2

.

Another fact to be used is that Kintchine’s inequalities hold for BMO functions,
actually this can be achieved using Paley’s inequality (see [3])and duality . That is

(1.2)

( ∞∑
k=0

|αk|2
) 1

2

≈ ||
∞∑

k=0

αkz
2k ||BMOA.

Regarding vector valued Bloch functions, let us point out the following remarks.



§1.–PRELIMINARY RESULTS 3

Given (Tn) ⊂ B(X,Y ) and F (z) =
∑∞

n=0 Tnz
n. It follows obviously from the

definition that F ∈ Bloch (B(X,Y )) if and only if for any x ∈ X, y∗ ∈ Y ∗ the
functions Fx,y∗(z) =

∑∞
n=0 < Tn(x), y∗ > zn ∈ Bloch . Moreover

(1.3) ||F ||Bloch(B(X,Y )) = sup
||x||≤1,||y∗||≤1

||Fx,y∗ ||Bloch.

According to this it follows from the scalar valued case (see [1,2]) that

(1.4) F (z) =
∞∑

n=0

Tnz
2n

if and only if sup
n∈N

||Tn|| <∞.

Let us now recall a basic inequality, due to Hardy and Littlewood (see [5,Lemma
HL1]), which played an important role in the proof of (0.1) and whose vector valued
extension we are going to use.

There exists a constant C > 0 such that for any f ∈ H1 one has

(1.5)
(∫ 1

0

(1 − r)M2
1 (f ′, r)dr

) 1
2

≤ C||f ||1.

where M1(f ′, r) =
∫ 2π

0
|f ′(reit)| dt

2π .

Using the notation M1,X(f ′, r) =
∫ 2π

0
||f ′(reit)|| dt

2π when dealing with functions
in H1(X) we have the following vector valued extension.

Lemma 1.1. Let X be a Hilbert space. Then there exists a constant C > 0
such that (∫ 1

0

(1 − r)M2
1,X(f ′, r)dr

) 1
2

≤ C||f ||1,X

for any f ∈ H1(X).

Proof. Let us assume that X = l2 (for general Hilbert spaces it would follow
from the previous case and the fact that X is finitely representable in l2).

Given f ∈ H1(l2) we can write f = (fn) where fn ∈ H1 and
(∑∞

n=1 |fn(eiθ)|2
) 1

2 ∈
L1(T). Denoting by rn the Rademacher functions in [0, 1] we define

F (z) =
∞∑

n=1

fn(z)rn, Ft(z) =
∞∑

n=1

fn(z)rn(t).

It follows from Fubini’s theorem and Kintchine’s inequalities that

||F ||1,L1 ≈ ||f ||1,l2 , M1,L1(F ′, r) ≈M1,l2(f ′, r).

Therefore, setting αk = 1 − 2−k,
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∫ 1

0

(1 − r)M2
1,l2(f

′, r)dr ≈
∫ 1

0

(1 − r)M2
1,L1(F ′, r)dr

=
∞∑

k=0

∫ αk

αk+1

(1 − r)M2
1,L1(F ′, r)dr

≤
∞∑

k=0

2−2kM2
1,L1(F ′, αk)

≤
∞∑

k=0

||2−kM1(F ′
t , αk)||2L1([0,1]).

With this estimate together with the well known fact, due to the cotype 2 con-
dition on L1 (see [6]), that

( ∞∑
k=0

||φk||2L1([0,1])

) 1
2

≤ C||
( ∞∑

k=0

(|φk(t)|)2
) 1

2 ||L1([0,1])

and applying the scalar inequality (1.5), we can write

(∫ 1

0

(1 − r)M2
1,l2(f

′, r)dr
) 1

2

≤
∫ 1

0

( ∞∑
k=0

2−2kM2
1 (F ′

t , αk)

) 1
2

dt

≤ C
∫ 1

0

(∫ 2π

0

(1 − r)M2
1 (F ′

t , r)dr
) 1

2

dt

≤ C
∫ 1

0

∫ 2π

0

|Ft(eiθ)|
dθ

2π
dt = C||F ||1,L1 ≈ ||f ||1,l2 . �

Let us finish this section by recalling the notions of type and cotype (where we
replace the Rademacher functions by lacunary sequences). The reader is referred
to [8, 10 ] for information on these properties.

A Banach space has cotype 2 (respec. type 2) if there exists a constant C > 0
such that for all N ∈ N and for all x1, x2, ...xN ∈ X one has

(
N∑

k=1

||xk||2
) 1

2

≤ C||
N∑

k=1

xke
2kit||1,X

(respect. ||
N∑

k=1

xke
2kit||1,X ≤ C

(
N∑

k=1

||xk||2
) 1

2

. )

Let us finally recall Kwapien’s characterization of Hilbert spaces (see [9]):
X is isomorphic to a Hilbert space if and only if X has type and cotype 2.
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§3.- Proof of the theorem

Lemma 3.1. Let X,Y be two complex Banach spaces. Then(
H1(X), BMOA(Y )

)
⊂ Bloch (B(X,Y )) .

Proof. Given F ∈
(
H1(X), BMOA(Y )

)
and x ∈ X, y∗ ∈ Y ∗ then clearly one

has < F (z)(x), y∗ >∈
(
H1, BMOA

)
= Bloch. Moreover

|| < F (z)(x), y∗ > ||Bloch ≤ ||F ||(H1(X),BMOA(Y ))||x||||y∗||.
Hence (1.3) shows that F ∈ Bloch (B(X,Y )). �

Proof of the theorem.

From Kwapien’s result we shall show first that
(
H1(X), BMOA(X)

)
= Bloch (B(X))

implies cotype 2 and type 2 on X.
Let us take x1, x2, ...xN ∈ X. Then choose x∗n ∈ X∗ so that < x∗n, xn >= ||xn||

and ||x∗n|| = 1 . Then, using (1.2)(
N∑

k=1

||xk||2
) 1

2

=

(
N∑

k=1

| < x∗k, xk > |2
) 1

2

≈ ||
N∑

k=1

< x∗k, xk > z
2k ||BMOA.

Now let us fix x ∈ X with ||x|| = 1 and consider F (z) =
∑N

n=1 Tnz
2n

where Tn

are the operators in B(X) defined by Tn(y) =< x∗n, y > x. From (1.2) we have
F ∈ Bloch (B(X)) and ||F ||Bloch(B(X)) = 1.

Therefore(
N∑

k=1

||xk||2
) 1

2

≤ C||
N∑

k=1

Tk(xk)z2
k ||BMOA(X) ≤ C||

N∑
k=1

xkz
2k ||1,X .

This shows that X has cotype 2.
Now given x1, x2, ...xN ∈ X we fix x ∈ X and x∗ ∈ X∗ with ||x|| = 1 and

< x∗, x >= 1. Define F (z) =
∑N

n=1 Tnz
2n

where Tn are the operators in B(X)
defined by Tn(y) =< x∗, y > xn

||xn|| . From (1.2) we have F ∈ Bloch (B(X)) and
||F ||Bloch(B(X)) = 1.

Observe that
N∑

k=1

xkz
2k

=
N∑

k=1

Tk(||xk||x)z2
k

= F ∗ f

where f(z) =
∑N

k=1 ||xk||xz2
k

. Then, since BMOA(X) ⊂ H1(X), we have

||
N∑

k=1

xkz
2k ||1,X ≤ ||

N∑
k=1

xkz
2k ||BMOA(X)

≤ C||
N∑

k=1

||xk||xz2
k ||1,X

≤ C||
N∑

k=1

||xk||z2
k ||1 ≤ C

(
N∑

k=1

||xk||2
) 1

2

.
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This shows that X has type 2.
Conversely, let us assume that X is a Hilbert space. From Lemma 3.1 we only

have to prove
Bloch (B(X)) ⊂

(
H1(X), BMOA(X)

)
.

Let us take F (z) =
∑∞

n=0 Tnz
n ∈ Bloch (B(X)) and f(z) =

∑∞
n=0 xnz

n ∈ H1(X).
Now let us observe that

z(F ∗ f)′(z2) =
∞∑

n=1

nTn(xn)z2n−1

=
∫ 2π

0

F ′(zeit)
(
f(ze−it)

)
eit
dt

2π

= 2
∫ 1

0

∫ 2π

0

(
∞∑

n=1

nTnz
n−1rn−1ei(n−1)t)

( ∞∑
n=1

nxnr
n−1e−i(n−1)t

) dt
2π
rdr

= 2
∫ 1

0

∫ 2π

0

F ′(zreit)
(
f ′(re−it))eit

dt

2π
rdr.

Therefore, since F ∈ Bloch (B(X)), we have

||z(F ∗ f)′(z2)|| ≤ C
∫ 1

0

1
(1 − s|z|)M1,X(f ′, s|z|)ds

≤ C
(∫ 1

0

ds

(1 − s|z|)2
) 1

2
(∫ |z|

0

M2
1,X(f ′, s)ds

) 1
2

≤ C

(1 − |z|) 1
2

(∫ |z|

0

M2
1,X(f ′, s)ds

) 1
2

.

Finally, using (1.1), we get

||F ∗ f ||2∗,X ≈ sup
z∈D

∫ 1

0

∫ 2π

0

(1 − s)(1 − |z|2)||(F ∗ f)′(seit)||2
|1 − z̄seit|2

dt

2π
ds

= 2 sup
z∈D

∫ 1

0

∫ 2π

0

(1 − r2)(1 − |z|2)r||(F ∗ f)′(r2e2it)||2
|1 − z̄r2e2it|2

dt

2π
dr

≤ C
∫ 1

0

∫ 2π

0

(1 − |z|2)
|1 − z̄r2e2it|2

(∫ r

0

M2
1,X(f ′, s)ds

)
dt

2π
dr

≤ C
∫ 1

0

∫ r

0

M2
1,X(f ′, s)dsdr = C

∫ 1

0

(1 − s)M2
1,X(f1, s)ds.

Of course

||
∫ 2π

0

F ∗ f(eit) dt
2π

|| = ||T0(x0)|| ≤ ||T0||||x0|| ≤ ||F ||Bloch(B(X))||f ||1,X .

Therefore combining both estimates and using Lemma 1.1 the proof is fin-
ished. �
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