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SUMMARY: It is shown that the inequality

∫ 2π

0

(
∫

Ω(θ)

|f ′(z)|2dA(z))
1
2 dθ ≤ C||f ||1

holds for Hardy spaces of function taking values in the Schatten classes σp, 1 ≤ p ≤ 2.

1. INTRODUCTION. It is a well known result that the norm in the Hardy space
H1 is equivalent to the L1 norm of the Lusin area function (see [20, 5]), in particular,

(1.1)
∫ 2π

0

S(f, θ)dθ ≤ C||f ||1

where S(f, θ) =
(∫

Ω(θ)
|f ′(z)|2dA(z)

) 1
2

and Ω(θ) stands for the Stolz domain given by

Ω(θ) = {z = re2πit : |t− θ| ≤ 1 − r} and dA(z) is the area measure on the unit disc D.
As usual the vector-valued consideration of classical inequalities leads to properties

on the Banach spaces theory. This has been the case of lots of properties that have been
depply studied. The aim of this note is the consideration of the previous inequalitiy (1.1)
in the setting of functions taking values in the Schatten classes σp.

Throughout the paper X stand for a complex Banach space, 1 ≤ p ≤ 2 and we shall
denote by Hp(X) the space of X-valued Bochner p-integrable functions on the circle T
whose negative Fourier coefficients vanish, i.e. f ∈ Lp(T, X) such that f̂(n) = 0 for n ≤ 0.

Given f ∈ H1(X) we keep the notation f for the analytic function in the disc D
whose Taylor coefficients are the Fourier coefficients of f and we shall write ||f ||p,X =
(
∫ 2π

0
||f(eit)||p dt

2π )
1
p and Mp,X(f, r) = ||fr||p,X = (

∫ 2π

0
||f(reit)||p dt

2π )
1
p .

We shall denote by σp the Banach space of compact operators x : l2 → l2 such that

||x||p =
(
tr(x∗x)

p
2
) 1

p < ∞. It is well known that σ1 coincides with the space of nuclear
operators on l2 and σ2 with the space of Hilbert-Schmidt operators on l2. The reader is
referred to [6] for general properties on σp.

Before stating the main theorem of this note, let us recall several previous inequalities
which hold in the setting of Schatten classes.
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It was proved by N. Tomczac-Jaegerman ([18]) the cotype 2 property for σp, 1 ≤ p ≤ 2,
or equivalently that there exists a constant Cp > 0 such that

(1.2)

( ∞∑
k=0

||xk||2σp

) 1
2

≤ Cp||
∞∑

k=0

xke
i2kt||1,σp

Several extensions of this notion were shown to be true for these classes. The reader is
referred to [4] for the notion of PL-uniformly convexity, to [10] for the analogue to the
version of Kintchine-inequalities for Banach lattices in the context of Schatten classes and
to ([19], [7]) for the notion of H1-convexity and related properties.

Another improvement of the inequality (1.2) is the vector-valued formulation of Paley
inequality (see [13]) that was proved by A. Pelzcinsky and the author in [3], this is for
1 ≤ p ≤ 2 there exists a constant Cp > 0 such that

(1.3)

( ∞∑
k=0

||x2k ||2σp

) 1
2

≤ Cp||
∞∑

n=0

xne
int||1,σp

The reader is referred to [11] for an interesting extension of inequality (1.3).
The following improvement of (1.3) is due to G. Pisier (see [15]) who showed that for

any sequence 0 ≤ r0 < r1 < ... < rn < ... < 1 there exist constants δp, Cp > 0 such that

(1.4)

(
||fr0 ||21,σp

+ δp

∞∑
n=1

||frn − frn−1 ||21,σp

) 1
2

≤ Cp||f ||1,σp

Recently it has been shown by the author in [2] that still another inequality due to
Hardy and Littlewood (see [8]) holds for Schatten classes, that is there exists a constant
Cp > 0 such that

(1.5)
(∫ 1

0

(1 − r)M2
1,σp

(f ′, r)dr
) 1

2

≤ C||f ||1,σp

Let us now formulate the main theorem proved in this note, which is the extension of
(1.1) to the setting of Hardy spaces with values in Schatten classes, and which improves
all the previous estimates given above.

Theorem. Let 1 ≤ p ≤ 2. There exists a constant Cp > 0 such that

∫ 2π

0

( ∫
Ω(θ)

||f ′(z)||2σp
dA(z)

) 1
2
dθ

2π
≤ Cp||f ||1,σp

The proof follows similar ideas than those used in the scalar valued case. The main tools
are the use of the non-conmutative version of a result on factorization of analytic functions
with values on theses classes together with some interpolation arguments. The reader is
referred to [2, 3, 7,15, 19] for the use similar arguments in related questions.



2. Related properties in geometry of Banach spaces. Let us recall all the
notions apperared in the previous section and their connections.

Although the notions of cotype and type are defined in terms of the Rademacher
functions we shall replace them by lacunary sequences ei2nt, which gives an equivalent
definition.

A Banach space has cotype 2 (see [12, 14]) if there exists a constant C > 0 such that

(2.1)

( ∞∑
k=0

||xk||2
) 1

2

≤ ||f ||1,X

for any f(z) =
∑∞

k=0 xkz
2k

.

A complex Banach space is said to be a Paley space (see [3]) if

(2.2)

( ∞∑
k=0

||x2k ||2X

) 1
2

≤ C||f ||1,X

for any f(z) =
∑∞

n=0 xnz
n ∈ H1(X).

Definition 2.1 A complex Banach space is said to satisfy lacunary radial 2-lower
estimate (see [15] for the corresponding definition for general increasing sequences rn) if
there exist constants δ, C > 0 such that if rk = 1 − 2−k

(2.3)

(
||f(0)||2X + δ

∞∑
n=1

||frn
− frn−1 ||21,X

) 1
2

≤ C||f ||1,X

for any f(z) =
∑∞

n=0 xnz
n ∈ H1(X).

A complex Banach space X is said to have property (HL), in short X ∈ (HL), (see
[2]) if there exists a constant C > 0 such that

(2.4)
(∫ 1

0

(1 − r)M2
1,X(f ′, r)dr

) 1
2

≤ C||f ||1,X

for any f(z) =
∑∞

n=0 xnz
n ∈ H1(X).

Definition 2.2 A complex Banach space X is said to have property (LP), in short
X ∈ (LP ), if there exists a constant C > 0 such that

(2.5)
∫ 2π

0

(∫
Ω(θ)

||f ′(z)||2XdA(z)

) 1
2

dθ ≤ C||f ||1,X



for any f(z) =
∑∞

n=0 xnz
n ∈ H1(X) .

Proposition 2.1. If X ∈ (LP ) then X ∈ (HL).
Proof. Let us consider the function h(r, θ) = (1−r)||f ′(reiθ)|| and apply vector-valued

Minkowski’s inequality to get

||
∫ 2π

0

h(r, θ)dθ||L2( dr
1−r ) ≤

∫ 2π

0

||h(r, θ)||L2( dr
1−r )dθ,

that is

(∫ 1

0

(1 − r)M2
1,X(f ′, r)dr

) 1
2

≤
∫ 2π

0

(
∫ 1

0

(1 − r)||f ′(reiθ)||2dr) 1
2 dθ

On the other hand, if we write g(f, θ) = (
∫ 1

0
(1− r)||f ′(reiθ)||2dr) 1

2 for the g-function
defined by Littlewood and Paley (see [10]), then same proof as in the scalar case (see [20,
page 210]) shows that

g(f, θ) ≤ CS(f, θ).

Combining both estimates we have

(∫ 1

0

(1 − r)M2
1,X(f ′, r)dr

) 1
2

≤ C

∫ 2π

0

(∫
Ω(θ)

||f ′(z)||2XdA(z)
dθ

2π

) 1
2

,

and the proof is finished.

Proposition 2.2. If X ∈ (HL) then X satisfies a lacunary radial 2-lower estimate.
Proof. Write frn(eiθ) − frn−1(e

iθ) =
∫ rn

rn−1
f ′(seiθ)ds. Therefore

||frn
− frn−1 ||1,X ≤

∫ rn

rn−1

M1,X(f ′, s)ds ≤ (rn − rn−1)
1
2

(∫ rn

rn−1

M2
1,X(f ′, s)ds

) 1
2

.

Using that rn − rn−1 = 1 − rn we have

∞∑
n=1

||frn
− frn−1 ||21,X ≤

∞∑
n=1

(rn − rn−1)
∫ rn

rn−1

M2
1,X(f ′, s)ds

≤
∞∑

n=1

∫ rn

rn−1

(1 − s)M2
1,X(f ′, s)ds

=
∫ 1

0

(1 − s)M2
1,X(f ′, s)ds.

This estimate gives the desired result.



It is rather elementary to show that actually lacunary radial 2-lower estimate implies
Paley space and Paley implies cotype 2 (see [15], [3] respectively).

3. Proof of the main theorem. We need certain lemmas to prepare the proof.
Lemma 3.1. (Non commutative Factorization, see [17]) Let f ∈ H1(σ1). Then there

exist two functions h1, h2 ∈ H2(σ2) such that

f(eit) = h1(eit)h2(eit), and ||f ||1,σ2 = ||h1||21,σ2
= ||h2||21,σ2

.

Using Plancherel’s one easily gets the following fact.

Lemma 3.2.Let X be a Hilbert space and f ∈ H2(X). Then

(
||f(0)||2 +

∫ 2π

0

∫
Ω(θ)

||f ′(z)||2dA(z)dθ

) 1
2

≈ ||f ||22,X .

Proposition 3.1. Hilbert spaces have (LP) property.
Proof. Assume without lost of generality that X = l2.
Given f = (fn)n∈N ∈ H1(l2) we have that

∫ 2π

0

(∫
Ω(θ)

||f ′(z)||2l2dA(z)

) 1
2

dθ =
∫ 2π

0


∫

Ω(θ)

∑
n∈N

|f ′
n(z)|2dA(z)




1
2

dθ.

Applying Kintchine’s and vector-valued Minkowsky’s inequality and then the scalar-valued
case together with Kintchine’s again we obtain

∫ 2π

0

(
∫

Ω(θ)

∑
n∈N

|f ′
n(z)|2dA(z))

1
2 dθ =

∫ 2π

0

(
∫

Ω(θ)

(
∫ 1

0

|
∑

n∈N
f ′

n(z)rn(t)|dt)2dA(z))
1
2 dθ

≤
∫ 2π

0

(
∫ 1

0

(
∫

Ω(θ)

|
∑

n∈N
f ′

n(z)rn(t)|2dA(z))
1
2 dt)dθ

≤ C

∫ 1

0

∫ 2π

0

|
∑

n∈N
fn(eiθ)rn(t)|dθdt

= C

∫ 2π

0

(
∑

n∈N
|fn(eiθ)|2) 1

2 dθ.

σ1 has (LP)-property. Given f ∈ H1(σ1) take h1, h2 ∈ H2(σ2) such that

f(eit) = h1(eit)h2(eit), ||h1||22,σ2
= ||h2||22,σ2

= ||f ||1,σ1 .



Note that for i, j ∈ {1, 2}, i 
= j

∫
Ω(θ)

||h′
i(z)hj(z)||2σ1

dA(z) ≤
∫

Ω(θ)

||h′
i(z)||2σ2

||hj(z)||2σ2
dA(z)

≤ sup
z∈Ω(θ)

||hj(z)||2σ2

∫
Ω(θ)

||h′
i(z)||2σ2

dA(z).

This gives

∫ 2π

0

(∫
Ω(θ)

||f ′(z)||2σ1
dA(z)

) 1
2

dθ ≤
∫ 2π

0

sup
z∈Ω(θ)

||h1(z)||σ2

(∫
Ω(θ)

||h′
2(z)||2σ2

dA(z)

) 1
2

dθ

+
∫ 2π

0

sup
z∈Ω(θ)

||h2(z)||σ2

(∫
Ω(θ)

||h′
1(z)||2σ2

dA(z)

) 1
2

dθ.

Therefore, denoting by g∗(eiθ) = supz∈Ω(θ) ||g(z)||X the non tangential maximal func-
tion of a function g ∈ H1(X) we have

∫ 2π

0

(∫
Ω(θ)

||f ′(z)||2σ1
dA(z)

) 1
2

dθ

≤
(∫ 2π

0

|h∗
1(e

iθ)|2dθ
) 1

2
(∫ 2π

0

∫
Ω(θ)

||h′
2(z)||2σ2

dA(z)dθ

) 1
2

+
(∫ 2π

0

|h∗
2(e

iθ)|2dθ
) 1

2
(∫ 2π

0

∫
Ω(θ)

||h′
1(z)||2σ2

dA(z)dθ

) 1
2

.

Using now Lemma 3.1 and the well known result about the boundedness of the max-
imal operator one has

∫ 2π

0

(∫
Ω(θ)

||f ′(z)||2σ1
dA(z)

) 1
2

dθ ≤ C||h1||2,σ2 ||h2||2,σ2 = C||f ||2,σ1

The case 1 < p < 2. Observe that X ∈ (LP ) means that the operator

f → f ′(z)χΩ(θ)

is bounded from H1(X) into L1
(
dθ, L2(dA(z), X)

)
.

Therefore the proposition 3.1 and the previous case give the boundedness of T consid-
ered as operator H1(σ2) into L1

(
dθ, L2(dA(z), σ2)

)
and H1(σ1) into L1

(
dθ, L2(dA(z), σ1)

)
.



Let us choose 0 < θ < 1 so that 1
p = 1− θ

2 . Using the well known results of interpolation
(see [1])

(
L1

(
dθ, L2(dA(z), X1)

)
, L1

(
dθ, L2(dA(z), X2)

))
θ

= L1
(
dθ, L2(dA(z), (X1, X2)θ)

)
for any couple af Banach spaces X1, X2, the fact (σ1, σ2)θ = σp and the recent results on
interpolation for vector valued Hardy spaces due to Pisier and Xu (see [19, 16]),

(
H1(σ1), H1(σ2)

)
θ

= H1(σp).

one gets that T is also bounded from H1
(
σp

)
into L1

(
dθ, L2(dA(z), σp

)
what gives that

σp has (LP )-property.
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