A bilinear version of Orlicz-Pettis theorem.

O. Blasco ${ }^{1}$
Department of Mathematics. Universitat de València. Burjassot 46100 (València), Spain.
J.M. Calabuig *,2
Instituto Universitario de Matemática Pura y Aplicada. Universitat Politècnica de València. València 46022, Spain.

T. Signes ${ }^{3}$

Department of Applied Mathematics. Universidad de Murcia. Espinardo 30100 (Murcia), Spain.

A bilinear version of Orlicz-Pettis theorem.

O. Blasco
Department of Mathematics. Universitat de València. Burjassot 46100 (València), Spain.
J.M. Calabuig
Instituto Universitario de Matemática Pura y Aplicada. Universitat Politècnica de València. València 46022, Spain.
\section*{T. Signes}
Department of Applied Mathematics. Universidad de Murcia. Espinardo 30100 (Murcia), Spain.

Abstract

Given three Banach spaces X, Y and Z and a bounded bilinear map $\mathscr{B}: X \times Y \rightarrow Z$, a sequence $\boldsymbol{x}=\left(x_{n}\right)_{n} \subseteq X$ is called \mathscr{B}-absolutely summable if $\sum_{n=1}^{\infty}\left\|\mathscr{B}\left(x_{n}, y\right)\right\|_{Z}<$ ∞ for any $y \in Y$. Connections of this space with $\ell_{\text {weak }}^{1}(X)$ are presented. A sequence $x=\left(x_{n}\right)_{n} \subseteq X$ is called \mathscr{B}-unconditionally summable if $\sum_{n=1}^{\infty}\left|\left\langle\mathscr{B}\left(x_{n}, y\right), z^{*}\right\rangle\right|<\infty$

for any $y \in Y$ and $z^{*} \in Z^{*}$ and for any $M \subseteq \mathbb{N}$ there exists $x_{M} \in X$ for which $\sum_{n \in M}\left\langle\mathscr{B}\left(x_{n}, y\right), z^{*}\right\rangle=\left\langle\mathscr{B}\left(x_{M}, y\right), z^{*}\right\rangle$ for all $y \in Y$ and $z^{*} \in Z^{*}$. A bilinear version of Orlicz-Pettis theorem is given in this setting and some applications are presented.

Key words: 40F05 Absolute and strong summability, 46A45 Sequence spaces, 46B45 Banach sequence spaces.

1 Notation and preliminaries.

Throughout this paper X, Y and Z denote Banach spaces over $\mathbb{K}(\mathbb{R}$ or $\mathbb{C})$ and $\mathscr{B}: X \times Y \rightarrow Z$ is a bounded bilinear map. As usual $\mathscr{L}(X, Y)$ denotes the set consisting of all linear and continuous maps T defined from X into $Y, \mathrm{~B}_{X}$ denotes the closed unit ball of X and X^{*} the topological dual $X^{*}=\mathscr{L}(X, \mathbb{K})$.

We use the notations $\ell^{1}(X)$ and $\ell_{\text {weak }}^{1}(X)$ for the spaces of all sequences $\boldsymbol{x}=$ $\left(x_{n}\right)_{n} \subseteq X$ such that

$$
\begin{aligned}
\|\boldsymbol{x}\|_{\ell^{1}(X)}=\left\|\left(\left\|x_{n}\right\|_{X}\right)_{n}\right\|_{\ell^{1}} & =\sum_{n=1}^{\infty}\left\|x_{n}\right\|_{X}<\infty, \\
\|\boldsymbol{x}\|_{\ell_{\text {weak }}^{1}(X)}=\sup _{x^{*} \in \mathrm{~B}_{X^{*}}}\left\|\left(\left\langle x_{n}, x^{*}\right\rangle\right)_{n}\right\|_{\ell^{1}} & =\sup _{x^{*} \in \mathrm{~B}_{X^{*}}} \sum_{n=1}^{\infty}\left|\left\langle x_{n}, x^{*}\right\rangle\right|<\infty .
\end{aligned}
$$

The sequences in $\ell^{1}(X)$ and $\ell_{\text {weak }}^{1}(X)$ are called absolutely summable and weakly absolutely summable sequences respectively.

A sequence $\boldsymbol{x}=\left(x_{n}\right)_{n}$ is called unconditionally summable if the series $\sum_{n=1}^{\infty} x_{n}$ is unconditionally convergent, i.e. $\sum_{n=1}^{\infty} x_{\sigma(n)}$ is convergent for each permutation $\sigma: \mathbb{N} \rightarrow \mathbb{N}$. Among other things - see (11)- the unconditional summability of a sequence is equivalent to
(a) $\sum_{n=1}^{\infty} \varepsilon_{n} x_{n}$ converges for any choice of $\varepsilon_{n}= \pm 1$.

[^0](b) $\sum_{n=1}^{\infty} x_{n_{k}}$ converges for any increasing $\left(n_{k}\right)_{k} \subseteq \mathbb{N}$.
(c) For any $\varepsilon>0$ there exists $N_{\varepsilon} \in \mathbb{N}$ so that $\left\|\sum_{k \in M} x_{k}\right\|<\varepsilon$ whenever $\min M \geq N_{\varepsilon}$.

The set consisting of these sequences will be denoted by $\mathrm{UC}(X)$. It is well known the fact that if X is a normed space:

$$
X \text { is complete if and only if } \ell^{1}(X) \subseteq \mathrm{UC}(X) \text {. }
$$

A sequence $\boldsymbol{x}=\left(x_{n}\right)_{n} \subseteq X$ is called weakly unconditionally summable if the series $\sum_{n=1}^{\infty} x_{\sigma(n)}$ is weakly convergent for each permutation $\sigma: \mathbb{N} \rightarrow \mathbb{N}$. Equivalently if we have that $x \in \ell_{\text {weak }}^{1}(X)$ and for all $M \subseteq \mathbb{N}$ there is an $x_{M} \in X$ such that

$$
\sum_{n \in M}\left\langle x_{n}, x^{*}\right\rangle=\left\langle x_{M}, x^{*}\right\rangle, \quad \text { for all } x^{*} \in X^{*} .
$$

The set consisting of those sequences will be denoted by wUC (X).
Of course we have the following chain of inclusions for any Banach space X :

$$
\ell^{1}(X) \subseteq \mathrm{UC}(X) \subseteq \mathrm{w} \mathrm{UC}(X) \subseteq \ell_{\text {weak }}^{1}(X)
$$

Clearly for finite dimensional Banach spaces X one has $\ell^{1}(X)=\ell_{\text {weak }}^{1}(X)$ but, in the general, both spaces are different. Actually the so called weak Dvoretzky-Rogers theorem - see (11, p. 50) - asserts that

A Banach space X has finite dimension if and only if $\ell^{1}(X)=\ell_{\text {weak }}^{1}(X)$.
In fact using the Dvoretzky-Rogers theorem - see for instance (11, p. 2)which says that in each infinite dimensional Banach space X for each $\left(\lambda_{n}\right) \in \ell^{2}$ it is possible to find sequences $\boldsymbol{x}=\left(x_{n}\right)_{n} \subseteq X$ which are unconditionally summable and $\left\|x_{n}\right\|=\lambda_{n}$ one obtains that

$$
X \text { is finite dimensional if and only if } \ell^{1}(X)=\mathrm{UC}(X) \text {. }
$$

On the other hand, in general, $\ell_{\text {weak }}^{1}(X)$ and $\operatorname{UC}(X)$ are different. For instante take $X=c_{0}$ and $\boldsymbol{x}=\left(e_{n}\right)_{n} \subseteq c_{0}$-as usual e_{n} is the canonical basis- which is clearly in $\ell_{\text {weak }}^{1}\left(c_{0}\right)$, but $\boldsymbol{x} \notin \mathrm{UC}\left(c_{0}\right)$ since $\lim _{n}\left\|e_{n}\right\|_{c_{0}}=1 \neq 0$. Actually we have the following important result that characterizes when $\ell_{\text {weak }}^{1}(X)=\mathrm{UC}(X)$. This goes back to 1958 and it is due to Bessaga and Pelczyński - see for instance (11, p. 22) -:
X does not contain copies of c_{0} if and only $\ell_{\text {weak }}^{1}(X)=\mathrm{UC}(X)$.

The classical Orlicz-Pettis theorem - see for instance (11, p. 7) - states that weakly unconditional convergence is equivalent to unconditional convergence.

$$
\mathrm{w} \mathrm{UC}(X)=\mathrm{UC}(X) \text { for any Banach space } X
$$

The Orlicz-Pettis theorem is one of the most celebrated theorems concerning series in Banach spaces. It has been used in many different situations in functional analysis - see for instance (10) for applications in integration theory-. The main objective of this paper is to give a more general version of the OrliczPettis theorem in the setting summability with respect to bounded bilinear maps.

We plan to develop the previous notions of summability in a general setting adapted to a given bounded bilinear map $\mathscr{B}: X \times Y \rightarrow Z$ where Y and Z are also Banach spaces. We say that a vector sequence $\boldsymbol{x}=\left(x_{n}\right)_{n} \subseteq X$ is \mathscr{B}-absolutely summable if the Z-valued sequence $\left(\mathscr{B}\left(x_{n}, y\right)\right)_{n}$ belongs to $\ell^{1}(Z)$ for all $y \in Y$. The set of this sequences will be denoted by $\ell_{\mathscr{B}}^{1}(X)$.

We need to impose some conditions on the bilinear map $\mathscr{B}: X \times Y \rightarrow Z$ for the basic theory to be developed. Let us denote

$$
\phi_{\mathscr{B}}: X \rightarrow \mathscr{L}(Y, Z), \text { given by } \quad \phi_{\mathscr{B}}(x)=\mathscr{B}(x, \cdot)=\mathscr{B}_{x} .
$$

We say that \mathscr{B} is admissible if $\phi_{\mathscr{B}}$ is injective. This assumption gives that

$$
\|\boldsymbol{x}\|_{\ell_{\mathscr{B}}^{1}(X)}=\sup _{y \in \mathrm{~B}_{Y}}\left\|\left(\mathscr{B}\left(x_{n}, y\right)\right)_{n}\right\|_{\ell^{1}(Z)}
$$

is a norm in the space $\ell_{\mathscr{B}}^{1}(X)$. In fact if there exists $k>0$ such that

$$
\|x\| \leq k\left\|\mathscr{B}_{x}\right\|_{\mathscr{L}(Y, Z)}, \quad \text { for all } x \in X
$$

the space X is said to be \mathscr{B}-normed. This concept is basic to get, among other things, that $\ell_{\mathscr{B}}^{1}(X)$ is complete. These notions have recently been considered when handling problems in integration with respect to a bounded bilinear map - see (1;2) - or developing a theory of Fourier Analysis with respect to a bounded bilinear map -see (3)-.

We say that a sequence $\boldsymbol{x}=\left(x_{n}\right)_{n} \subseteq X$ is \mathscr{B}-unconditionally summable if for all $y \in Y$ and $z^{*} \in Z^{*}$ we have that $\left(\left\langle\mathscr{B}\left(x_{n}, y\right), z^{*}\right\rangle\right)_{n} \in \ell^{1}$ and for all $M \subseteq \mathbb{N}$ there is $x_{M} \in X$ such that

$$
\sum_{n \in M}\left\langle\mathscr{B}\left(x_{n}, y\right), z^{*}\right\rangle=\left\langle\mathscr{B}\left(x_{M}, y\right), z^{*}\right\rangle, \quad \text { for all } y \in Y, z^{*} \in Z^{*} .
$$

We use the notation $\mathscr{B}-\mathrm{UC}(X)$ for the space of \mathscr{B}-unconditionally summable sequences.

From this point of view we have that, using the notation \mathcal{B}, \mathscr{D} and \mathscr{D}_{1}, for the standard bilinear maps

$$
\begin{equation*}
\mathcal{B}: X \times \mathbb{K} \rightarrow X, \text { given by } \mathcal{B}(x, \alpha)=\alpha x \tag{1}
\end{equation*}
$$

$$
\begin{align*}
\mathscr{D}: X \times X^{*} \rightarrow \mathbb{K}, & \text { given by } \quad \mathscr{D}\left(x, x^{*}\right)=\left\langle x, x^{*}\right\rangle, \tag{2}\\
\mathscr{D}_{1}: X^{*} \times X \rightarrow \mathbb{K}, & \text { given by } \quad \mathscr{D}_{1}\left(x^{*}, x\right)=\left\langle x, x^{*}\right\rangle, \tag{3}
\end{align*}
$$

the spaces become

$$
\ell_{\mathcal{B}}^{1}(X)=\ell^{1}(X), \ell_{\mathscr{D}}^{1}(X)=\ell_{\text {weak }}^{1}(X) \text { and } \ell_{\mathscr{O}_{1}}^{1}\left(X^{*}\right)=\ell_{\text {weak }^{*}}^{1}\left(X^{*}\right)
$$

Note that a sequence in $\ell_{\mathscr{D}_{1}}^{1}\left(X^{*}\right)$ is always \mathscr{D}_{1}-unconditionally summable, i.e. $\ell_{\mathscr{D}_{1}}^{1}\left(X^{*}\right)=\mathscr{D}_{1}-\mathrm{UC}\left(X^{*}\right)$. However, by considering $X=\ell^{\infty}$ and the standard canonical sequence $\boldsymbol{x}=\left(e_{n}\right)_{n}$ one sees that $\boldsymbol{x}=\left(e_{n}\right)_{n}$ is \mathscr{D}_{1}-unconditionally summable but not unconditionally summable. Hence Orlicz-Pettis theorem does not hold for $\mathscr{B}=\mathscr{D}_{1}$.

On the other hand both \mathcal{B}-unconditional summability and \mathscr{D}-unconditional summability correspond to the weak unconditional summability. Then the classical Orlicz-Pettis theorem can be rewritten as:

$$
\mathscr{D}-\mathrm{UC}(X)=\mathrm{UC}(X) \text { or } \mathcal{B}-\mathrm{UC}(X)=\mathrm{UC}(X) \text { for any Banach space } X \text {. }
$$

The question that we would like to address is the validity of Orlicz-Pettis theorem for bilinear maps: Given $\mathscr{B}: X \times Y \rightarrow Z$ an admissible bounded bilinear map,

$$
\text { Under which conditions does one have } \mathscr{B}-\mathrm{UC}(X)=\mathrm{UC}(X) \text { ? }
$$

The key point to understand the difference between \mathscr{D} and \mathscr{D}_{1} in the corresponding version of the Orlicz-Pettis theorem is the observation that X embeds not only into $\mathscr{L}\left(X^{*}, \mathbb{K}\right)$ but actually into the weak*-norm continuous operators in $\mathscr{L}\left(X^{*}, \mathbb{K}\right)$. So to present our main result we need then to consider the Banach space $\mathscr{W}^{*}\left(X^{*}, Y\right)$ consisting of all bounded linear maps from X^{*} into Y that are weak $*$-norm continuous. The reader may consult to (12) for information on this space.

We are now ready to state the main result of the paper.
Theorem 1 (Bilinear Orlicz-Pettis) Let $\mathscr{B}: X \times Y^{*} \rightarrow Z$ be a bounded bilinear map such that
(a) X is \mathscr{B}-normed,
(b) Y is w^{*}-sqcu, i.e., $\mathrm{B}_{Y^{*}}$ is weak* sequentially compact,
(c) $\phi_{\mathscr{B}}(X) \subseteq \mathscr{W}^{*}\left(Y^{*}, Z\right)$.

Then every \mathscr{B}-unconditionally summable sequence in X is unconditionally summable.

The paper consists of two more sections: In the first one we introduce the spaces under consideration, present some particular bilinear maps and deal
with the inclusions between $\ell_{\mathscr{B}}^{1}(X)$ and $\ell_{\text {weak }}^{1}(X)$. In particular, it is shown that the inclusion $\ell_{\mathscr{B}}^{1}(X) \subseteq \ell_{\text {weak }}^{1}(X)$ holds if and only if X is \mathscr{B}-normed and the inclusion $\ell_{\text {weak }}^{1}(X) \subseteq \ell_{\mathscr{A}}^{1}(X)$ is described in terms of absolutely summing operators. The last section contains the proof of the bilinear version of OrliczPettis theorem and provides some applications.

$2 \mathscr{B}$-summability of sequences.

2.1. Absolute summability with respect to the bilinear maps.

We start this section with the definitions of the spaces to be used throughout the paper.

Let X, Y and Z be Banach spaces and $\mathscr{B}: X \times Y \rightarrow Z$ be a bounded bilinear map. Denote

$$
\begin{equation*}
\phi_{\mathscr{B}}: X \rightarrow \mathscr{L}(Y, Z), \text { given by } \quad \phi_{\mathscr{B}}(x)=\mathscr{B}(x, \cdot)=\mathscr{B}_{x}, \tag{4}
\end{equation*}
$$

and

$$
\begin{equation*}
\psi_{\mathscr{B}}: Y \rightarrow \mathscr{L}(X, Z), \text { given by } \psi_{\mathscr{B}}(y)=\mathscr{B}(\cdot, y)=\mathscr{B}^{y} . \tag{5}
\end{equation*}
$$

We also denote \mathscr{B}^{*} the adjoint bilinear map

$$
\begin{equation*}
\mathscr{B}^{*}: X \times Z^{*} \rightarrow Y^{*}, \text { given by }\left\langle\mathscr{B}^{*}\left(x, z^{*}\right), y\right\rangle=\left\langle\mathscr{B}(x, y), z^{*}\right\rangle \text {. } \tag{6}
\end{equation*}
$$

In other words $\mathscr{B}_{x}^{*}=\left(\mathscr{B}_{x}\right)^{*}$.
Definition 2 Let $\mathscr{B}: X \times Y \rightarrow Z$ be a bounded bilinear map. We say that a vector sequence $\boldsymbol{x}=\left(x_{n}\right)_{n} \subseteq X$ is \mathscr{B}-summable if the Z-valued sequence $\left(\mathscr{B}\left(x_{n}, y\right)\right)_{n}$ belongs to $\ell^{1}(Z)$ for all $y \in Y$. The set of these sequences will be denoted by $\ell_{\mathscr{B}}^{1}(X)$ and we write

$$
\begin{equation*}
\|\boldsymbol{x}\|_{\ell_{\mathscr{B}}^{1}(X)}=\sup _{y \in \mathrm{~B}_{Y}}\left\|\left(\mathscr{B}\left(x_{n}, y\right)\right)_{n}\right\|_{\ell^{1}(Z)}=\sup _{y \in \mathrm{~B}_{Y}} \sum_{n=1}^{\infty}\left\|\mathscr{B}\left(x_{n}, y\right)\right\|_{Z} . \tag{7}
\end{equation*}
$$

Remark 3 One might think on defining $\ell_{\mathscr{B} \text {,weak }}^{1}(X)$ as the vector space consisting of all sequences $\boldsymbol{x}=\left(x_{n}\right)_{n} \subseteq X$ verifying that the $\left(\mathscr{B}\left(x_{n}, y\right)\right)_{n} \in \ell_{\text {weak }}^{1}(Z)$ for all $y \in Y$. That is defined by the condition

$$
\sum_{n=1}^{\infty}\left|\left\langle\mathscr{B}\left(x_{n}, y\right), z^{*}\right\rangle\right|<\infty, \quad \text { for all } \quad y \in Y, z^{*} \in Z^{*}
$$

However this notion is actually the same as above for a different bilinear map. Indeed, for any $\mathscr{B}: X \times Y \rightarrow Z$ we can define a bounded bilinear map

$$
\widetilde{\mathscr{B}}: X \times\left(Y \widehat{\otimes}_{\pi} Z^{*}\right) \rightarrow \mathbb{K}, \quad \text { given by } \quad \widetilde{\mathscr{B}}\left(x, y \otimes z^{*}\right)=\left\langle\mathscr{B}(x, y), z^{*}\right\rangle,
$$

where $Y \widehat{\otimes}_{\pi} Z^{*}$ stands for the projective tensor norm. Clearly $\ell_{\mathscr{B} \text {,weak }}^{1}(X)=$ $\ell_{\widetilde{\mathscr{B}}}^{1}(X)$.

Note that for $x_{0}^{*} \in X^{*} \backslash\{0\}$, we can define the bounded bilinear map

$$
\begin{aligned}
& \mathscr{B}: \quad X \times X \rightarrow \mathbb{K} \\
&\left(x^{1}, x^{2}\right) \\
& \mapsto x_{0}^{*}\left(x^{1}\right) x_{0}^{*}\left(x^{2}\right) .
\end{aligned}
$$

Taking $\boldsymbol{x}=\left(x_{n}\right)_{n} \subseteq \operatorname{ker}\left(x_{0}^{*}\right)$ then $\mathscr{B}\left(x_{n}, x\right)=0$ for all $x \in X$ and $n \in \mathbb{N}$. Thus $\|x\|_{\ell_{\mathscr{B}}^{1}(X)}=0$ but $\boldsymbol{x} \neq 0$.

This difficulty leads us to restrict ourselves to the following class of bilinear maps.

Definition 4 We say that a bounded bilinear map $\mathscr{B}: X \times Y \rightarrow Z$ is admissible for X if

$$
\mathscr{B}(x, y)=0 \text { for all } y \in Y \text { implies that } x=0 \text {. }
$$

Proposition 5 Let $\mathscr{B}: X \times Y \rightarrow Z$ be a bounded bilinear map. The space $\left(\ell^{1}(X),\|\cdot\|_{\ell_{\mathscr{B}}^{1}(X)}\right)$ is normed if and only if $\mathscr{B}: X \times Y \rightarrow Z$ is admissible

Proof. Given $\boldsymbol{x}=\left(x_{n}\right)_{n} \in \ell_{\mathscr{B}}^{1}(X)$ we define the linear operator

$$
\begin{align*}
T_{\mathscr{B}, x}: \quad Y & \rightarrow \ell^{1}(Z) \tag{8}\\
y & \mapsto\left(\mathscr{B}\left(x_{n}, y\right)\right)_{n} .
\end{align*}
$$

Observe first that this operator has closed graph. Let $\left(y_{k}, T_{\mathscr{B}, \boldsymbol{x}}\left(y_{k}\right)\right)_{k}$ be a convergent sequence in $Y \times \ell^{1}(Z)$ and write (y, \boldsymbol{z}) for its limit. The continuity of \mathscr{B} provides that, for every $n \in \mathbb{N}$, the sequence $\left(\mathscr{B}\left(x_{n}, y_{k}\right)\right)_{k}$ converges to $\mathscr{B}\left(x_{n}, y\right)$ in Z. Thus, for each $n \in \mathbb{N}$,

$$
\begin{aligned}
\left\|z_{n}-T_{\mathscr{B}, x}(y)_{n}\right\|_{Z} & \leq\left\|z_{n}-\mathscr{B}\left(x_{n}, y_{k}\right)\right\|_{Z}+\left\|\mathscr{B}\left(x_{n}, y_{k}\right)-T_{\mathscr{B}, \boldsymbol{x}}(y)_{n}\right\|_{Z} \\
& \leq\left(\sum_{n=1}^{\infty}\left\|z_{n}-\mathscr{B}\left(x_{n}, y_{k}\right)\right\|_{Z}\right)+\left\|\mathscr{B}\left(x_{n}, y_{k}\right)-\mathscr{B}\left(x_{n}, y\right)\right\|_{Z} \\
& \leq\left\|T_{\mathscr{B}, \boldsymbol{x}}\left(y_{k}\right)-\boldsymbol{z}\right\|_{\ell^{1}(Z)}+\|\mathscr{B}\| \cdot\left\|x_{n}\right\|_{X}\left\|y_{k}-y\right\|_{Y} .
\end{aligned}
$$

Taking limits when $k \rightarrow \infty$ we obtain that $T_{\mathscr{B}, x}$ has closed graph. Hence using Closed Graph theorem the operator defined in (8) is continuous and

$$
\|\boldsymbol{x}\|_{\ell \mathscr{B}}^{1}(X)=\sup _{y \in \mathrm{~B}_{Y}} \sum_{n=1}^{\infty}\left\|\mathscr{B}\left(x_{n}, y\right)\right\|_{Z}
$$

is finite.

Clearly the expression (7) verifies that $\|\boldsymbol{x}+\boldsymbol{y}\|_{\ell_{\mathscr{F}}^{1}(X)} \leq\|\boldsymbol{x}\|_{\ell_{\mathfrak{F}}^{1}(X)}+\|\boldsymbol{y}\|_{\ell_{\mathfrak{F}}^{1}(X)}$ and $\|\alpha \boldsymbol{x}\|_{\ell_{\mathfrak{R}}(X)}=|\alpha| \cdot\|\boldsymbol{x}\|_{\ell_{\mathfrak{B}}^{1}(X)}$ for every $\boldsymbol{x}, \boldsymbol{y} \in \ell_{\mathscr{B}}^{1}(X)$ and $\alpha \in \mathbb{K}$.

Observe that the condition $\|\boldsymbol{x}\|_{\ell_{\mathscr{B}}^{1}(X)}=0$ implies $\boldsymbol{x}=0$ is actually equivalent to $\phi_{\mathscr{B}}$ being injective, which corresponds to the notion of admissibility.

Let us now study the completeness of the spaces $\ell_{\mathscr{B}}^{1}(X)$. The following example shows that in general the space $\ell_{\mathscr{B}}^{1}(X)$ is not complete.

Proposition 6 Let $T: X \rightarrow Z$ be a bounded linear map such that $T(X)$ is not a closed subspace of Z (for example the inclusion map defined in ℓ^{1} into c_{0}). Define the bounded bilinear map

$$
\begin{equation*}
\mathscr{I}: X \times \mathbb{K} \rightarrow Z, \quad \text { given by } \quad \mathscr{I}(x, \alpha)=\alpha T(x) . \tag{9}
\end{equation*}
$$

Then $\ell_{\mathscr{\mathscr { L }}}^{1}(X)$ is not complete.
Proof. Observe that $\boldsymbol{x} \in \ell_{\mathscr{I}}^{1}(X)$ means $\sum_{n=1}^{\infty}\left\|T\left(x_{n}\right)\right\|_{Z}<\infty$. Let us take a sequence $\boldsymbol{x}^{\mathbf{0}}=\left(x_{m}^{0}\right)_{m} \subseteq X$ verifying that $\left(T\left(x_{m}^{0}\right)\right)_{m}$ converges to $z \in Z \backslash T(X)$. Now define, for each $m \in \mathbb{N}$,

$$
x^{\boldsymbol{m}}=\left(\frac{x_{m}^{0}}{2^{n}}\right)_{n} .
$$

Using that for all $m, k \in \mathbb{N}$ we have that $\left\|x^{\boldsymbol{m}}-\boldsymbol{x}^{\boldsymbol{k}}\right\|_{\ell_{\mathscr{\mathscr { L }}}(X)}=\left\|T\left(x_{m}^{0}-x_{k}^{0}\right)\right\|_{Z}$ so $\left(x^{\boldsymbol{m}}\right)_{m}$ is a Cauchy sequence in $\ell_{\mathscr{I}}^{1}(X)$. On the other hand for each x in $\ell_{\mathscr{\mathscr { L }}}^{1}(X)$ then
$\frac{1}{2}\left\|T\left(x_{m}^{0}\right)-T\left(2 x_{1}\right)\right\|_{Z}=\left\|T\left(\frac{x_{m}^{0}}{2}-x_{1}\right)\right\|_{Z} \leq \sum_{n=1}^{\infty}\left\|T\left(\frac{x_{m}^{0}}{2^{n}}-x_{n}\right)\right\|_{Z}=\left\|\boldsymbol{x}^{\boldsymbol{m}}-\boldsymbol{x}\right\|_{\ell_{\mathscr{\mathscr { I }}}^{1}(X)}$.
Hence if \boldsymbol{x}^{m} converges to \boldsymbol{x} in $\ell_{\mathscr{\mathscr { L }}}^{1}(X)$ then $z=T\left(2 x_{1}\right) \in T(X)$. Thus \boldsymbol{x}^{m} does not converges in $\ell_{\mathscr{I}}^{1}(X)$.

Let us mention an elementary but useful fact.
Proposition 7 Let $\mathscr{B}: X \times Y \rightarrow Z$ be a bounded bilinear map, Y_{1}, Z_{1} Banach spaces and let $R: Z \rightarrow Z_{1}, S: Y_{1} \rightarrow Y$ two bounded linear maps. Consider

$$
\mathscr{B}_{R, S}: X \times Y_{1} \rightarrow Z_{1}, \quad \text { given by } \quad \mathscr{B}_{R, S}\left(x, y_{1}\right)=R\left(\mathscr{B}\left(x, S y_{1}\right)\right) .
$$

Then $\ell_{\mathscr{B}}^{1}(X)$ is continuously embedded in $\ell_{\mathscr{B}_{R, S}}^{1}(X)$ and

$$
\|\boldsymbol{x}\|_{\ell_{\mathscr{B}_{R, S}}^{1}}(X) \leq\|R\| \cdot\|S\| \cdot\|\boldsymbol{x}\|_{\ell_{\mathscr{B}}^{1}(X)}, \text { for all } \boldsymbol{x} \in \ell_{\mathscr{B}}^{1}(X) \text {. }
$$

Remark 8 If $\mathscr{B}_{1}: X \times Y_{1} \rightarrow Z_{1}$ and $\mathscr{B}_{2}: X \times Y_{2} \rightarrow Z_{2}$ are bounded bilinear maps, we say that $\mathscr{B}_{1}<\mathscr{B}_{2}$ if there exist $R: Z_{2} \rightarrow Z_{1}$ and $S: Y_{1} \rightarrow Y_{2}$ such that $\mathscr{B}_{1}\left(x, y_{1}\right)=R\left(\mathscr{B}_{2}\left(x, S y_{1}\right)\right)$, i.e. $\left(\mathscr{B}_{2}\right)_{R, S}=\mathscr{B}_{1}$.

Proposition 7 says that $\mathscr{B}_{1}<\mathscr{B}_{2}$ implies $\ell_{\mathscr{B}_{2}}^{1}(X) \subseteq \ell_{\mathscr{B}_{1}}^{1}(X)$ and there is $C>0$ verifying that $\|\boldsymbol{x}\|_{\ell_{\mathscr{B}_{1}}^{1}(X)} \leq C\|x\|_{\ell_{\mathscr{B}_{2}}^{1}(X)}$ for any $\boldsymbol{x} \in \ell_{\mathscr{B}_{2}}^{1}(X)$.

We present now some general admissible bounded bilinear maps naturally defined for any Banach space X and that generalize those given in (1), (2) and (3).

Example 9

(a) $\pi_{Y}: X \times Y \rightarrow X \widehat{\otimes}_{\pi} Y$ given by

$$
\begin{equation*}
\pi_{Y}(x, y)=x \otimes y \tag{10}
\end{equation*}
$$

where $X \hat{\otimes}_{\pi} Y$ is the projective tensor norm.
Note that $\pi_{\mathbb{K}}=\mathcal{B}$ given in (1). Clearly $\ell_{\pi_{Y}}^{1}(X)=\ell^{1}(X) \subseteq \ell_{\text {weak }}^{1}(X)$.
(b) $\widetilde{\mathscr{O}}_{Y}: X \times \mathscr{L}(X, Y) \rightarrow Y$ given by

$$
\begin{equation*}
\widetilde{\mathscr{O}}_{Y}(x, T)=T x . \tag{11}
\end{equation*}
$$

In this case $\widetilde{\mathscr{O}}_{\mathbb{K}}=\mathscr{D}$ given in (2), $\pi_{Y}^{*}=\tilde{\mathscr{O}}_{Y^{*}}$ and

$$
\ell_{\widetilde{\sigma}_{Y}}^{1}(X)=\left\{\boldsymbol{x}=\left(x_{n}\right)_{n}: \sup _{T \in \mathrm{~B} \mathcal{L}_{(X, Y)}} \sum_{n=1}^{\infty}\left\|T\left(x_{n}\right)\right\|<\infty\right\} .
$$

Note also that $\ell_{\widetilde{\mathscr{O}}_{Y}}^{1}(X) \subseteq \ell_{\text {weak }}^{1}(X)$. Indeed, given $\boldsymbol{x} \in \ell_{\widetilde{\sigma}_{Y}}^{1}(X)$ and fixing $\|y\|=1=\left\|x^{*}\right\|$ we can consider the bounded linear map $y \otimes x^{*}: X \rightarrow Y$ given by $y \otimes x^{*}(x)=\left\langle x, x^{*}\right\rangle y$. Then

$$
\begin{aligned}
\|\boldsymbol{x}\|_{\ell_{\text {weak }}^{1}(X)} & =\sup _{\substack{x^{*} \in \mathrm{~B}_{X^{*}} \\
y \in \mathrm{~B}_{Y}}}\left\|\left(\left(y \otimes x^{*}\right)\left(x_{n}\right)\right)_{n}\right\|_{\ell^{1}(Y)} \\
& \leq \sup _{T \in \mathrm{~B}_{\mathscr{L}(X, Y)}}\left\|\left(T\left(x_{n}\right)\right)_{n}\right\|_{\ell^{1}(Y)}=\|\boldsymbol{x}\|_{\ell_{\tilde{\sigma}_{Y}}^{1}(X)} .
\end{aligned}
$$

(c) For spaces of operators, we consider $\mathscr{O}: \mathscr{L}(X, Y) \times X \rightarrow Y$ given by

$$
\begin{equation*}
\mathscr{O}(T, x)=T x . \tag{12}
\end{equation*}
$$

Now if $Y=\mathbb{K}$ then $\mathscr{O}=\mathscr{D}_{1}$ given in (3) and

$$
\ell_{\mathscr{O}}^{1}(\mathscr{L}(X, Y))=\left\{\boldsymbol{T}=\left(T_{n}\right)_{n} \subseteq \mathscr{L}(X, Y): \sup _{x \in \mathrm{~B}_{X}} \sum_{n=1}^{\infty}\left\|T_{n} x\right\|<\infty\right\} .
$$

This space was studied in (4) where it was denoted by $\ell_{s}^{1}(X, Y)$ and shown to satisfy

$$
\ell^{1}(\mathscr{L}(X, Y)) \subsetneq \ell_{\mathscr{O}}^{1}(\mathscr{L}(X, Y)) \subsetneq \ell_{\text {weak }}^{1}(\mathscr{L}(X, Y))
$$

Using vector-valued continuous functions, we can consider other natural admissible bilinear maps.

Example 10

(a) $\mathcal{C}: X \times \mathrm{C}\left([0,1], X^{*}\right) \rightarrow \mathrm{C}[0,1]$ given by

$$
\begin{equation*}
\mathcal{C}(x, \boldsymbol{f})=\langle x, \boldsymbol{f}\rangle . \tag{13}
\end{equation*}
$$

(b) Let (Ω, Σ, μ) be a positive measure space and $1 \leq q<\infty$, we can consider $\mathcal{V}_{q}: X \times L^{q}\left(\mu, X^{*}\right) \rightarrow L^{q}(\mu)$ given by

$$
\begin{equation*}
\mathcal{V}_{q}(x, \boldsymbol{f})=\langle x, \boldsymbol{f}\rangle . \tag{14}
\end{equation*}
$$

For more concrete Banach spaces, there are also natural admissible bilinear maps

Example 11

(a) Let $X(\mu)$ be a function space of measurable functions in a σ-finite measure space, and $X(\mu)^{\prime}$ its associate space. Let us define $\mathcal{A}: X(\mu) \times$ $X(\mu)^{\prime} \rightarrow L^{1}(\mu)$ given by

$$
\begin{equation*}
\mathcal{A}(f, g)=f g \tag{15}
\end{equation*}
$$

(b) Let (Ω, Σ, μ) be a σ-finite measure space, $1 \leq p \leq \infty$ and $X=L^{p}(\mu)$. For $1 \leq q \leq \infty$ and $1 / p+1 / q=1 / r$, we can consider $\mathcal{H}_{q}: L^{p}(\mu) \times$ $L^{q}(\mu) \rightarrow L^{r}(\mu)$ given by

$$
\begin{equation*}
\mathcal{H}_{q}(f, g)=f g \tag{16}
\end{equation*}
$$

(c) Let $1 \leq p \leq \infty$ and $X=L^{p}\left(\mathbb{R}^{n}\right)$. For $1 \leq q \leq \infty$ and $1 / p+1 / q=$ $1 / r-1$, we can consider $\mathcal{Y}_{q}: L^{p}\left(\mathbb{R}^{n}\right) \times L^{q}\left(\mathbb{R}^{n}\right) \rightarrow L^{r}\left(\mathbb{R}^{n}\right)$ given by

$$
\begin{equation*}
\mathcal{Y}_{q}(f, g)=f * g . \tag{17}
\end{equation*}
$$

Finally also mention in the case X is a Banach space vector-valued functions, the natural admissible bilinear maps:

Example 12 Let μ be a finite measure space, $1 \leq p \leq \infty$ and $X=L^{p}(\mu, Y)$.
(a) $\mathcal{W}_{p}: L^{p}(\mu, Y) \times Y^{*} \rightarrow L^{p}(\mu)$ given by

$$
\begin{equation*}
\mathcal{W}_{p}\left(\boldsymbol{f}, y^{*}\right)=\left\langle\boldsymbol{f}, y^{*}\right\rangle \tag{18}
\end{equation*}
$$

(b) $\widetilde{\mathcal{W}}_{p}: L^{p}(\mu, Y) \times L^{p^{\prime}}(\mu) \rightarrow L^{1}(\mu, Y)$ given by

$$
\begin{equation*}
\widetilde{\mathcal{W}}_{p}(\boldsymbol{f}, \phi)=\boldsymbol{f} \phi . \neq \tag{19}
\end{equation*}
$$

It is well-known -see for instance (11)- that the space $\ell_{\text {weak }}^{1}(X)$ can be identified with $\mathscr{L}\left(c_{0}, X\right)$ or $\mathscr{L}\left(X^{*}, \ell^{1}\right)$. Let us investigate the analogues for $\ell_{\mathscr{B}}^{1}(X)$.

Proposition 13 Let $\mathscr{B}: X \times Y \rightarrow Z$ be an admissible bounded bilinear map.
(a) $\ell_{\mathscr{B}}^{1}(X)$ is isometrically isomorphic to a subspace of $\mathscr{L}\left(Y, \ell^{1}(Z)\right)$.
(b) $\ell_{\mathscr{B}}^{1}(X)$ is isometrically isomorphic to a subspace of $\ell_{s}^{1}(Y, Z)$.
(c) $\ell_{\mathscr{B}}^{1}(X)$ is isometrically isomorphic to a subspace of $\mathscr{L}\left(c_{0}\left(Z^{*}\right), Y^{*}\right)$.
(d) $\ell_{\mathscr{B}}^{1}(X)$ is isometrically isomorphic to a subspace of $\mathscr{L}\left(\ell^{\infty}\left(Z^{*}\right), \ell_{\text {weak }}{ }^{*}\left(Y^{*}\right)\right)$.

Proof. (a) follows using the embedding $x \rightarrow T_{\mathscr{B}, \boldsymbol{x}}$ given in (8).
(b) Since $X \subseteq \mathscr{L}(Y, Z)$ using $x \rightarrow \mathscr{B}_{x}$ we can embed $\ell_{\mathscr{B}}^{1}(X)$ in $\ell_{\mathscr{O}}^{1}(\mathscr{L}(Y, Z))=$ $\ell_{s}^{1}(Y, Z)$ as follows. Given the linear operator $\phi_{\mathscr{B}}$ defined in (4) the correspondence

$$
\tilde{\phi}_{\mathscr{B}}\left(\left(x_{n}\right)_{n}\right)=\left(\phi_{\mathscr{B}}\left(x_{n}\right)\right)_{n}
$$

induces a linear and continuous operator from $\ell_{\mathscr{B}}^{1}(X)$ into $\ell_{\mathscr{O}}^{1}(\mathscr{L}(Y, Z))$. Moreover, $\|\boldsymbol{x}\|_{\ell_{\mathscr{B}}^{1}(X)}=\left\|\widetilde{\phi}_{\mathscr{B}}(\boldsymbol{x})\right\|_{\ell_{\mathscr{O}}^{1}(\mathscr{L}(Y, Z))}$ for any $\boldsymbol{x} \in \ell_{\mathscr{B}}^{1}(X)$.
(c) Note that, given $\boldsymbol{x}=\left(x_{n}\right)_{n}$ and $y \in Y, N, M \in \mathbb{N}$, one has

$$
\begin{aligned}
\sum_{n=N}^{M}\left\|\mathscr{B}\left(x_{n}, y\right)\right\| & =\sup _{z_{n}^{*} \in \mathrm{~B}_{Z^{*}}} \sum_{n=N}^{M}\left|\left\langle\mathscr{B}\left(x_{n}, y\right), z_{n}^{*}\right\rangle\right| \\
& =\sup _{\substack{z_{n}^{*} \in \mathrm{~B}_{Z^{*}} \\
\varepsilon_{n} \in \mathrm{~B}_{\mathbb{K}}}}\left|\left\langle\sum_{n=N}^{M} \mathscr{B}^{*}\left(x_{n}, \varepsilon_{n} z_{n}^{*}\right), y\right\rangle\right| \\
& =\sup _{z_{n}^{*} \in \mathrm{~B}_{Z^{*}}}\left|\left\langle\sum_{n=N}^{M} \mathscr{B}^{*}\left(x_{n}, z_{n}^{*}\right), y\right\rangle\right| .
\end{aligned}
$$

This shows that

$$
\|x\|_{\ell_{\mathscr{B}}^{1}(X)}=\sup _{\substack{z_{n}^{*} \in \mathrm{~B}_{\mathrm{Z}^{*}} \\ N \in \mathbb{N}}}\left\|\sum_{n=1}^{N} \mathscr{B}^{*}\left(x_{n}, z_{n}^{*}\right)\right\|_{Y^{*}} .
$$

This allows to show that if $\boldsymbol{x}=\left(x_{n}\right)_{n} \in \ell_{\mathscr{B}}^{1}(X)$ and $\left(z_{n}^{*}\right)_{n} \in c_{0}\left(Z^{*}\right)$ then $\sum_{n=1}^{\infty} \mathscr{B}^{*}\left(x_{n}, z_{n}^{*}\right) \in Y^{*}$ and the map $\boldsymbol{x}=\left(x_{n}\right)_{n} \rightarrow \Phi_{\boldsymbol{x}}$ where $\Phi_{\boldsymbol{x}}: c_{0}\left(Z^{*}\right) \rightarrow Y^{*}$ is given by

$$
\Phi_{\boldsymbol{x}}\left(\left(z_{n}^{*}\right)_{n}\right)=\sum_{n=1}^{\infty} \mathscr{B}^{*}\left(x_{n}, z_{n}^{*}\right) \in Y^{*}
$$

defines an isometric embedding from $\ell_{\mathscr{B}}^{1}(X)$ into $\mathscr{L}\left(c_{0}\left(Z^{*}\right), Y^{*}\right)$.
(d) Given $\boldsymbol{x}=\left(x_{n}\right)_{n} \in \ell_{\mathscr{B}}^{1}(X)$ let us consider the linear map

$$
\widetilde{\Phi}_{\boldsymbol{x}}: \ell^{\infty}\left(Z^{*}\right) \rightarrow \ell_{\text {weak}^{*}}^{1}\left(Y^{*}\right), \text { given by } \quad \widetilde{\Phi}_{x}\left(z^{*}\right)=\left(\mathscr{B}^{*}\left(x_{n}, z_{n}^{*}\right)\right)_{n} .
$$

Using the duality $\ell^{1}(Z)^{*}=\ell^{\infty}\left(Z^{*}\right)$ we obtain that

$$
\begin{aligned}
\left\|\widetilde{\Phi}_{x}\right\| & =\sup _{\substack{\left.z^{*} \in \mathrm{~B}_{e}\left(Z^{*}\right) \\
y \in \mathrm{~B}_{Y}\right)}} \sum_{n=1}^{\infty}\left|\left\langle y, \mathscr{B}^{*}\left(x_{n}, z_{n}^{*}\right)\right\rangle\right|=\sup _{\substack{\left.z^{*} \in \mathrm{~B}_{\ell} \infty\left(Z^{*}\right) \\
y \in \mathrm{~B}_{Y}\right)}} \sum_{n=1}^{\infty}\left|\left\langle\mathscr{B}\left(x_{n}, y\right), z_{n}^{*}\right\rangle\right| \\
& =\sup _{\substack{z^{*} \in \mathrm{~B}_{\ell} \infty\left(z^{*}\right) \\
y \in \mathrm{~B}_{Y}, \varepsilon_{n}=1}}\left|\sum_{n=1}^{\infty}\left\langle\mathscr{B}\left(x_{n}, y\right), \varepsilon_{n} z_{n}^{*}\right\rangle\right|=\sup _{y \in \mathrm{~B}_{Y}} \sum_{n=1}^{\infty}\left\|\mathscr{B}\left(x_{n}, y\right)\right\|_{Z} \\
& =\|\boldsymbol{x}\|_{\ell_{\mathscr{B}}(X)} .
\end{aligned}
$$

2.2. Relations Between the spaces $\ell_{\mathscr{B}}^{1}(X)$ and $\ell_{\text {weak }}^{1}(X)$.

It is trivial that $\ell^{1}(X) \subseteq \ell_{\mathscr{B}}^{1}(X)$ for any bounded bilinear map $\mathscr{B}: X \times Y \rightarrow Z$, and

$$
\begin{equation*}
\|x\|_{\ell_{\mathscr{B}}^{1}(X)} \leq\|\mathscr{B}\| \cdot\|x\|_{\ell^{1}(X)}, \quad \text { for all } x \in \ell^{1}(X) \tag{20}
\end{equation*}
$$

Clearly the containment can be strict. For example if we take the bounded bilinear map \mathscr{D} defined in (2) then $\ell^{1}(X) \varsubsetneqq \ell_{\text {weak }}^{1}(X)=\ell_{\mathscr{D}}^{1}(X)$. Thus, in the general case $\ell^{1}(X) \nsubseteq \ell_{\mathscr{B}}^{1}(X)$. A natural question now is,

$$
\text { What is the relation between } \ell_{\mathscr{B}}^{1}(X) \text { and } \ell_{\text {weak }}^{1}(X) \text { ? }
$$

For instance, the bounded bilinear maps $\mathcal{B}, \pi_{Y}, \mathscr{D}, \mathscr{D}_{1}, \tilde{\mathscr{O}}_{Y}$ and \mathscr{O} are examples of bilinear maps verifying that the inclusion operator $\mathrm{i}: \ell_{\mathscr{B}}^{1}(X) \rightarrow \ell_{\text {weak }}^{1}(X)$ are continuous.

For $\mathscr{B}=\mathcal{C}$ or $\mathscr{B}=\mathcal{V}_{q}$ in Example 10 it suffices to select $f(t)=x^{*} \mathbf{1}_{[0,1]}$ or $f=$ $x^{*} \mathbf{1}_{\Omega}$ for each $x^{*} \in X^{*}$ to show the continuous inclusion $\ell_{\mathscr{B}}^{1}(X) \subseteq \ell_{\text {weak }}^{1}(X)$.

Also for $\mathscr{B}=\mathcal{A}$ or $\mathscr{B}=\mathcal{H}_{q}$ in Example 11 it easily follows from Proposition 7 to see $\ell_{\mathscr{B}}^{1}\left(L^{p}(\mu)\right) \subseteq \ell_{\text {weak }}^{1}\left(L^{p}(\mu)\right)$.

To produce examples where $\ell_{\text {weak }}^{1}(X) \subseteq \ell_{\mathscr{B}}^{1}(X)$ it suffices to work with the case $Z=\mathbb{K}$. Indeed, take $T \in \mathscr{L}\left(Y, X^{*}\right)$ and define $\mathscr{B}_{T}(x, y)=\langle x, T y\rangle$. Clearly $\boldsymbol{x}=\left(x_{n}\right)_{n} \in \ell_{\mathscr{B}_{T}}^{1}(X)$ if

$$
\sup _{y \in \mathrm{~B}_{Y}} \sum_{n=1}^{\infty}\left|\left\langle x_{n}, T y\right\rangle\right|<\infty,
$$

and $\boldsymbol{x}=\left(x_{n}\right)_{n} \in \ell_{\text {weak }}^{1}(X)$ if

$$
\sup _{x^{*} \in \mathrm{~B}_{X^{*}}} \sum_{n=1}^{\infty}\left|\left\langle x_{n}, x^{*}\right\rangle\right|<\infty .
$$

Hence $\ell_{\text {weak }}^{1}(X) \subseteq \ell_{\mathscr{B}_{T}}^{1}(X)$ and $\|\boldsymbol{x}\|_{\ell_{\mathscr{B}_{T}}^{1}}(X) \leq\|T\| \cdot\|\boldsymbol{x}\|_{\ell_{\text {weak }}^{1}}(X)$. Moreover $\ell_{\text {weak }}^{1}(X)=$ $\ell_{\mathscr{B}_{T}}^{1}(X)$ is equivalent to $\left\|T^{*} x\right\| \approx\|x\|$ for any $x \in X$.

Example 14 Consider the bounded bilinear map

$$
\begin{equation*}
\mathscr{A}_{2}: \ell^{2} \times \ell^{2} \rightarrow \mathbb{R}, \quad \text { given by } \quad \mathscr{A}_{2}(\alpha, \beta)=\sum_{n=1}^{\infty} \frac{1}{n} \alpha_{n} \beta_{n} \tag{21}
\end{equation*}
$$

Note that this corresponds to \mathscr{B}_{T} for $T: \ell^{2} \rightarrow \ell^{2}$ given by $T(\alpha)=\left(\frac{1}{n} \alpha_{n}\right)_{n}$.
Let $\boldsymbol{x}=\left(e_{k}\right)_{k}$ where e_{k} is the canonical basis. It is clear that $\boldsymbol{x} \in \ell_{\mathscr{d}_{2}}^{1}\left(\ell^{2}\right) \backslash$ $\ell_{\text {weak }}^{1}\left(\ell^{2}\right)$.

Hence, in general $\ell_{\mathscr{B}}^{1}(X)$ is not continuously embedded into $\ell_{\text {weak }}^{1}(X)$. However we always have that $\ell_{\mathscr{B}}^{1}(X) \subseteq \ell_{\text {weak }}^{1}(\mathscr{L}(Y, Z))$. Indeed using that $\ell_{\text {weak }}^{1}(\mathscr{L}(Y, Z))=$ $\mathscr{L}\left(c_{0}, \mathscr{L}(Y, Z)\right)$, one has that for each $\boldsymbol{x} \in \ell_{\mathscr{B}}^{1}(X)$ we can consider the linear $\operatorname{map} S_{\mathscr{B}, \boldsymbol{x}}: c_{0} \rightarrow \mathscr{L}(Y, Z)$, given by $S_{\mathscr{B}, \boldsymbol{x}}(\boldsymbol{\alpha})(y)=\sum_{n=1}^{\infty} \mathscr{B}\left(x_{n}, y\right) \alpha_{n}$. Duality gives

$$
\left\|S_{\mathscr{B}, \boldsymbol{x}}\right\| \leq \sup _{\substack{y \in B_{Y}, \alpha \in \mathrm{~B}_{C_{0}}}} \sum_{n=1}^{\infty}\left\|\mathscr{B}\left(x_{n}, y\right)\right\|_{Z}\left|\alpha_{n}\right| \leq\|x\|_{\ell_{\mathscr{B}}^{1}(X)}
$$

Remark 15 Observe that Proposition 7 gives another general inclusion, is that $\ell_{\mathscr{B}}^{1}(X) \subseteq \ell_{\mathscr{B}_{z^{*}}}^{1}(X)$ for every $z^{*} \in Z^{*}$ where

$$
\mathscr{B}_{z^{*}}: X \times Y \rightarrow \mathbb{K}, \quad \text { given by } \quad \mathscr{B}_{z^{*}}(x, y)=\left\langle\mathscr{B}(x, y), z^{*}\right\rangle
$$

Moreover $\sup \left\{\|x\|_{\ell_{\mathscr{B}_{z^{*}}}^{1}(X)}: z^{*} \in \mathrm{~B}_{Z^{*}}\right\} \leq\|\boldsymbol{x}\|_{\ell_{\mathscr{B}}^{1}(X)}$ for each $\boldsymbol{x} \in \ell_{\mathscr{B}}^{1}(X)$.
So the natural question now is,

$$
\text { When is } \ell_{\mathscr{B}}^{1}(X) \text { continuously included into } \ell_{\text {weak }}^{1}(X) \text { ? }
$$

The answer of this question relies upon the notion of (Y, Z, \mathscr{B})-normed space X.

Definition 16 (see (1; 2)) Let $\mathscr{B}: X \times Y \rightarrow Z$ be a bounded bilinear map. We say that a Banach space X is (Y, Z, \mathscr{B})-normed -or simply \mathscr{B}-normed space - if there exists a constant $k>0$ such that

$$
\begin{equation*}
\|x\|_{X} \leq k\left\|\mathscr{B}_{x}\right\|_{\mathscr{L}(Y, Z)}, \quad \text { for all } \quad x \in X \tag{22}
\end{equation*}
$$

The following result characterizes when a Banach space is \mathscr{B}-normed.
Theorem 17 Let $\mathscr{B}: X \times Y \rightarrow Z$ be a bounded bilinear map admissible for X. The following assertions are equivalent:
(a) The inclusion $\mathrm{i}: \ell_{\mathscr{B}}^{1}(X) \rightarrow \ell_{\text {weak }}^{1}(X)$ is continuous.
(b) X is (Y, Z, \mathscr{B})-normed.
(c) There exists a constant $k>0$ such that for each $x^{*} \in X^{*}$ there exists a functional $\varphi_{x^{*}} \in \mathscr{L}(Y, Z)^{*}$ verifying $\left\|\varphi_{x^{*}}\right\| \leq k\left\|x^{*}\right\|$ and

$$
\left\langle x, x^{*}\right\rangle=\varphi_{x^{*}}\left(\mathscr{B}_{x}\right), \quad \text { for all } x \in X .
$$

Proof. (a) \Rightarrow (b) Fix $x \in X$ and consider the sequence $\boldsymbol{x}=(x, 0,0, \ldots)$. Apply the assumption to \boldsymbol{x} to obtain $\|\boldsymbol{x}\|_{\ell_{\text {weak }}^{1}(X)}=\|x\|_{X}$ and $\|\boldsymbol{x}\|_{\ell_{\mathscr{B}}^{1}(X)}=\left\|\mathscr{B}_{x}\right\|_{\mathscr{L}(Y, Z)}$. $(b) \Rightarrow(c)$ Let us assume that X is (Y, Z, \mathscr{B})-normed and we denote by $\hat{X}=$ $\left\{\mathscr{B}_{x}: x \in X\right\} \subseteq \mathscr{L}(Y, Z)$. According to the assumption \hat{X} is a closed subspace of $\mathscr{L}(Y, Z)$. Given $x^{*} \in X^{*}$ one has that

$$
\left|\left\langle x^{*}, x\right\rangle\right| \leq k\left\|x^{*}\right\| \cdot\left\|\mathscr{B}_{x}\right\|, \quad \text { for all } x \in X
$$

Hence the map $\hat{x}^{*}: \mathscr{B}_{x} \rightarrow\left\langle x, x^{*}\right\rangle$ is bounded and linear in \hat{X}^{*} with $\left\|\hat{x}^{*}\right\| \leq$ $k\left\|x^{*}\right\|$. Therefore, by Hahn-Banach theorem, there is an extension $\varphi_{x^{*}}$ to $\mathscr{L}(Y, Z)^{*}$ such that $\left\|\varphi_{x^{*}}\right\| \leq k\left\|x^{*}\right\|$ where $k>0$ is the constant in (22).
(c) \Rightarrow (a) For each $x \in \ell_{\mathscr{B}}^{1}(X)$ using that $\ell^{1}(N)^{*}=\ell^{\infty}(N)$ for all $N \in \mathbb{N}$ we have that

$$
\begin{aligned}
& \|\boldsymbol{x}\|_{\ell_{\text {weak }}^{1}(X)}=\sup _{\substack{x^{*} \in \mathrm{~B}_{\mathrm{X}} \\
N \in \mathbb{N}}} \sum_{n=1}^{N}\left|\left\langle x_{n}, x^{*}\right\rangle\right|=\sup _{\substack{\alpha \in \mathrm{B}_{\ell} \infty(N) \\
x^{*} \in \mathrm{~B}_{X} \boldsymbol{X}^{*}, N \in \mathbb{N}}}\left|\sum_{n=1}^{N}\left\langle x_{n}, x^{*}\right\rangle \alpha_{n}\right| \\
& =\sup _{\substack{\alpha \in B_{e} \infty \\
x^{*} \in \mathcal{B}_{X^{*}}, N \in \mathbb{N}}}\left|\varphi_{x^{*}}\left(\mathscr{B}_{\sum_{n=1}^{N}} \alpha_{n} x_{n}\right)\right| \\
& \leq k \sup _{\substack{\alpha \in \mathrm{B}_{\mathrm{e}}(N) \\
y \in \mathrm{~B}_{Y}, N \in \mathbb{N}}}\left\|\mathscr{B}_{\sum_{n=1}^{N}}^{N} \alpha_{n} x_{n}(y)\right\|_{Z} \\
& \leq k \sup _{\substack{\alpha \in B_{\ell \infty} \infty(N) \\
y \in \mathbb{B}_{Y}, N \in \mathbb{N}}} \sum_{n=1}^{N}\left\|\mathscr{B}\left(x_{n}, y\right)\right\|_{Z}\left|\alpha_{n}\right| \\
& \leq k \sup _{\substack{y \in \mathrm{~B}_{\mathrm{V}} \\
N \in \mathrm{~N}}} \sum_{n=1}^{N}\left\|\mathscr{B}\left(x_{n}, y\right)\right\|_{Z}=k\|x\|_{\ell_{\mathscr{B}}^{1}(X)} .
\end{aligned}
$$

Remark 18 Of course X is a (Y, Z, \mathscr{B})-normed means that the norms $\|\cdot\|_{X}$ and $\|\mathscr{B} \cdot\|_{\mathscr{L}(Y, Z)}$ are equivalent and therefore $\mathscr{B}: X \times Y \rightarrow Z$ is admissible for X (see Definition 4) and consequently $\|\cdot\|_{\ell_{\mathfrak{B}}^{1}(X)}$ defines a norm in the space $\ell_{\mathscr{B}}^{1}(X)$.

Observe that X is a (Y, Z, \mathscr{B})-normed space if the bounded linear map

$$
\begin{equation*}
\phi_{\mathscr{B}}^{t}: \mathscr{L}(Y, Z)^{*} \rightarrow X^{*}, \tag{23}
\end{equation*}
$$

is surjective.

Corollary 19 Let $\mathscr{B}: X \times Y \rightarrow \mathbb{K}$ be a scalar bounded bilinear map. The following are equivalent:
(a) X is $(Y, \mathbb{K}, \mathscr{B})$-normed.
(b) There is a constant $C_{1}>0$ such that $C_{1}\|x\| \leq\left\|\phi_{\mathscr{B}}(x)\right\| \leq\|\mathscr{B}\| \cdot\|x\|$ for all $x \in X$.
(c) $\ell_{\text {weak }}^{1}(X)=\ell_{\mathscr{B}}^{1}(X)$ and the norms $\|\cdot\|_{\ell_{\text {weak }}^{1}(X)}$ and $\|\cdot\|_{\ell_{\mathscr{B}}^{1}(X)}$ are equivalent.

Let us point out that in many cases it is possible to give a explicit definition for the functional $\varphi_{x^{*}}$ appearing in Theorem 17.(c) when a Banach space X is (Y, Z, \mathscr{B})-normed.

Example 20

(a) For the bounded bilinear map \mathcal{B} and $x^{*} \in X^{*}$ take

$$
\varphi_{x^{*}}: \mathscr{L}(\mathbb{K}, X) \rightarrow \mathbb{K}, \quad \text { given by } \quad \varphi_{x^{*}}(T)=\left\langle T(1), x^{*}\right\rangle .
$$

(b) For the bounded bilinear map π_{Y} and $x^{*} \in X^{*}$, select $y_{0} \in Y$ and $y_{0}^{*} \in Y^{*}$ verifying that $\left\langle y_{0}, y_{0}^{*}\right\rangle=1$ and take

$$
\varphi_{x^{*}}: \mathscr{L}\left(Y, X \hat{\otimes}_{\pi} Y\right) \rightarrow \mathbb{K}, \quad \text { given by } \quad \varphi_{x^{*}}(T)=\sum_{n}\left\langle x_{n}, x^{*}\right\rangle\left\langle y_{n}, y_{0}^{*}\right\rangle
$$

where $T\left(y_{0}\right)=\sum_{n} x_{n} \otimes y_{n}$.
(c) For the bilinear map \mathscr{D} just take for every $x^{*} \in X^{*}$

$$
\varphi_{x^{*}}: \mathscr{L}\left(X^{*}, \mathbb{K}\right) \rightarrow \mathbb{K}, \quad \text { given by } \quad \varphi_{x^{*}}\left(x^{* *}\right)=\left\langle x^{*}, x^{* *}\right\rangle .
$$

(d) For the bilinear map \mathscr{D}_{1} just take for every $x^{* *} \in X^{* *}$

$$
\varphi_{x^{* *}}: \mathscr{L}(X, \mathbb{K}) \rightarrow \mathbb{K}, \text { given by } \quad \varphi_{x^{* *}}\left(x^{*}\right)=\left\langle x^{*}, x^{* *}\right\rangle .
$$

(e) For the bilinear map \mathscr{O} and $x^{*} \in(\mathscr{L}(X, Y))^{*}$,

$$
\varphi_{x^{*}}: \mathscr{L}(X, Y) \rightarrow \mathbb{K}, \quad \text { given by } \quad \varphi_{x^{*}}(T)=\left\langle T, x^{*}\right\rangle .
$$

(f) For $\widetilde{\mathscr{O}}_{Y}$ for each $x^{*} \in X^{*}$, select $y_{0} \in Y$ and $y_{0}^{*} \in Y^{*}$ such that $\left\langle y_{0}, y_{0}^{*}\right\rangle=$ 1 and take the functional

$$
\varphi_{x^{*}}: \mathscr{L}(\mathscr{L}(X, Y), Y) \rightarrow \mathbb{K}, \quad \text { given by } \quad \varphi_{x^{*}}(T)=\left\langle T\left(y_{0} \otimes x^{*}\right), y_{0}^{*}\right\rangle
$$

(g) For the bilinear map \mathcal{C} and $x^{*} \in X^{*}$, let us fix $t_{0} \in[0,1]$ and $f_{0} \in \mathrm{C}[0,1]$ verifying $f_{0}\left(t_{0}\right)=1$ we take

$$
\varphi_{x^{*}}: \mathscr{L}\left(\mathrm{C}\left([0,1], X^{*}\right), \mathrm{C}[0,1]\right) \rightarrow \mathbb{K}, \quad \text { given by } \quad \varphi_{x^{*}}(T)=T\left(f_{0} \otimes x^{*}\right)\left(t_{0}\right)
$$

(h) For the bilinear map \mathcal{V}_{q} and $x^{*} \in X^{*}$, let us consider $E \in \Sigma$ such that $\mu(E)>0$ and take

$$
\varphi_{x^{*}}: \mathscr{L}\left(L^{q}\left(\mu, X^{*}\right), L^{q}(\mu)\right) \rightarrow \mathbb{K}, \quad \text { given by } \quad \varphi_{x^{*}}(T)=\int_{\Omega} T\left(\frac{x^{*} \mathbf{1}_{E}}{\mu(E)}\right) d \mu
$$

(i) For the bilinear map \mathcal{A} in the case $X(\mu)^{\prime}=X(\mu)^{*}$ and $x^{*} \in X^{*}$, let us consider

$$
\varphi_{x^{*}}: \mathscr{L}\left(X(\mu)^{\prime}, L^{1}(\mu)\right) \rightarrow \mathbb{K}, \quad \text { given by } \quad \varphi_{x^{*}}(T)=\int_{\Omega} T\left(x^{*}\right) d \mu
$$

Theorem 21 Let $\mathscr{B}: X \times Y \rightarrow Z$ be a bounded bilinear map such that X is (Y, Z, \mathscr{B})-normed. Then $\left(\ell_{\mathscr{B}}^{1}(X),\|\cdot\|_{\ell_{\mathscr{B}}^{1}(X)}\right)$ is a Banach space.

Proof. Let $\left(\boldsymbol{x}^{\boldsymbol{m}}\right)_{m}$ be a Cauchy sequence in $\ell_{\mathscr{B}}^{1}(X)$ and let us fix $\varepsilon>0$. There exists $k_{0} \in \mathbb{N}$ such that for each $m, k \geq k_{0}$ we have that $\left\|x^{\boldsymbol{m}}-x^{\boldsymbol{k}}\right\|_{\ell_{\mathscr{B}}^{1}(X)} \leq \varepsilon$. In particular for every $y \in \mathrm{~B}_{Y}$ and $m, k \geq k_{0}$ we have that

$$
\begin{equation*}
\sum_{n=1}^{\infty}\left\|\mathscr{B}\left(x_{n}^{m}-x_{n}^{k}, y\right)\right\|_{Z} \leq \varepsilon . \tag{24}
\end{equation*}
$$

This implies that $\left\|\mathscr{B}_{x_{n}^{m}-x_{n}^{k}}\right\|_{\mathscr{L}(Y, Z)} \leq \varepsilon$ for all $n \in \mathbb{N}$ and $m, k \geq k_{0}$. Hence using that X is a (Y, Z, \mathscr{B})-normed space we conclude that $\left\|x_{n}^{m}-x_{n}^{k}\right\|_{X} \leq c \varepsilon$ for some $c>0$ and all $n \in \mathbb{N}$ and $m, k \geq k_{0}$. This means that for all $n \in \mathbb{N}$ the sequence $\left(x_{n}^{k}\right)_{k}$ is a Cauchy sequence in the Banach space X. Then $\left(x_{n}^{k}\right)_{k}$ converges in X to a certain element -say x_{n}-. Consider then the sequence $\boldsymbol{x}=\left(x_{n}\right)_{n}$. Taking limits when $m \rightarrow \infty$ in expression (24) we have that for all $y \in \mathrm{~B}_{Y}$ and $k \geq k_{0}$

$$
\sum_{n=1}^{\infty}\left\|\mathscr{B}\left(x_{n}-x_{n}^{k}, y\right)\right\|_{Z} \leq \varepsilon .
$$

This means that $\boldsymbol{x}-\boldsymbol{x}^{\boldsymbol{k}} \in \ell_{\mathscr{B}}^{1}(X)$ and thus $\boldsymbol{x}=\left(\boldsymbol{x}-\boldsymbol{x}^{\boldsymbol{k}}\right)+\boldsymbol{x}^{\boldsymbol{k}} \in \ell_{\mathscr{B}}^{1}(X)$. In addition we have that the sequence $\left(\boldsymbol{x}^{\boldsymbol{k}}\right)_{k}$ converges to \boldsymbol{x} in $\ell_{\mathscr{B}}^{1}(X)$.

Let us now analyze the converse question:

$$
\text { When does } \ell_{\text {weak }}^{1}(X) \text { is continuously embedded into } \ell_{\mathscr{B}}^{1}(X) \text { ? }
$$

Recall that a linear map $T: X \rightarrow Y$ is called absolutely summing if there is a constant $k>0$ verifying that for every finite family $x_{1}, \ldots, x_{n} \in X$ we have that

$$
\begin{equation*}
\sum_{i=1}^{n}\left\|T\left(x_{i}\right)\right\|_{X} \leq k \sup _{x^{*} \in \mathrm{~B}_{X^{*}}} \sum_{i=1}^{n}\left|\left\langle x_{i}, x^{*}\right\rangle\right| . \tag{25}
\end{equation*}
$$

The vector space of those bounded linear maps is denoted by $\Pi(X, Y)$ or $\Pi_{1}(X, Y)$. Endowed with the norm

$$
\pi(T)=\inf \{k>0: \text { the inequality (25) holds }\}
$$

the space $\Pi_{1}(X, Y)$ is a Banach subspace of $\mathscr{L}(X, Y)$. We recall here that any bounded linear operator from $L^{1}(\mu)$ into a Hilbert space H is absolutely summing by Grothendieck's theorem - see (11, p. 15) -, i.e.

$$
\begin{equation*}
\mathscr{L}\left(L^{1}(\mu), H\right)=\Pi_{1}\left(L^{1}(\mu), H\right) \tag{26}
\end{equation*}
$$

A Banach space X is called a $G T$-space if $\mathscr{L}(X, H)=\Pi_{1}(X, H)$ for any Hilbert space H. The reader is referred to (11) for information about the class of absolutely summing operators and properties related to them.

Proposition 22 Let $\mathscr{B}: X \times Y \rightarrow Z$ be an admissible bounded bilinear map. The following are equivalent:
(a) $\ell_{\text {weak }}^{1}(X)$ is continuously embedded into $\ell_{\mathscr{B}}^{1}(X)$.
(b) $\psi_{\mathscr{B}}(Y) \subseteq \Pi_{1}(X, Z)$ and there exists $C>0$ such that $\pi\left(\mathscr{B}_{y}\right) \leq C\|y\|$ for all $y \in Y$.

Proof. (a) \Rightarrow (b) For each $y \in Y$ and $\boldsymbol{x}=\left(x_{n}\right)_{n} \in \ell_{\text {weak }}^{1}(X)$ we have that for each $y \in Y$

$$
\sum_{n=1}^{\infty}\left\|\mathscr{B}^{y}\left(x_{n}\right)\right\|_{Z} \leq\|y\| \cdot\|x\|_{\ell_{\mathscr{B}}^{1}(X)} \leq C\|y\| \cdot\|x\|_{\ell_{\text {weak }}^{1}(X)}
$$

This shows that \mathscr{B}^{y} belongs to $\Pi_{1}(X, Z)$ and $\pi\left(\mathscr{B}^{y}\right) \leq C\|y\|$ for every $y \in Y$. (b) \Rightarrow (a) Given $\boldsymbol{x}=\left(x_{n}\right)_{n} \in \ell_{\mathscr{B}}^{1}(X)$

$$
\|x\|_{\ell_{\mathscr{B}}^{1}(X)}=\sup _{y \in \mathrm{~B}_{Y}} \sum_{n=1}^{\infty}\left\|\mathscr{B}^{y}\left(x_{n}\right)\right\|_{Z} \leq \sup _{y \in \mathrm{~B}_{Y}} \pi\left(\mathscr{B}^{y}\right)\|x\|_{\ell_{\text {weak }}^{1}(X)} \leq C\|x\|_{\ell_{\text {weak }}^{1}(X)} .
$$

Corollary $23 \ell_{\widetilde{\sigma}_{Y}}^{1}(X)=\ell_{\text {weak }}^{1}(X) \Longleftrightarrow \mathscr{L}(X, Y)=\Pi_{1}(X, Y)$.
In particular, $\ell_{\widetilde{O}_{\ell^{2}}}^{1}(X)=\ell_{\text {weak }}^{1}(X)$ if and only if X is a $G T$-space.
From the previous results we observe that not only for $Z=\mathbb{K}$ (or even finite dimensional spaces Z) one can obtain that $\ell_{\text {weak }}^{1}(X) \subsetneq \ell_{\mathscr{B}}^{1}(X)$ whenever X is not \mathscr{B}-normed, but it is possible to have $\ell_{\text {weak }}^{1}(X) \subsetneq \ell_{\mathscr{B}}^{1}(X)$ for infinite dimensional spaces Z.

Corollary 24 Let $X=L^{1}(\mathbb{R})$ and consider the bilinear map

$$
\begin{equation*}
\mathcal{Y}_{2}: L^{1}(\mathbb{R}) \times L^{2}(\mathbb{R}) \rightarrow L^{2}(\mathbb{R}), \quad \text { given by } \quad \mathcal{Y}_{2}(f, g)=f * g \tag{27}
\end{equation*}
$$

Then $\ell_{\text {weak }}^{1}\left(L^{1}(\mathbb{R})\right) \subsetneq \ell_{\mathcal{y}_{2}}^{1}\left(L^{1}(\mathbb{R})\right)$.

Proof. Let us see that $L^{1}(\mathbb{R})$ is not $\left(L^{2}(\mathbb{R}), L^{2}(\mathbb{R}), \mathcal{Y}_{2}\right)$-normed. Assume the contrary, i.e. there exists $k>0$ with

$$
\|f\|_{L^{1}(\mathbb{R})} \leq k \sup _{g \in \mathrm{~B}_{L^{2}(\mathbb{R})}}\|f * g\|_{L^{2}(\mathbb{R})}
$$

Then

$$
\|f\|_{L^{1}(\mathbb{R})} \leq k \sup _{h \in \mathrm{~B}_{L^{2}(\mathbb{R})}}\|\hat{f} h\|_{L^{2}(\mathbb{R})}=k\|\hat{f}\|_{L^{\infty}(\mathbb{R})},
$$

which is clearly false in general.
Therefore combining Theorem 17, Proposition 22 and (26) one concludes $\ell_{\text {weak }}^{1}\left(L^{1}(\mathbb{R})\right) \nsubseteq \ell_{\mathcal{y}_{2}}^{1}\left(L^{1}(\mathbb{R})\right)$.

Example 25 Let Y be an infinite dimensional, $X=L^{1}([0,1], Y)$ and consider the bilinear map

$$
\begin{equation*}
\mathcal{W}_{1}: L^{1}([0,1], Y) \times Y^{*} \rightarrow L^{1}([0,1]), \quad \text { given by } \quad \mathcal{W}_{1}\left(f, y^{*}\right)=\left\langle f, y^{*}\right\rangle \tag{28}
\end{equation*}
$$

Then $\ell_{\text {weak }}^{1}\left(L^{1}([0,1], Y)\right) \subsetneq \ell_{\mathcal{W}_{1}}^{1}\left(L^{1}([0,1], Y)\right)$.
Proof. In order to see the inclusion just observe that -since $\left(L^{1}([0,1], Y)\right)^{*}=$ $L\left(L^{1}([0,1]), Y^{*}\right)$ - given $y^{*} \in Y^{*}$ then the function $y^{*} 1_{\Omega} \in L\left(L^{1}\left([0,1], Y^{*}\right)\right.$ defines an element of $\left(L^{1}([0,1], Y)\right)^{*}$.
Let us see now that $L^{1}([0,1], Y)$ is not $\left(Y^{*}, L^{1}([0,1]), \mathcal{W}_{1}\right)$-normed. Assume the contrary, i.e. there exists $k>0$ with

$$
\|f\|_{L^{1}([0,1], Y)} \leq k \sup _{y^{*} \in \mathrm{~B}_{Y^{*}}} \int_{0}^{1}\left\langle f(t), y^{*}\right\rangle d t
$$

Now it suffices to take $\left(y_{n}\right)_{n} \in \ell_{\text {weak }}^{1}(Y) \backslash \ell^{1}(Y)$ and define

$$
f=\sum_{n=1}^{\infty} 2^{n+1} y_{n} \mathbf{1}_{\left[2^{-(n+1)}, 2^{-n}[\right.}
$$

to get a contradiction. Hence Theorem 17 gives that the inclusion is strict.

3 The proof of the theorem and consequences.

Definition 26 We say that a sequence $\boldsymbol{x}=\left(x_{n}\right)_{n} \subseteq X$ is \mathscr{B}-unconditionally summable if for all $y \in Y$ and $z^{*} \in Z^{*}$ we have that $\left(\left\langle\mathscr{B}\left(x_{n}, y\right), z^{*}\right\rangle\right)_{n} \in \ell^{1}$ and for all $M \subseteq \mathbb{N}$ there is $x_{M} \in X$ such that

$$
\sum_{n \in M}\left\langle\mathscr{B}\left(x_{n}, y\right), z^{*}\right\rangle=\left\langle\mathscr{B}\left(x_{M}, y\right), z^{*}\right\rangle, \quad \text { for all } y \in Y, z \in Z^{*} .
$$

Let us observe that using classical Orlicz-Pettis this is equivalent to the following: for all $y \in Y$ and $z^{*} \in Z^{*}$ we have that $\left(\left\langle\mathscr{B}\left(x_{n}, y\right), z^{*}\right\rangle\right)_{n} \in \ell^{1}$ and for all $M \subseteq \mathbb{N}$ there is $x_{M} \in X$ such that

$$
\begin{equation*}
\sum_{n \in M} \mathscr{B}\left(x_{n}, y\right)=\mathscr{B}\left(x_{M}, y\right), \quad \text { for all } y \in Y . \tag{29}
\end{equation*}
$$

There is several ways to prove the classical Orlicz-Pettis theorem. For instance it is possible to prove this result using the Bochner integral - see for instance (9)-. Another possibility is based in the use of Schur theorem and Mazur theorem - see (11)—. We shall use the approach in this last reference.

Theorem 27 (Bilinear Orlicz-Pettis) Let $\mathscr{B}: X \times Y^{*} \rightarrow Z$ be a bounded bilinear map such that
(a) X is \mathscr{B}-normed,
(b) Y is w^{*}-sqcu, i.e., $\mathrm{B}_{Y^{*}}$ is weak* sequentially compact,
(c) $\phi_{\mathscr{B}}(X) \subseteq \mathscr{W}^{*}\left(Y^{*}, Z\right)$.

Then every \mathscr{B}-unconditionally summable sequence in X is unconditionally summable.

Proof. Let $\boldsymbol{x}=\left(x_{n}\right)_{n} \subseteq X$ be a \mathscr{B}-unconditionally summable sequence and define the bilinear map

$$
\begin{equation*}
\mathscr{S}: Y^{*} \times Z^{*} \rightarrow \ell^{1}, \quad \text { given by } \mathscr{S}\left(y^{*}, z^{*}\right)=\left(\left\langle\mathscr{B}\left(x_{n}, y^{*}\right), z^{*}\right\rangle\right)_{n} . \tag{30}
\end{equation*}
$$

Step 1: \mathscr{S} is bounded. Note that, since \boldsymbol{x} is \mathscr{B}-unconditionally summable, then for all $y^{*} \in Y^{*}$ and every $z^{*} \in Z^{*}$

$$
\sum_{n=1}^{\infty}\left|\left\langle\mathscr{B}\left(x_{n}, y^{*}\right), z^{*}\right\rangle\right|<\infty,
$$

so \mathscr{S} is well defined. Now, using Closed Graph theorem it is easy to see that the two linear maps

$$
\begin{aligned}
& \mathscr{S}^{y^{*}}: Z^{*} \rightarrow \ell^{1}, \text { given by } \mathscr{S}^{y^{*}}\left(z^{*}\right)=\mathscr{S}\left(y^{*}, z^{*}\right), \text { for all } y^{*} \in Y^{*}, \\
& \mathscr{S}^{z^{*}}: Y^{*} \rightarrow \ell^{1}, \text { given by } \mathscr{S}^{z^{*}}\left(y^{*}\right)=\mathscr{S}\left(y^{*}, z^{*}\right) \text { for all } z^{*} \in Z^{*},
\end{aligned}
$$ are bounded and hence \mathscr{S} is separately continuous and thus continuous.

STEP 2: \mathscr{S} is compact. Let $\left(y_{n}^{*}, z_{n}^{*}\right)_{n}$ be a sequence in $\mathrm{B}_{Y^{*}} \times \mathrm{B}_{Z^{*}}$. In particular, since $\left(y_{n}^{*}\right)_{n} \subseteq \mathrm{~B}_{Y^{*}}$ and $\mathrm{B}_{Y^{*}}$ is weak* sequentially compact there exists a subsequence $\left(y_{n_{k}}^{*}\right)_{k}$ convergent to a certain y_{0}^{*} in the weak* topology of Y^{*}, i.e.,

$$
\left(\left\langle y, y_{n_{k}}^{*}\right\rangle\right)_{k} \text { converges to }\left\langle y, y_{0}^{*}\right\rangle, \text { for all } y \in Y \text {. }
$$

Using now that $\phi_{\mathscr{B}}(X) \subseteq \mathscr{W}^{*}\left(Y^{*}, Z\right)$ since $\left(y_{n_{k}}^{*}\right)_{k}$ is weak* convergent then for every $x \in X$

$$
\begin{equation*}
\left(\mathscr{B}\left(x, y_{n_{k}}^{*}\right)\right)_{k} \text { converges to } \mathscr{B}\left(x, y_{0}^{*}\right) \text {, in the norm topology of } Z \text {. } \tag{31}
\end{equation*}
$$

Consider now the separable subspace D of Z given by $D=\overline{\operatorname{span}\left(\mathscr{B}\left(x_{n}, y_{0}^{*}\right)\right)_{n}}$. According to Alauglu's theorem, $\mathrm{B}_{D^{*}}$ is a weak* compact. For each $k \in \mathbb{N}$ denote by $\widetilde{z}_{n_{k}}^{*}$ the restriction of $z_{n_{k}}^{*}$ to D. Since $\left\|z_{n_{k}}^{*}\right\| \leq 1$ then $\widetilde{z}_{n_{k}}^{*}$ belongs to the compact $\mathrm{B}_{D^{*}}$. This allows us to extract a subsequence of $\widetilde{z}_{n_{k}}^{*}$ - denoted also, by simplicity, by $\widetilde{z}_{n_{k}}^{*}-$ convergent in the weak* topology of Z^{*} to an element in Z^{*} that we call \widetilde{z}_{0}^{*}. That is

$$
\begin{equation*}
\left(\left\langle\widetilde{z}, \widetilde{z}_{n_{k}}^{*}\right\rangle\right)_{k} \text { converges to }\left\langle\widetilde{z}, \widetilde{z}_{0}^{*}\right\rangle, \text { for all } \tilde{z} \in D . \tag{32}
\end{equation*}
$$

Since $\widetilde{z}_{0}^{*} \in D^{*}$ using Hahn-Banach theorem there exists z_{0}^{*} a continuous extension of \widetilde{z}_{0}^{*} to Z^{*} - with the same norm -. On the other hand, there is $x_{0} \in X$ verifying that for all $z^{*} \in Z^{*}$

$$
\lim _{N \rightarrow \infty} \sum_{n=1}^{N}\left\langle\mathscr{B}\left(x_{n}, y_{0}^{*}\right), z^{*}\right\rangle=\sum_{n=1}^{\infty}\left\langle\mathscr{B}\left(x_{n}, y_{0}^{*}\right), z^{*}\right\rangle=\left\langle\mathscr{B}\left(x_{0}, y_{0}^{*}\right), z^{*}\right\rangle .
$$

This means that $\mathscr{B}\left(x_{0}, y_{0}^{*}\right)$ belongs to \bar{D}^{w} so by Mazur's theorem $\mathscr{B}\left(x_{0}, y_{0}^{*}\right) \in$ $\bar{D}=D$. Replacing in (32) we obtain that

$$
\begin{equation*}
\left(\left\langle\mathscr{B}\left(x_{0}, y_{0}^{*}\right), \widetilde{z}_{n_{k}}^{*}\right\rangle\right)_{k} \text { converges to }\left\langle\mathscr{B}\left(x_{0}, y_{0}^{*}\right), \widetilde{z}_{0}^{*}\right\rangle . \tag{33}
\end{equation*}
$$

To prove the compactness of \mathscr{S} it remains to show that $\mathscr{S}\left(\left(y_{n_{k}}, z_{n_{k}}^{*}\right)\right)_{k}$ converges in ℓ^{1}. But using Schur's theorem all we need to show is the convergence in the weak topology of ℓ^{1}. The continuity of \mathscr{S} allows us to show

$$
\begin{equation*}
\left\langle\left(\mathscr{S}\left(y_{n_{k}}^{*}, z_{n_{k}}^{*}\right)\right)_{k}, \boldsymbol{\alpha}\right\rangle \text { converges to }\left\langle\mathscr{S}\left(y_{0}, z_{0}^{*}\right), \boldsymbol{\alpha}\right\rangle, \tag{34}
\end{equation*}
$$

for all $\boldsymbol{\alpha}$ in some norm dense subset of ℓ^{∞}. By linearity to prove (34) it suffices to take $\boldsymbol{\alpha}=\mathbf{1}_{M}$ for every $M \subseteq \mathbb{N}$. Fixing $k \in \mathbb{N}$ take then an arbitrary $M \subseteq \mathbb{N}$

$$
\begin{equation*}
\left\langle\mathscr{S}\left(y_{n_{k}}^{*}, z_{n_{k}}^{*}\right), \mathbf{1}_{M}\right\rangle=\sum_{n \in M}\left\langle\mathscr{B}\left(x_{n}, y_{n_{k}}^{*}\right), z_{n_{k}}^{*}\right\rangle=\left\langle\mathscr{B}\left(x_{M}, y_{n_{k}}^{*}\right), z_{n_{k}}^{*}\right\rangle . \tag{35}
\end{equation*}
$$

On the other hand

$$
\begin{equation*}
\left\langle\mathscr{S}\left(y_{0}^{*}, z_{0}^{*}\right), \mathbf{1}_{M}\right\rangle=\sum_{n \in M}\left\langle\mathscr{B}\left(x_{n}, y_{0}^{*}\right), z_{0}^{*}\right\rangle=\left\langle\mathscr{B}\left(x_{M}, y_{0}^{*}\right), z_{0}^{*}\right\rangle \tag{36}
\end{equation*}
$$

Replacing (35) and (36) in (34) we obtain that in order to finish the proof it is enough to prove that for all $M \subseteq \mathbb{N}$

$$
\left(\left\langle\mathscr{B}\left(x_{M}, y_{n_{k}}^{*}\right), z_{n_{k}}^{*}\right\rangle\right)_{k} \text { converges to }\left\langle\mathscr{B}\left(x_{M}, y_{0}^{*}\right), z_{0}^{*}\right\rangle .
$$

But for every $k \in \mathbb{N}$ and $M \subseteq \mathbb{N}$ we have that

$$
\begin{aligned}
\mid\left\langle\mathscr{B}\left(x_{M}, y_{n_{k}}^{*}\right), z_{n_{k}}^{*}\right\rangle-\langle\mathscr{B}(& \left.\left.x_{M}, y_{0}^{*}\right), z_{0}^{*}\right\rangle \mid \\
& \leq\left|\left\langle\mathscr{B}\left(x_{M}, y_{n_{k}}^{*}\right), z_{n_{k}}^{*}\right\rangle-\left\langle\mathscr{B}\left(x_{M}, y_{0}^{*}\right), z_{n_{n}}^{*}\right\rangle\right| \\
& +\left|\left\langle\mathscr{B}\left(x_{M}, y_{0}^{*}\right), z_{n_{k}}^{*}\right\rangle-\left\langle\mathscr{B}\left(x_{M}, y_{0}^{*}\right), z_{0}^{*}\right\rangle\right| \\
& =\left|\left\langle\mathscr{B}\left(x_{M}, y_{n_{k}}^{*}\right)-\mathscr{B}\left(x_{M}, y_{0}^{*}\right), z_{n_{k}}^{*}\right\rangle\right| \\
& +\left|\left\langle\mathscr{B}\left(x_{M}, y_{0}^{*}\right), z_{n_{k}}^{*}\right\rangle-\left\langle\mathscr{B}\left(x_{M}, y_{0}^{*}\right), z_{0}^{*}\right\rangle\right| \\
& \leq\left\|\mathscr{B}\left(x_{M}, y_{n_{k}}^{*}\right)-\mathscr{B}\left(x_{M}, y_{0}^{*}\right)\right\|_{Z}\left\|z_{n_{k}}^{*}\right\| \\
& +\left|\left\langle\mathscr{B}\left(x_{M}, y_{0}^{*}\right), z_{n_{k}}^{*}\right\rangle-\left\langle\mathscr{B}\left(x_{M}, y_{0}^{*}\right), z_{0}^{*}\right\rangle\right| .
\end{aligned}
$$

Using (31), (32) and (33) we have that $\mathscr{S}\left(\left(y_{n_{k}}, z_{n_{k}}^{*}\right)\right)_{k}$ converges in the weak topology of ℓ^{1} and by Schur theorem also converges in the topology of the norm of ℓ^{1}. Thus \mathscr{S} is compact.
STEP 3: $\boldsymbol{x}=\left(x_{n}\right)_{n}$ is unconditionally summable. Recall that a set K is relatively compact in ℓ^{1} if and only if $\lim _{n} \sup \left\{\sum_{k \geq n}\left|a_{k}\right|:\left(a_{k}\right)_{k} \in \mathrm{~K}\right\}=0$. In particular, since $\mathscr{S}\left(\mathrm{B}_{Y^{*}} \times \mathrm{B}_{Z^{*}}\right)$ is a relatively compact in ℓ^{1} then

$$
\begin{equation*}
\lim _{n \rightarrow \infty} \sup _{\substack{y^{*} * \mathrm{~B}_{\mathrm{Y}^{*}} \\ z^{*} \in \mathrm{~B}_{Z^{*}}}} \sum_{k=n}^{\infty}\left|\left\langle\mathscr{B}\left(x_{k}, y^{*}\right), z^{*}\right\rangle\right|=0 . \tag{37}
\end{equation*}
$$

Let $\left(n_{s}\right)_{s}$ be an increasing sequence in \mathbb{N}. Using that X is (Y, Z, \mathscr{B})-normed there exists a constant $k>0$ such that for every $N \in \mathbb{N}$

$$
\left\|\sum_{s=1}^{N-1} x_{n_{s}}-x_{0}\right\|_{X} \leq k\left\|\mathscr{B}_{\sum_{s=1}^{N-1} x_{n_{s}}-x_{0}}\right\|_{\mathscr{L}\left(Y^{*}, Z\right)} \leq k \sup _{\substack{y^{*} \in \mathrm{~B}_{\gamma^{*}} \\ z^{*} \in \mathcal{B}_{Z^{*}}}} \sum_{s=N}^{\infty}\left|\left\langle\mathscr{B}\left(x_{n_{s}}, y^{*}\right), z^{*}\right\rangle\right| .
$$

Taking limits when $N \rightarrow \infty$ and using (37) we have that x is what it is called subseries summable and this is equivalent - see (11) - to have unconditional summability.

Remark 28 Recall that a linear map T from a Banach space X into a Banach space Y is called completely continuous if it takes weakly null sequences in X to norm null sequences in Y, or, equivalently, if T maps every weakly convergent sequence in X into a norm convergent sequence in Y. The set consisting of those maps are denoted by $\mathscr{W}(X, Y)$-see the notation $\mathscr{V}(X, Y)$ in (11)-. We can also state a result when the space Y is not necessarily a dual space. The reader can check that our proof can easily be adapted -using reflexivity and completely continuous operators - by replacing the above assumptions by
(a) X is \mathscr{B}-normed,
(b) Y is reflexive,
(c) $\phi_{\mathscr{B}}(X) \subseteq \mathscr{W}(Y, Z)$,
to get the same conclusion.

Remark 29 We would like to point out that the classical Orlicz-Pettis theorem is not needed to get this bilinear version and actually it follows as a corollary. Note that we can use (29) in the case $Z=\mathbb{K}$ when assuming weakunconditionality. Now observe that X is \mathscr{D}-normed and we can assume that X is separable - since all the actions happens inside the weakly closed linear span of x_{n} - and consequently X is w^{*}-sqcu. Finally $\phi_{\mathscr{D}}(X) \subseteq \mathscr{W}^{*}\left(X^{*}, \mathbb{K}\right)$. Hence we obtain $\mathrm{wUC}(X)=\mathrm{UC}(X)$ for any Banach space.

Corollary 30 Let $\mathscr{B}: X \times Y^{*} \rightarrow \ell^{1}$ be a bounded bilinear map such that X is \mathscr{B}-normed and Y is reflexive. Then every \mathscr{B}-unconditionally summable sequence is an unconditionally summable sequence.

Proof. Note first that every bounded linear map from a Banach space into ℓ^{1} is completely continuous, so $\phi_{\mathscr{B}}\left(Y^{*}\right) \subseteq \mathscr{W}\left(Y^{*}, \ell^{1}\right)$. Since every reflexive space is w^{*}-sqcu and satisfies that every weakly* convergent sequence in Y^{*} is also weakly convergent, in particular -see (12) - we have that

$$
\mathscr{W}\left(Y^{*}, Z\right) \subseteq \mathscr{K}\left(Y^{*}, Z\right) \subseteq \mathscr{W}^{*}\left(Y^{*}, Z\right)
$$

where $\mathscr{K}(X, Y)$ stands for the compact operators. Hence all the assumptions in Theorem 27 are satisfied.

Let X be a Banach space and (Ω, Σ, μ) a finite space. Given $1 \leq p<\infty$ we denote by p^{\prime} the (extended) real number given by $\frac{1}{p}+\frac{1}{p^{\prime}}=1$. Let us denote by $P^{p}(\mu, X)$ the completion of simple functions on the space of strongly measurable Pettis p-integrable functions, that is, the space consisting of all strongly measurable functions $f: \Omega \rightarrow X$ verifying that $\left\langle f, x^{*}\right\rangle \in L^{p}(\mu)$ for all $x^{*} \in X^{*}$ and for any $E \in \Sigma$ there exists $x_{E} \in X$ such that

$$
\int_{E}\left\langle f, x^{*}\right\rangle d \mu=\left\langle x_{E}, x^{*}\right\rangle, \quad \text { for all } x^{*} \in X^{*} .
$$

We set the norm

$$
\|f\|_{P^{p}(\mu, X)}=\sup _{x^{*} \in \mathrm{~B}_{X^{*}}}\left(\int_{\Omega}\left|\left\langle f, x^{*}\right\rangle\right|^{p} d \mu\right)^{\frac{1}{p}} .
$$

Corollary 31 Let X be a reflexive Banach space, $1 \leq p<\infty,(\Omega, \Sigma, \mu)$ a finite space and $\left(f_{n}\right)_{n} \in P^{p}(\mu, X)$. Assume that for any $x^{*} \in X^{*}, \phi \in L^{p^{\prime}}(\mu)$

$$
\sum_{n=1}^{\infty} \int_{\Omega}\left|\left\langle f_{n}, x^{*}\right\rangle \phi\right| d \mu<\infty
$$

and there exists $f \in P^{p}(\mu, X)$ such that

$$
\sum_{n=1}^{\infty} \int_{\Omega}\left\langle f_{n}, x^{*}\right\rangle \phi d \mu=\int_{\Omega}\left\langle f, x^{*}\right\rangle \phi d \mu
$$

for any $x^{*} \in X^{*}, \phi \in L^{p^{\prime}}(\mu)$. Then $\sum_{n} f_{n}$ converges unconditionally in $P^{p}(\mu, X)$.
Proof. We may assume that X is separable (because the f_{n} has essentially separable range for any $n \in \mathbb{N})$. Take the bilinear map $\mathscr{B}: P^{p}(\mu, X) \times$ $X^{*} \rightarrow L^{p}(\mu)$ defined by $\mathscr{B}\left(f, x^{*}\right)=\left\langle f, x^{*}\right\rangle$. It is \mathscr{B}-normed and $P^{p}(\mu, X) \subseteq$ $\mathscr{L}\left(X^{*}, L^{p}(\mu)\right)$ satisfies that $P^{p}(\mu, X) \subseteq \mathscr{K}\left(X^{*}, L^{p}(\mu)\right) \subseteq \mathscr{W}^{*}\left(X^{*}, L^{p}(\mu)\right)$. The assumption means that $\left(f_{n}\right)_{n}$ is \mathscr{B}-unconditionally summable. Then apply the bilinear Orlicz-Pettis theorem to conclude the result.

Let $m: \Sigma \rightarrow X$ be a (countable) additive vector measure defined on a σ algebra of subsets Σ of a nonempty set Ω. A measurable function $f: \Omega \rightarrow \mathbb{R}$ is called weakly integrable (with respect to m) if $f \in L^{1}\left(\left|\left\langle m, x^{*}\right\rangle\right|\right)$ for every $x^{*} \in X^{*}$. The space $L_{w}^{1}(m)$ of all (equivalence classes of) weakly integrable functions (with respect to m) becomes a Banach space when it is endowed with the norm

$$
\|f\|_{1, m}=\sup _{x^{*} \in \mathrm{~B}_{X^{*}}} \int_{\Omega}|f| d\left|\left\langle m, x^{*}\right\rangle\right| .
$$

We say that a weakly integrable function f is integrable (with respect to m) if for every $E \in \Sigma$ there is $x_{E} \in X$ such that

$$
\int_{E} f d\left(\left\langle m, x^{*}\right\rangle\right)=\left\langle x_{E}, x^{*}\right\rangle, \text { for all } x^{*} \in X^{*} .
$$

The vector x_{E} is unique and it is denoted by $\int_{E} f d m$. The space of all (equivalence classes of) integrable functions (with respect to m) is denoted by $L^{1}(m)$ and is a closed subspace of $L_{w}^{1}(m)$. The integral operator is the bounded linear map

$$
I_{m}^{(1)}: L^{1}(m) \rightarrow X, \text { given by } \quad I_{m}^{(1)}(f)=\int_{\Omega} f d m
$$

For $1<p<\infty$ denote by p^{\prime} the conjugate index of p-that is the real number given by $\frac{1}{p}+\frac{1}{p^{\prime}}=1-$. The function f is p-integrable with respect to m (resp. weakly p-integrable with respect to m) if $|f|^{p} \in L^{1}(m)$ (resp. $|f|^{p} \in L_{w}^{1}(m)$). The space $L^{p}(m)$ (resp. $\left.L_{w}^{p}(m)\right)$ of (equivalence classes of) p integrable functions with respect to m (resp. weakly p-integrable with respect to m) is a Banach space with the norm

$$
\|f\|_{p, m}=\sup _{x^{*} \in \mathrm{~B}_{X^{*}}}\left(\int_{\Omega}|f|^{p} d\left|\left\langle m, x^{*}\right\rangle\right|\right)^{\frac{1}{p}} .
$$

See for instance $(5 ; 6 ; 7)$ for the unexplained information. It is known that $L^{p}(m)$ need not be reflexive for $p>1$. However if X is weakly sequentially complete $L^{p}(m)$ is reflexive for all $p>1$ and $L^{p}(m)=L_{w}^{p}(m)$-see (6, Corollary 3.10)-.

Corollary 32 Let X be a weakly sequentially complete Banach space and let $m: \Sigma \rightarrow X$ be a (countable) additive vector measure verifying that the integration map $I_{m}^{(1)}: L^{1}(m) \rightarrow X$ is completely continuous. Given $1<p<\infty$
and $\left(f_{n}\right)_{n} \in L^{p}(m)$ let us assume that

$$
\sum_{n=1}^{\infty}\left\|\int_{\Omega} f_{n} g d m\right\|_{X}<\infty, \quad \text { for all } g \in L^{p^{\prime}}(m)
$$

and that there exists a function $f \in L^{p}(m)$ such that

$$
\sum_{n=1}^{\infty} \int_{\Omega} f_{n} g d m=\int_{\Omega} f g d m, \quad \text { for all } \quad g \in L^{p^{\prime}}(m)
$$

Then $\sum_{n=1}^{\infty} f_{n}$ converges unconditionally in $L^{p}(m)$.
Proof. Let us consider the bounded bilinear map

$$
\mathscr{M}_{m}^{(p)}: L^{p}(m) \times L^{p^{\prime}}(m) \rightarrow X, \quad \text { given by } \quad \mathscr{M}_{m}^{(p)}(f, g)=\int_{\Omega} f g d m .
$$

Following (7, Proposition 8) it is not difficult to prove that

$$
\|f\|_{p, m}=\sup _{g \in \mathrm{~B}_{L^{p^{\prime}(m)}}}\left\|\int_{\Omega} f g d m\right\|_{X}
$$

Hence $L^{p}(m)$ is $\mathscr{M}_{m}^{(p)}$-normed. Also the weak sequential completeness of X implies that $L^{p}(m)$ is reflexive. On the other hand fixing $f \in L^{p}(m)$ then (8, Theorem 7) gives that the multiplication operator $M_{m}^{\left(p^{\prime}\right)}: L^{p^{\prime}}(m) \rightarrow L^{1}(m)$ given by $M_{m}^{\left(p^{\prime}\right)}(g)=f g$ is weakly compact. But by the assumption the integration map $I_{m}^{(1)}: L^{1}(m) \rightarrow X$ is completely continuous. Hence for every $f \in L^{p}(m)$

$$
\left(\mathscr{M}_{m}^{(p)}\right)_{f}=I_{m}^{(1)} \circ\left(M_{m}^{\left(p^{\prime}\right)}\right)_{f}
$$

is a compact operator so $\phi_{\mathscr{M}_{m}^{(p)}}\left(L^{p}(m)\right) \subseteq \mathscr{K}\left(L^{p^{\prime}}(m), X\right) \subseteq \mathscr{W}\left(L^{p^{\prime}}(m), X\right)$. The result is then a consequence of the theorem.

Remark 33 There are many situations for which the hypotheses of the previous result are fulfilled. We present some of them -see (5) for more informa-tion-.
(a) Given $0<\left(\alpha_{n}\right)_{n} \in \ell^{1}=X$ let us take

$$
m: 2^{\mathbb{N}} \rightarrow \ell^{1}, \quad m(A)=\left(\alpha_{n}\right)_{n} \mathbf{1}_{A}
$$

In this case $L^{1}(m)=\frac{1}{\left(\alpha_{n}\right)_{n}} \ell^{1}$ and the integration $\operatorname{map} I_{m}^{(1)}: L^{1}(m) \rightarrow \ell^{1}$ is completely continuous.
(b) Let $\mathbb{T}=\{z \in \mathbb{C}:|z|=1\}$. Given λ a non zero measure on the Borel σ-algebra $\mathcal{B}(\mathbb{T})$ verifying that the Fourier Stieljes Transform $\hat{\lambda}: \mathbb{Z} \rightarrow \mathbb{C}$ belongs to $c_{0}(\mathbb{Z})$ consider the $L^{1}(\mathbb{T})$-valued measure given by the convolution

$$
v_{\lambda}: \mathcal{B}(\mathbb{T}) \rightarrow L^{1}(\mathbb{T}), \quad v_{\lambda}(A)=\mathbf{1}_{A} * \lambda
$$

In this case $L^{1}\left(v_{\lambda}\right)=L^{1}\left(\left|v_{\lambda}\right|\right)=L^{1}(\mathbb{T})$ and the integration map is $I_{v_{\lambda}}^{(1)}(f)=f * \mathbf{1}_{A}$ for every $f \in L^{1}(\mathbb{T})$ which it is also completely continuous.

References

[1] Blasco, O. and Calabuig, J.M., Hölder inequality for functions integrable with respect to bilinear maps. Math. Scand. (to appear).
[2] Blasco, O. and Calabuig, J.M., Vector valued functions integrable with respect to bilinear maps. Taiwan. Math. J. (to appear).
[3] Blasco, O. and Calabuig, J.M., Fourier Analysis with respect to bilinear maps. (submitted).
[4] Blasco, O. and Signes, T., Some classes of p-summing type operators. Bol. Soc. Mat. Mexicana (3)9 (2003), no. 1, 119-133. MR1988593 (2004b:47025)
[5] Okada, S., Ricker, W. and Sánchez Pérez, E.A., Optimal Domain and Integral Extension of Operators acting in Function Spaces. To appear in Birkhäuser.
[6] Fernández, A., Mayoral, F., Naranjo, F., Sáez, C. and Sánchez Pérez, E. A., Spaces of p-integrable functions with respect to a vector measure. Positivity 10(2006), no. 1, 1-16. MR2223581 (2006m:46053)
[7] Sánchez Pérez, E. A., Compactness arguments for spaces of p-integrable functions with respect to a vector measure and factorization of operators through Lebesgue-Bochner spaces. Illinois J. Math., 45 (2001), no. 3, 907923. MR1879243 (2003d:46055)
[8] Del Campo, R., Fernández, A., Ferrando, I., Mayoral, I. and Naranjo, F., Multiplication operators on spaces of integrable functions with respect to a vector measure (submitted).
[9] Diestel, J., Sequences and series in Banach spaces. Graduate Texts in Mathematics, 92. Springer-Verlag, New York, 1984. xii+261 pp. ISBN: 0-387-90859-5. MR0737004 (85i:46020)
[10] Diestel, J. and Uhl, J. J., Jr., Vector measures. With a foreword by B. J. Pettis. Mathematical Surveys, No. 15. American Mathematical Society, Providence, R.I., 1977. xiii+322 pp. MR0453964 (56 \#12216)
[11] Diestel, J., Jarchow, H. and Tonge, A., Absolutely summing operators. Cambridge Studies in Advanced Mathematics, 43. Cambridge University Press, Cambridge, 1995. xvi+474 pp. ISBN: 0-521-43168-9. MR1342297 (96i:46001)
[12] Mohsen, A., Weak*-norm sequentially continuous operators. Math. Slovaca $50(2000)$, no. 3, 357-363. MR1775307 (2003c:46007)

[^0]: * Corresponding author.

 Email addresses: Oscar.Blasco@uv.es (O. Blasco), jmcalabu@mat.upv.es
 (J.M. Calabuig), tmsignes@um.es (T. Signes).
 $U R L$: http:
\www.uv.es
~ oblasco (O. Blasco).
 1 Ministerio de Educación y Ciencia MTM2005-08350-C03-03 and MTN2004-21420-E
 2 Ministerio de Educación y Ciencia MTM2005-08350-C03-03 and MTN2004-21420-E and Generalitat Valenciana (project GV/2007/191)
 ${ }^{3}$ Ministerio de Educación y Ciencia MTM2007-62121 (Spain) and by Fundación Séneca PB/21/FS/02(CARM).

