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Operators from Hp to `q for 0 < p < 1 ≤ q < ∞

Oscar Blasco

Abstract. We give some estimates for the norm of operators T : Hp → `q

for 0 < p < 1 ≤ q < ∞ in terms of the norm of the rows and columns of

the matrix T (un) = (tkn)k∈N, un(z) = zn, in certain vector-valued sequence

spaces.

1. Introduction

Throughout the paper X stands for a quasi-Banach space and we denote, for
1 ≤ s < ∞ and 1/s + 1/s′ = 1, by `s(X), `s

weak(X) and `(s,∞, X), the spaces of
sequences (Ak) ⊂ X such that

‖(Ak)‖`s(X) = (
∑

k

‖Ak‖s)1/s < ∞,

‖(Ak)‖`s
weak(X) = sup

‖(λk)‖s′=1

‖
∑

k

λkAk‖ < ∞ and

‖(Ak)‖`(s,∞,X) = sup
j∈N

(
2j∑

n=2j−1−1

‖An‖s)1/s < ∞.

We write `s, `(s,∞) in the case X = C. Of course `s(X) ⊂ `(s,∞, X) ∩ `s
weak(X).

For each 0 < p ≤ ∞, Hp denotes the Hardy space on the unit disk, i.e. space of
holomorphic functions on D such that sup0<r<1 ‖fr‖Lp(T) < ∞ where fr(z) = f(rz).
For a given bounded operator T : Hp → `q, 0 < p, q ≤ ∞, one can associate the
matrix (tkn)k,n such that T (un) =

∑
k∈N tknek, where un(z) = zn for n ≥ 0. Let

Tk = (tkn)n≥0 and xn = (tkn)k∈N denote its rows and columns respectively.
Several theorems concerning upper and lower estimates of the norm ‖T‖ in

terms of

‖(Tk)‖`r(`s) = (
∞∑

k=1

(
∞∑

n=0

|tkn|s)r/s)1/r

were proved by B. Osikiewicz. Let me collect the results in [14] using the notation
a+ = max{a, 0}.
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In the case 1 ≤ p ≤ 2, 1 ≤ q ≤ ∞ and 1/r = (1/q − 1/2)+ it was shown (see
[14], Theorem 2.1 and Theorem 2,2) that

(1.1) ‖(Tk)‖`r(`2) ≤ ‖T‖ ≤ ‖(Tk)‖`q(`p).

Also for 2 ≤ p < ∞, 1 ≤ q ≤ ∞ and 1/s = (1/q − 1/p′)+ it was shown (see
[14], Theorem 2.3 and Theorem 2,4) that

(1.2) ‖(Tk)‖`s(`p) ≤ ‖T‖ ≤ ‖(Tk)‖`q(`2).

The reader is referred to [5] for some improvements of these results. The
objective of this note is to study the case 0 < p < 1.

The main result is the following:

Theorem 1.1. Let 0 < p < 1 ≤ q < ∞ and T : Hp → `q be a bounded
operator. Define the matrix (akn) = ((n + 1)1/p−1tnk) and set Ak and Bn the rows
and columns of the matrix. There exists C > 0 such that

(1.3) ‖T‖ ≤ C min{‖(Ak)‖`q(`(1,∞)), ‖(Bn)‖`(1,∞,`q)}
and

(1.4) max{‖(Ak)‖`q
weak(`(2,∞)), ‖(Bn)‖`(q0,∞,`q)} ≤ C‖T‖,

where q0 = max{q, q′}

Let us write down the just mentioned result in the particular cases q = 1 and
q = 2.

Corollary 1.2. Let 0 < p < 1 and T : Hp → `1 be a bounded operator. Let
Ak and Bn the rows and columns of the matrix (akn) = ((n + 1)1/p−1tnk). There
exists C > 0 such that

C−1 max{‖(Bn)‖`∞(`1), sup
‖(λk)‖∞=1

‖
∑

k

λkAk‖`(2,∞)} ≤ ‖T‖ ≤ C‖(Bn)‖`(1,∞,`1).

Corollary 1.3. Let 0 < p < 1 and T : Hp → `2 be a bounded operator. Let
Ak and Bn the rows and columns of the matrix (akn) = ((n + 1)1/p−1tnk). There
there exists C > 0 such that

(1.5) C−1‖(Ak)‖`2weak(`(2,∞)) ≤ ‖T‖ ≤ C‖(Ak)‖`2(`(1,∞)),

(1.6) C−1‖(Bn)‖`(2,∞,`2) ≤ ‖T‖ ≤ C‖(Bn)‖`(1,∞,`2).

We shall now recall some facts to be used in the sequel.
Let us first mention the following duality result (see [8]): Let 0 < p < 1 and

1/m + 1 ≤ p < 1/m, m ∈ N. Φ ∈ (Hp)∗ if and only if there exist a function g and
a constant C > 0 such that

(1.7) |g(m+1)(z)| ≤ C

(1− |z|)m+2−1/p
,

for which

Φ(f) = lim
r→1

∫ 2π

0

f(reit)g(reit)
dt

2π

for all f ∈ Hp.
Moreover

‖Φ‖(Hp)∗ ≈ max{|g(0)|, |g′(0)|, ..., |gm(0)|, sup
|z|<1

(1− |z|)m+2−1/p|g(m+1)(z)|}.
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Throughout the paper we identify g and Φ.
The estimates in Theorem 1.1 and Corollaries 1.2 and 1.3 are, in some special

cases, sharp and allow to give some consequences on Taylor coefficient of functions
in Hp-spaces for 0 < p < 1 in some other cases.

Remark 1.4. Given g ∈ (Hp)∗ and (λk) ∈ `q define T : Hp → `q by

T (f) = 〈g, f〉(λk)k.

Obviously has
‖T‖ = ‖g‖(Hp)∗‖(λk)‖`q .

This example corresponds to the case (tnk) = (αnλk) where g(z) =
∑∞

n=0 αnzn,
Bn = (n+1)1/p−1αn(λk)k and Ak = λk((n+1)1/p−1αn)n. The reader can compare
the norm with the estimates from Theorem 1.1 in this case.

Remark 1.5. Let 0 < p < 1, (λn) be a sequence and T : Hp → `1 given by

T (f) = (λnan), f(z) =
∞∑

n=0

anzn.

Then ‖T‖ ≈ ‖(Bn)‖`(1,∞,`1) = ‖((n + 1)1/p−1λn)‖`(1,∞).

Indeed, note that in this case Bn = (n + 1)1/p−1λnen and (tkn) is a diagonal
matrix. Hence T is bounded if and only if {(λn)n} there exists C > 0

∞∑
n=0

|λnan| ≤ C‖
∞∑

n=0

anzn‖Hp ,

that is to say (λn) belongs to the space of multipliers (Hp, `1). Now invoke the
result by P. Duren and A. Shields (see [9]) establishing that for 0 < p < 1

(1.8) (Hp, `1) = {(λn) : ((n + 1)1/p−1λn) ∈ `(1,∞)},
with equivalent norms, to get the desired result.

Let us give the following new application of Corollary 1.3.

Corollary 1.6. Let 0 < r < 2
3 and let g(z) =

∑∞
n=0 αnzn ∈ (Hr)∗. Then

there exists C > 0 such that

C−1‖((n + 1)1/r−3/2(
∑
j≥n

|αj |2)1/2)n‖`(2,∞) ≤ ‖g‖(Hr)∗ ,

‖g‖(Hr)∗ ≤ C‖((n + 1)1/r−3/2(
∑
j≥n

|αj |2)1/2)n‖`(1,∞).

Proof. Condition 0 < r < 2
3 allows to get 0 < p < 1 such that 1/p+1/2 = 1/r.

Using factorization of Hardy spaces (see [7]) one has that Hr = HpH2. Consider
now the operator T : Hp → `2 defined by the matrix (tnk) = (ᾱn+k), in other words

T (f) = (
∞∑

n=0

anᾱn+k)k.

Clearly, if (βk)k ∈ `2 is a finite sequence and h(z) =
∑N

k=0 β̄kzk apolynomial then

〈T (f), (βk)〉 =
∑
n,k

ᾱn+kanβk =
∫

T
ḡ(ξ)f(ξ)h(ξ)dξ.
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Using the factorization Hr = HpH2 we easily conclude that ‖T‖ = ‖g‖(Hr)∗ .
Using now that ‖Bn‖`2 = (n + 1)1/r−3/2(

∑
j≥n |αj |2)1/2, the result follows from

(1.6). �

The paper is organized as follows. Section 2 contains some preliminary and
introductory results and Section 3 is devoted to the proof of Theorem 1.1.

Throughout the paper we use the notation Mq(F, r) = (
∫ 2π

0
‖F (reiθ)‖q dθ

2π )1/q

for analytic functions F : D → X, q′ stands for the conjugate exponent of q and,
as usual, the constant C may vary from line to line.

2. Preliminary results

Definition 2.1. Let 0 < p < 1 ≤ q ≤ ∞ and let T : Hp → `q be a bounded
operator. Denote un(z) = zn for n ≥ 0, (ek)k∈N the standard basis of `q and
ξk((λj)) = 〈(λj), ek〉 = λk.

Consider the functional ξkT (f) = 〈T (f), ek〉 ∈ (Hp)∗ and denote by gk the
analytic function representing ξkT . Assume

(2.1) gk(z) =
∞∑

n=0

tknzn.

We can now define

(2.2) FT (z) = (gk(z))k∈N

Hence to each operator T we can associate a matrix (akn(T )) = (tkn) given by

(2.3) T (un) =
∑
k=1

tknek

where the rows Tk = (tkn)n≥0 are the Taylor coefficients of the sequence of functions
gk = gk(T ) ∈ (Hp)∗ and the columns xn = (tkn)k∈N are the Taylor coefficients of
the vector-valued analytic function FT : D → `q given by and

(2.4) FT (z) =
∞∑

n=0

xnzn, xn =
∞∑

k=1

tknek.

It is well known that the boundedness of operators T : Hp → X, where X is
a Banach space and 0 < p < 1, is equivalent to the boundedness of its extension
T : Bp → X where Bp is the Banach envelope of Hp (see [8]) and coincides with
the space of analytic functions such that∫ 1

0

(1− r2)1/p−2M1(f, r)dr < ∞.

Taking into account that Bp is a weighted Bergman space B1(ρ) for ρ(t) =
t1/p−1 and, due to the results in [1] (see also [4] for alternative approaches and more
references), the boundedness of operators T from B1(ρ) into X can be described
by the behavior of certain fractional derivative of the vector valued function whose
Taylor coefficients T (un) = xn where un(z) = zn. Therefore the theorem could be
achieved using this general approach, but we present here a direct proof using only
classical and elementary facts from Theory of Hardy spaces.

Let us now mention some facts which will be needed later on.
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Lemma 2.2. (see [7]) Let β > 0 and let (αn) be a sequence of non-negative
numbers. Then

(2.5) ‖((n + 1)−βαn)‖`(1,∞) ≈ ‖((n + 1)−β
n∑

j=0

αj)‖`∞ ≈ sup
0<r<1

(1− r)β(
∑

n

αnrn).

Let us mention that in some cases Haussdorff-Young’s inequality holds for
vector-valued Lebesgue spaces (see [16]). In particular, next lemma is well known.

Lemma 2.3. (see [3]) Let 1 < p ≤ 2, p ≤ q ≤ p′ and let F (z) =
∑∞

n=0 xnzn

with xn ∈ `q for n ≥ 0. Then

(
∞∑

n=0

‖xn‖p′

`qr
np′)1/p′ ≤ Mp(F, r).

3. Proof of Theorem 1.1

We shall need the following result.

Lemma 3.1. Let 0 < p < 1 ≤ q < ∞, 1/m + 1 ≤ p < 1/m for some m ∈ N and
let T : Hp → `q be a linear operator. Set xn = T (un) and FT (z) =

∑∞
n=0 xnzn.

Then

‖T‖ ≈ max{‖x0‖`q , ‖x1‖`q , ..., ‖xm‖`q , sup
|z|<1

(1− |z|)m+2−1/p‖F (m+1)
T (z)‖`q}.

Proof. For each (λk) ∈ `q′ we denote Tλ(f) =
∑∞

k=1 λkξkT (f). We have that

‖T‖ = sup{‖Tλ‖(Hp)∗ : ‖(λk)‖`q′ = 1}.
Using (1.7) one has that Tλ ∈ (Hp)∗ if and only if it is represented by gλ =∑∞

k=1 λkgk and there exists C > 0 such that |g(m+1)
λ (z)| ≤ C‖Tλ‖(Hp)∗

(1−|z|)m+2−1/p , and

‖Tλ‖(Hp)∗ ≈ max{|gλ(0)|, |g′λ(0)|, ..., |g(m)
λ (0)|, sup

|z|<1

(1− |z|)m+2−1/p|g(m+1)
λ (z)|}

Observe that g
(j)
λ (z) =

∑∞
k=1 λkg

(j)
k (z) and F

(j)
T (z) = (g(j)

k (z)). Taking supremun
over ‖(λk)‖`q′ = 1 one gets that the result. �

Proof of (1.3). Of course one can write

‖T‖ ≤ (
∞∑

k=1

‖ξkT‖q)1/q = (
∞∑

k=0

‖gk‖q
(Hp)∗)

1/q.

Using the continuous inclusion (Hp, `1) ⊂ (Hp)∗ and (1.8) we have the estimate
‖gk‖(Hp)∗ ≤ ‖gk‖(Hp,`1) ≤ C‖Ak‖`(1,∞) where Ak = ((n + 1)1/p−1tkn)n.

Therefore

(3.1) ‖T‖ ≤ C‖(Ak)‖`q(`(1,∞)).

On the other hand, note that FT (z) =
∑∞

n=0 xnzn where xn = (tkn)k∈N ∈ `q

for all n ≥ 0. Hence

sup
0≤k≤m

‖xk‖`q ≤ ‖((n + 1)1/p−1xn‖`(1,∞,`q).

On the other hand

F
(m+1)
T (z) =

∞∑
n=m+1

n(n− 1)....(n−m)xnzn−(m+1).
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Hence

‖F (m+1)
T (z)‖`q ≤

∞∑
n=m+1

nm+1‖xn‖`q |z|n−(m+1)

≤ C
∞∑

j=[log2(m+2)]

2j(m+1)2−j(1/p−1)
( 2j∑

n=2j−1−1

(n + 1)1/p−1‖xn‖`q

)
|z|2

j−(m+2)

≤ C‖((n + 1)1/p−1xn)‖`(1,∞,`q)

∞∑
j=[log2(m+2)]

2j(m−1/p)|z|2
j−(m+2)

≤
C‖((n + 1)1/p−1xn)‖`(1,∞,`q)

(1− |z|)m+2−1/p

From Lemma 3.1 one obtains

(3.2) ‖T‖ ≤ C‖((n + 1)1/p−1xn)‖`(1,∞,`q).

Now (3.1) and (3.2) give (1.3).

Proof of (1.4). Let us take (λk) ∈ `q′ (or (λk) ∈ c0 for q = 1). Using ( 1.7)
again there exists C > 0 such that

|g(m+1)
λ (z)| ≤ C‖Tλ‖

(1− |z|)m+2−1/p
.

In particular, for gλ(z) =
∑

k λkgk(z) =
∑∞

n=0(
∑

k λktnk)zn,

M2(g
(m+1)
λ , r) ≤ C‖Tλ‖

(1− r)m+2−1/p
.

Therefore

(
∞∑

n=m

(n + 1)2(m+1)|
∑

k

λktkn|2r2n)1/2 ≤ C‖Tλ‖
(1− r)m+2−1/p

.

Applying now Lemma 2.2 for β = 2(m + 2 − 1/p) one concludes that ((n +
1)2(1/p−1)|

∑
k λktkn|2)n ∈ `(1,∞) and

‖((n + 1)(1/p−1)
∑

k

λktkn)n‖2
`(2,∞) ≤ C‖Tλ‖2.

This shows

sup
‖(λk)‖

`q′=1

‖
∞∑

k=1

λkAk‖`(2,∞) ≤ C‖T‖.

Hence
‖(Ak)‖`q

weak(`(2,∞)) ≤ C‖T‖.
Let us now show that ‖(Bn)‖`(max{q,q′},∞,`q) ≤ C‖T‖.
Assume first q = 1. Recall that from (3.1) one has ‖F (m+1)

T (z)‖`q ≤ C‖T‖
(1−|z|)m+2−1/p .

Now use, for n ≥ m,

‖xn‖`1n
m+1|z|n−m ≤ C‖F (m+1)

T (z)‖`1 ≤
C‖T‖

(1− |z|)m+2−1/p
.

Selecting |z| = 1− 1/(n + 1) to obtain

‖Bn‖`1 = ‖xn‖`1(n + 1)1/p−1 ≤ C‖T‖
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which is the desired estimate.
Assume now q > 1. Denote t = min{q, q′} and q0 = max{q, q′} and apply (3.1)

to obtain

Mt(F
(m+1)
T , r) ≤ M∞(F (m+1)

T , r) ≤ C‖T‖
(1− r)m+2−1/p

.

Using Lemma 2.3 one can write

(
∞∑

n=0

(n + 1)(m+1)q0‖xn‖q0
`q rnq0)1/q0 ≤ C‖T‖

(1− r)m+2−1/p
.

Now apply Lemma 2.2 for β = q0(m+2−1/p) to get (‖(n+1)1/p−1xn‖q0
`q ) ∈ `(1,∞)

and the corresponding estimate for the norm. This finishes the proof. �
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