Operators from H^{p} to ℓ^{q} for $0<p<1 \leq q<\infty$

Oscar Blasco

Abstract

We give some estimates for the norm of operators $T: H^{p} \rightarrow \ell^{q}$ for $0<p<1 \leq q<\infty$ in terms of the norm of the rows and columns of the matrix $T\left(u_{n}\right)=\left(t_{k n}\right)_{k \in \mathbb{N}}, u_{n}(z)=z^{n}$, in certain vector-valued sequence spaces.

1. Introduction

Throughout the paper X stands for a quasi-Banach space and we denote, for $1 \leq s<\infty$ and $1 / s+1 / s^{\prime}=1$, by $\ell^{s}(X), \ell_{\text {weak }}^{s}(X)$ and $\ell(s, \infty, X)$, the spaces of sequences $\left(A_{k}\right) \subset X$ such that

$$
\begin{gathered}
\left\|\left(A_{k}\right)\right\|_{\ell^{s}(X)}=\left(\sum_{k}\left\|A_{k}\right\|^{s}\right)^{1 / s}<\infty \\
\left\|\left(A_{k}\right)\right\|_{\ell_{\text {weak }}^{s}(X)}=\sup _{\left\|\left(\lambda_{k}\right)\right\|_{s^{\prime}}=1}\left\|\sum_{k} \lambda_{k} A_{k}\right\|<\infty \text { and } \\
\left\|\left(A_{k}\right)\right\|_{\ell(s, \infty, X)}=\sup _{j \in \mathbb{N}}\left(\sum_{n=2^{j-1}-1}^{2^{j}}\left\|A_{n}\right\|^{s}\right)^{1 / s}<\infty .
\end{gathered}
$$

We write $\ell^{s}, \ell(s, \infty)$ in the case $X=\mathbb{C}$. Of course $\ell^{s}(X) \subset \ell(s, \infty, X) \cap \ell_{\text {weak }}^{s}(X)$.
For each $0<p \leq \infty, H^{p}$ denotes the Hardy space on the unit disk, i.e. space of holomorphic functions on \mathbb{D} such that $\sup _{0<r<1}\left\|f_{r}\right\|_{L^{p}(\mathbb{T})}<\infty$ where $f_{r}(z)=f(r z)$. For a given bounded operator $T: H^{p} \rightarrow \ell^{q}, 0<p, q \leq \infty$, one can associate the matrix $\left(t_{k n}\right)_{k, n}$ such that $T\left(u_{n}\right)=\sum_{k \in \mathbb{N}} t_{k n} e_{k}$, where $u_{n}(z)=z^{n}$ for $n \geq 0$. Let $T_{k}=\left(t_{k n}\right)_{n \geq 0}$ and $x_{n}=\left(t_{k n}\right)_{k \in \mathbb{N}}$ denote its rows and columns respectively.

Several theorems concerning upper and lower estimates of the norm $\|T\|$ in terms of

$$
\left\|\left(T_{k}\right)\right\|_{\ell^{r}\left(\ell^{s}\right)}=\left(\sum_{k=1}^{\infty}\left(\sum_{n=0}^{\infty}\left|t_{k n}\right|^{s}\right)^{r / s}\right)^{1 / r}
$$

were proved by B. Osikiewicz. Let me collect the results in [14] using the notation $a^{+}=\max \{a, 0\}$.

[^0]In the case $1 \leq p \leq 2,1 \leq q \leq \infty$ and $1 / r=(1 / q-1 / 2)^{+}$it was shown (see [14], Theorem 2.1 and Theorem 2,2) that

$$
\begin{equation*}
\left\|\left(T_{k}\right)\right\|_{\ell^{r}\left(\ell^{2}\right)} \leq\|T\| \leq\left\|\left(T_{k}\right)\right\|_{\ell^{q}\left(\ell^{p}\right)} \tag{1.1}
\end{equation*}
$$

Also for $2 \leq p<\infty, 1 \leq q \leq \infty$ and $1 / s=\left(1 / q-1 / p^{\prime}\right)^{+}$it was shown (see [14], Theorem 2.3 and Theorem 2,4) that

$$
\begin{equation*}
\left\|\left(T_{k}\right)\right\|_{\ell^{s}\left(\ell^{p}\right)} \leq\|T\| \leq\left\|\left(T_{k}\right)\right\|_{\ell^{q}\left(\ell^{2}\right)} \tag{1.2}
\end{equation*}
$$

The reader is referred to [5] for some improvements of these results. The objective of this note is to study the case $0<p<1$.

The main result is the following:
Theorem 1.1. Let $0<p<1 \leq q<\infty$ and $T: H^{p} \rightarrow \ell^{q}$ be a bounded operator. Define the matrix $\left(a_{k n}\right)=\left((n+1)^{1 / p-1} t_{n k}\right)$ and set A_{k} and B_{n} the rows and columns of the matrix. There exists $C>0$ such that

$$
\begin{equation*}
\|T\| \leq C \min \left\{\left\|\left(A_{k}\right)\right\|_{\ell^{q}(\ell(1, \infty))},\left\|\left(B_{n}\right)\right\|_{\ell\left(1, \infty, \ell^{q}\right)}\right\} \tag{1.3}
\end{equation*}
$$

and

$$
\begin{equation*}
\max \left\{\left\|\left(A_{k}\right)\right\|_{\ell_{w e a k}^{q}(\ell(2, \infty))},\left\|\left(B_{n}\right)\right\|_{\ell\left(q_{0}, \infty, \ell q\right)}\right\} \leq C\|T\| \tag{1.4}
\end{equation*}
$$

where $q_{0}=\max \left\{q, q^{\prime}\right\}$
Let us write down the just mentioned result in the particular cases $q=1$ and $q=2$.

Corollary 1.2. Let $0<p<1$ and $T: H^{p} \rightarrow \ell^{1}$ be a bounded operator. Let A_{k} and B_{n} the rows and columns of the matrix $\left(a_{k n}\right)=\left((n+1)^{1 / p-1} t_{n k}\right)$. There exists $C>0$ such that

$$
C^{-1} \max \left\{\left\|\left(B_{n}\right)\right\|_{\ell \infty\left(\ell^{1}\right)}, \sup _{\left\|\left(\lambda_{k}\right)\right\|_{\infty}=1}\left\|\sum_{k} \lambda_{k} A_{k}\right\|_{\ell(2, \infty)}\right\} \leq\|T\| \leq C\left\|\left(B_{n}\right)\right\|_{\ell\left(1, \infty, \ell^{1}\right)}
$$

Corollary 1.3. Let $0<p<1$ and $T: H^{p} \rightarrow \ell^{2}$ be a bounded operator. Let A_{k} and B_{n} the rows and columns of the matrix $\left(a_{k n}\right)=\left((n+1)^{1 / p-1} t_{n k}\right)$. There there exists $C>0$ such that

$$
\begin{gather*}
C^{-1}\left\|\left(A_{k}\right)\right\|_{\ell_{w e a k}^{2}(\ell(2, \infty))} \leq\|T\| \leq C\left\|\left(A_{k}\right)\right\|_{\ell^{2}(\ell(1, \infty))} \tag{1.5}\\
C^{-1}\left\|\left(B_{n}\right)\right\|_{\ell\left(2, \infty, \ell^{2}\right)} \leq\|T\| \leq C\left\|\left(B_{n}\right)\right\|_{\ell\left(1, \infty, \ell^{2}\right)} \tag{1.6}
\end{gather*}
$$

We shall now recall some facts to be used in the sequel.
Let us first mention the following duality result (see [8]): Let $0<p<1$ and $1 / m+1 \leq p<1 / m, m \in \mathbb{N} . \Phi \in\left(H^{p}\right)^{*}$ if and only if there exist a function g and a constant $C>0$ such that

$$
\begin{equation*}
\left|g^{(m+1)}(z)\right| \leq \frac{C}{(1-|z|)^{m+2-1 / p}} \tag{1.7}
\end{equation*}
$$

for which

$$
\Phi(f)=\lim _{r \rightarrow 1} \int_{0}^{2 \pi} f\left(r e^{i t}\right) \overline{g\left(r e^{i t}\right)} \frac{d t}{2 \pi}
$$

for all $f \in H^{p}$.
Moreover

$$
\|\Phi\|_{\left(H^{p}\right)^{*}} \approx \max \left\{|g(0)|,\left|g^{\prime}(0)\right|, \ldots,\left|g^{m}(0)\right|, \sup _{|z|<1}(1-|z|)^{m+2-1 / p}\left|g^{(m+1)}(z)\right|\right\}
$$

Throughout the paper we identify g and Φ.
The estimates in Theorem 1.1 and Corollaries 1.2 and 1.3 are, in some special cases, sharp and allow to give some consequences on Taylor coefficient of functions in H^{p}-spaces for $0<p<1$ in some other cases.

Remark 1.4. Given $g \in\left(H^{p}\right)^{*}$ and $\left(\lambda_{k}\right) \in \ell^{q}$ define $T: H^{p} \rightarrow \ell^{q}$ by

$$
T(f)=\langle g, f\rangle\left(\lambda_{k}\right)_{k} .
$$

Obviously has

$$
\|T\|=\|g\|_{\left(H^{p}\right)^{*}}\left\|\left(\lambda_{k}\right)\right\|_{\ell^{q}} .
$$

This example corresponds to the case $\left(t_{n k}\right)=\left(\alpha_{n} \lambda_{k}\right)$ where $g(z)=\sum_{n=0}^{\infty} \alpha_{n} z^{n}$, $B_{n}=(n+1)^{1 / p-1} \alpha_{n}\left(\lambda_{k}\right)_{k}$ and $A_{k}=\lambda_{k}\left((n+1)^{1 / p-1} \alpha_{n}\right)_{n}$. The reader can compare the norm with the estimates from Theorem 1.1 in this case.

Remark 1.5. Let $0<p<1,\left(\lambda_{n}\right)$ be a sequence and $T: H^{p} \rightarrow \ell^{1}$ given by

$$
T(f)=\left(\lambda_{n} a_{n}\right), \quad f(z)=\sum_{n=0}^{\infty} a_{n} z^{n} .
$$

Then $\|T\| \approx\left\|\left(B_{n}\right)\right\|_{\ell\left(1, \infty, \ell^{1}\right)}=\left\|\left((n+1)^{1 / p-1} \lambda_{n}\right)\right\|_{\ell(1, \infty)}$.
Indeed, note that in this case $B_{n}=(n+1)^{1 / p-1} \lambda_{n} e_{n}$ and $\left(t_{k n}\right)$ is a diagonal matrix. Hence T is bounded if and only if $\left\{\left(\lambda_{n}\right)_{n}\right\}$ there exists $C>0$

$$
\sum_{n=0}^{\infty}\left|\lambda_{n} a_{n}\right| \leq C\left\|\sum_{n=0}^{\infty} a_{n} z^{n}\right\|_{H^{p}}
$$

that is to say $\left(\lambda_{n}\right)$ belongs to the space of multipliers $\left(H^{p}, \ell^{1}\right)$. Now invoke the result by P. Duren and A. Shields (see [9]) establishing that for $0<p<1$

$$
\begin{equation*}
\left(H^{p}, \ell^{1}\right)=\left\{\left(\lambda_{n}\right):\left((n+1)^{1 / p-1} \lambda_{n}\right) \in \ell(1, \infty)\right\}, \tag{1.8}
\end{equation*}
$$

with equivalent norms, to get the desired result.
Let us give the following new application of Corollary 1.3.
Corollary 1.6. Let $0<r<\frac{2}{3}$ and let $g(z)=\sum_{n=0}^{\infty} \alpha_{n} z^{n} \in\left(H^{r}\right)^{*}$. Then there exists $C>0$ such that

$$
\begin{gathered}
C^{-1}\left\|\left((n+1)^{1 / r-3 / 2}\left(\sum_{j \geq n}\left|\alpha_{j}\right|^{2}\right)^{1 / 2}\right)_{n}\right\|_{\ell(2, \infty)} \leq\|g\|_{\left(H^{r}\right)^{*}}, \\
\|g\|_{\left(H^{r}\right)^{*}} \leq C\left\|\left((n+1)^{1 / r-3 / 2}\left(\sum_{j \geq n}\left|\alpha_{j}\right|^{2}\right)^{1 / 2}\right)_{n}\right\|_{\ell(1, \infty)} .
\end{gathered}
$$

Proof. Condition $0<r<\frac{2}{3}$ allows to get $0<p<1$ such that $1 / p+1 / 2=1 / r$. Using factorization of Hardy spaces (see [7]) one has that $H^{r}=H^{p} H^{2}$. Consider now the operator $T: H^{p} \rightarrow \ell^{2}$ defined by the matrix $\left(t_{n k}\right)=\left(\bar{\alpha}_{n+k}\right)$, in other words

$$
T(f)=\left(\sum_{n=0}^{\infty} a_{n} \bar{\alpha}_{n+k}\right)_{k} .
$$

Clearly, if $\left(\beta_{k}\right)_{k} \in \ell^{2}$ is a finite sequence and $h(z)=\sum_{k=0}^{N} \bar{\beta}_{k} z^{k}$ apolynomial then

$$
\left\langle T(f),\left(\beta_{k}\right)\right\rangle=\sum_{n, k} \bar{\alpha}_{n+k} a_{n} \beta_{k}=\int_{\mathbb{T}} \bar{g}(\xi) f(\xi) h(\xi) d \xi
$$

Using the factorization $H^{r}=H^{p} H^{2}$ we easily conclude that $\|T\|=\|g\|_{\left(H^{r}\right)^{*}}$. Using now that $\left\|B_{n}\right\|_{\ell^{2}}=(n+1)^{1 / r-3 / 2}\left(\sum_{j \geq n}\left|\alpha_{j}\right|^{2}\right)^{1 / 2}$, the result follows from (1.6).

The paper is organized as follows. Section 2 contains some preliminary and introductory results and Section 3 is devoted to the proof of Theorem 1.1.

Throughout the paper we use the notation $M_{q}(F, r)=\left(\int_{0}^{2 \pi}\left\|F\left(r e^{i \theta}\right)\right\|^{q} \frac{d \theta}{2 \pi}\right)^{1 / q}$ for analytic functions $F: \mathbb{D} \rightarrow X, q^{\prime}$ stands for the conjugate exponent of q and, as usual, the constant C may vary from line to line.

2. Preliminary results

Definition 2.1. Let $0<p<1 \leq q \leq \infty$ and let $T: H^{p} \rightarrow \ell^{q}$ be a bounded operator. Denote $u_{n}(z)=z^{n}$ for $n \geq 0,\left(e_{k}\right)_{k \in \mathbb{N}}$ the standard basis of ℓ^{q} and $\xi_{k}\left(\left(\lambda_{j}\right)\right)=\left\langle\left(\lambda_{j}\right), e_{k}\right\rangle=\lambda_{k}$.

Consider the functional $\xi_{k} T(f)=\left\langle T(f), e_{k}\right\rangle \in\left(H^{p}\right)^{*}$ and denote by g_{k} the analytic function representing $\xi_{k} T$. Assume

$$
\begin{equation*}
g_{k}(z)=\sum_{n=0}^{\infty} t_{k n} z^{n} \tag{2.1}
\end{equation*}
$$

We can now define

$$
\begin{equation*}
F_{T}(z)=\left(g_{k}(z)\right)_{k \in \mathbb{N}} \tag{2.2}
\end{equation*}
$$

Hence to each operator T we can associate a matrix $\left(a_{k n}(T)\right)=\left(t_{k n}\right)$ given by

$$
\begin{equation*}
T\left(u_{n}\right)=\sum_{k=1} t_{k n} e_{k} \tag{2.3}
\end{equation*}
$$

where the rows $T_{k}=\left(t_{k n}\right)_{n \geq 0}$ are the Taylor coefficients of the sequence of functions $g_{k}=g_{k}(T) \in\left(H^{p}\right)^{*}$ and the columns $x_{n}=\left(t_{k n}\right)_{k \in \mathbb{N}}$ are the Taylor coefficients of the vector-valued analytic function $F_{T}: \mathbb{D} \rightarrow \ell_{q}$ given by and

$$
\begin{equation*}
F_{T}(z)=\sum_{n=0}^{\infty} x_{n} z^{n}, x_{n}=\sum_{k=1}^{\infty} t_{k n} e_{k} . \tag{2.4}
\end{equation*}
$$

It is well known that the boundedness of operators $T: H^{p} \rightarrow X$, where X is a Banach space and $0<p<1$, is equivalent to the boundedness of its extension $T: B^{p} \rightarrow X$ where B^{p} is the Banach envelope of H^{p} (see [8]) and coincides with the space of analytic functions such that

$$
\int_{0}^{1}\left(1-r^{2}\right)^{1 / p-2} M_{1}(f, r) d r<\infty
$$

Taking into account that B^{p} is a weighted Bergman space $B_{1}(\rho)$ for $\rho(t)=$ $t^{1 / p-1}$ and, due to the results in [1] (see also [4] for alternative approaches and more references), the boundedness of operators T from $B_{1}(\rho)$ into X can be described by the behavior of certain fractional derivative of the vector valued function whose Taylor coefficients $T\left(u_{n}\right)=x_{n}$ where $u_{n}(z)=z^{n}$. Therefore the theorem could be achieved using this general approach, but we present here a direct proof using only classical and elementary facts from Theory of Hardy spaces.

Let us now mention some facts which will be needed later on.

Lemma 2.2. (see [7]) Let $\beta>0$ and let $\left(\alpha_{n}\right)$ be a sequence of non-negative numbers. Then

$$
\begin{equation*}
\left\|\left((n+1)^{-\beta} \alpha_{n}\right)\right\|_{\ell(1, \infty)} \approx\left\|\left((n+1)^{-\beta} \sum_{j=0}^{n} \alpha_{j}\right)\right\|_{\ell \infty} \approx \sup _{0<r<1}(1-r)^{\beta}\left(\sum_{n} \alpha_{n} r^{n}\right) \tag{2.5}
\end{equation*}
$$

Let us mention that in some cases Haussdorff-Young's inequality holds for vector-valued Lebesgue spaces (see [16]). In particular, next lemma is well known.

Lemma 2.3. (see [3]) Let $1<p \leq 2, p \leq q \leq p^{\prime}$ and let $F(z)=\sum_{n=0}^{\infty} x_{n} z^{n}$ with $x_{n} \in \ell^{q}$ for $n \geq 0$. Then

$$
\left(\sum_{n=0}^{\infty}\left\|x_{n}\right\|_{\ell^{q}}^{p^{\prime}} r^{n p^{\prime}}\right)^{1 / p^{\prime}} \leq M_{p}(F, r)
$$

3. Proof of Theorem 1.1

We shall need the following result.
Lemma 3.1. Let $0<p<1 \leq q<\infty, 1 / m+1 \leq p<1 / m$ for some $m \in \mathbb{N}$ and let $T: H^{p} \rightarrow \ell^{q}$ be a linear operator. Set $x_{n}=T\left(u_{n}\right)$ and $F_{T}(z)=\sum_{n=0}^{\infty} x_{n} z^{n}$. Then

$$
\|T\| \approx \max \left\{\left\|x_{0}\right\|_{\ell^{q}},\left\|x_{1}\right\|_{\ell^{q}}, \ldots,\left\|x_{m}\right\|_{\ell^{q}}, \sup _{|z|<1}(1-|z|)^{m+2-1 / p}\left\|F_{T}^{(m+1)}(z)\right\|_{\ell^{q}}\right\}
$$

Proof. For each $\left(\lambda_{k}\right) \in \ell^{q^{\prime}}$ we denote $T_{\lambda}(f)=\sum_{k=1}^{\infty} \lambda_{k} \xi_{k} T(f)$. We have that

$$
\|T\|=\sup \left\{\left\|T_{\lambda}\right\|_{\left(H^{p}\right)^{*}}:\left\|\left(\lambda_{k}\right)\right\|_{\ell^{q^{\prime}}}=1\right\}
$$

Using (1.7) one has that $T_{\lambda} \in\left(H^{p}\right)^{*}$ if and only if it is represented by $g_{\lambda}=$ $\sum_{k=1}^{\infty} \lambda_{k} g_{k}$ and there exists $C>0$ such that $\left|g_{\lambda}^{(m+1)}(z)\right| \leq \frac{C\left\|T_{\lambda}\right\|_{\left(H^{p}\right) *}}{(1-|z|)^{m+2-1 / p}}$, and

$$
\left\|T_{\lambda}\right\|_{\left(H^{p}\right)^{*}} \approx \max \left\{\left|g_{\lambda}(0)\right|,\left|g_{\lambda}^{\prime}(0)\right|, \ldots,\left|g_{\lambda}^{(m)}(0)\right|, \sup _{|z|<1}(1-|z|)^{m+2-1 / p}\left|g_{\lambda}^{(m+1)}(z)\right|\right\}
$$

Observe that $g_{\lambda}^{(j)}(z)=\sum_{k=1}^{\infty} \lambda_{k} g_{k}^{(j)}(z)$ and $F_{T}^{(j)}(z)=\left(g_{k}^{(j)}(z)\right)$. Taking supremun over $\left\|\left(\lambda_{k}\right)\right\|_{\ell q^{\prime}}=1$ one gets that the result.

Proof of (1.3). Of course one can write

$$
\|T\| \leq\left(\sum_{k=1}^{\infty}\left\|\xi_{k} T\right\|^{q}\right)^{1 / q}=\left(\sum_{k=0}^{\infty}\left\|g_{k}\right\|_{\left(H^{p}\right)^{*}}^{q}\right)^{1 / q} .
$$

Using the continuous inclusion $\left(H^{p}, \ell^{1}\right) \subset\left(H^{p}\right)^{*}$ and (1.8) we have the estimate $\left\|g_{k}\right\|_{\left(H^{p}\right)^{*}} \leq\left\|g_{k}\right\|_{\left(H^{p}, \ell^{1}\right)} \leq C\left\|A_{k}\right\|_{\ell(1, \infty)}$ where $A_{k}=\left((n+1)^{1 / p-1} t_{k n}\right)_{n}$.

Therefore

$$
\begin{equation*}
\|T\| \leq C\left\|\left(A_{k}\right)\right\|_{\ell^{q}(\ell(1, \infty))} \tag{3.1}
\end{equation*}
$$

On the other hand, note that $F_{T}(z)=\sum_{n=0}^{\infty} x_{n} z^{n}$ where $x_{n}=\left(t_{k n}\right)_{k \in \mathbb{N}} \in \ell^{q}$ for all $n \geq 0$. Hence

$$
\sup _{0 \leq k \leq m}\left\|x_{k}\right\|_{\ell^{q}} \leq \|\left((n+1)^{1 / p-1} x_{n} \|_{\ell\left(1, \infty, \ell^{q}\right)}\right.
$$

On the other hand

$$
F_{T}^{(m+1)}(z)=\sum_{n=m+1}^{\infty} n(n-1) \ldots(n-m) x_{n} z^{n-(m+1)}
$$

Hence

$$
\begin{aligned}
\left\|F_{T}^{(m+1)}(z)\right\|_{\ell^{q}} & \leq \sum_{n=m+1}^{\infty} n^{m+1}\left\|x_{n}\right\|_{\ell^{q}}|z|^{n-(m+1)} \\
& \leq C \sum_{j=\left[\log _{2}(m+2)\right]}^{\infty} 2^{j(m+1)} 2^{-j(1 / p-1)}\left(\sum_{n=2^{j-1}-1}^{2^{j}}(n+1)^{1 / p-1}\left\|x_{n}\right\|_{\ell^{q}}\right)|z|^{2^{j}-(m+2)} \\
& \leq C\left\|\left((n+1)^{1 / p-1} x_{n}\right)\right\|_{\ell\left(1, \infty, \ell^{q}\right)} \sum_{j=\left[\log _{2}(m+2)\right]}^{\infty} 2^{j(m-1 / p)}|z|^{2^{j}-(m+2)} \\
& \leq \frac{C\left\|\left((n+1)^{1 / p-1} x_{n}\right)\right\|_{\ell\left(1, \infty, \ell^{q}\right)}}{(1-|z|)^{m+2-1 / p}}
\end{aligned}
$$

From Lemma 3.1 one obtains

$$
\begin{equation*}
\|T\| \leq C\left\|\left((n+1)^{1 / p-1} x_{n}\right)\right\|_{\ell\left(1, \infty, \ell^{q}\right)} \tag{3.2}
\end{equation*}
$$

Now (3.1) and (3.2) give (1.3).
Proof of (1.4). Let us take $\left(\lambda_{k}\right) \in \ell^{q^{\prime}}\left(\right.$ or $\left(\lambda_{k}\right) \in c_{0}$ for $\left.q=1\right)$. Using (1.7) again there exists $C>0$ such that

$$
\left|g_{\lambda}^{(m+1)}(z)\right| \leq \frac{C\left\|T_{\lambda}\right\|}{(1-|z|)^{m+2-1 / p}}
$$

In particular, for $g_{\lambda}(z)=\sum_{k} \lambda_{k} g_{k}(z)=\sum_{n=0}^{\infty}\left(\sum_{k} \lambda_{k} t_{n k}\right) z^{n}$,

$$
M_{2}\left(g_{\lambda}^{(m+1)}, r\right) \leq \frac{C\left\|T_{\lambda}\right\|}{(1-r)^{m+2-1 / p}}
$$

Therefore

$$
\left(\sum_{n=m}^{\infty}(n+1)^{2(m+1)}\left|\sum_{k} \lambda_{k} t_{k n}\right|^{2} r^{2 n}\right)^{1 / 2} \leq \frac{C\left\|T_{\lambda}\right\|}{(1-r)^{m+2-1 / p}}
$$

Applying now Lemma 2.2 for $\beta=2(m+2-1 / p)$ one concludes that $((n+$ $\left.1)^{2(1 / p-1)}\left|\sum_{k} \lambda_{k} t_{k n}\right|^{2}\right)_{n} \in \ell(1, \infty)$ and

$$
\left\|\left((n+1)^{(1 / p-1)} \sum_{k} \lambda_{k} t_{k n}\right)_{n}\right\|_{\ell(2, \infty)}^{2} \leq C\left\|T_{\lambda}\right\|^{2}
$$

This shows

$$
\sup _{\left\|\left(\lambda_{k}\right)\right\|_{\ell q^{\prime}}=1}\left\|\sum_{k=1}^{\infty} \lambda_{k} A_{k}\right\|_{\ell(2, \infty)} \leq C\|T\| .
$$

Hence

$$
\left\|\left(A_{k}\right)\right\|_{\ell_{\text {weak }}^{q}(\ell(2, \infty))} \leq C\|T\| .
$$

Let us now show that $\left\|\left(B_{n}\right)\right\|_{\ell\left(\max \left\{q, q^{\prime}\right\}, \infty, \ell^{q}\right)} \leq C\|T\|$.
Assume first $q=1$. Recall that from (3.1) one has $\left\|F_{T}^{(m+1)}(z)\right\|_{\ell q} \leq \frac{C\|T\|}{(1-|z|)^{m+2-1 / p}}$.
Now use, for $n \geq m$,

$$
\left\|x_{n}\right\|_{\ell^{1}} n^{m+1}|z|^{n-m} \leq C\left\|F_{T}^{(m+1)}(z)\right\|_{\ell^{1}} \leq \frac{C\|T\|}{(1-|z|)^{m+2-1 / p}}
$$

Selecting $|z|=1-1 /(n+1)$ to obtain

$$
\left\|B_{n}\right\|_{\ell^{1}}=\left\|x_{n}\right\|_{\ell^{1}}(n+1)^{1 / p-1} \leq C\|T\|
$$

which is the desired estimate.
Assume now $q>1$. Denote $t=\min \left\{q, q^{\prime}\right\}$ and $q_{0}=\max \left\{q, q^{\prime}\right\}$ and apply (3.1) to obtain

$$
M_{t}\left(F_{T}^{(m+1)}, r\right) \leq M_{\infty}\left(F_{T}^{(m+1)}, r\right) \leq \frac{C\|T\|}{(1-r)^{m+2-1 / p}}
$$

Using Lemma 2.3 one can write

$$
\left(\sum_{n=0}^{\infty}(n+1)^{(m+1) q_{0}}\left\|x_{n}\right\|_{\ell q}^{q_{0}} r^{n q_{0}}\right)^{1 / q_{0}} \leq \frac{C\|T\|}{(1-r)^{m+2-1 / p}}
$$

Now apply Lemma 2.2 for $\beta=q_{0}(m+2-1 / p)$ to get $\left(\left\|(n+1)^{1 / p-1} x_{n}\right\|_{\ell q}^{q_{0}}\right) \in \ell(1, \infty)$ and the corresponding estimate for the norm. This finishes the proof.

References

[1] O. Blasco, Operators on weighted Bergman spaces and applications, Duke Math. J. 66, (1992), 443-467.
[2] O. Blasco, Vector-valued analytic functions of bounded mean oscillation and geometry of Banach spaces, Illinois J. Math. 41, (1997), 532-558.
[3] O. Blasco, Remarks on vector-valued BMOA and vector-valued multipliers, Positivity 4, (2000), 339-356.
[4] O. Blasco, Operators on weighted Bergman spaces, Contemp. Math. 404, (2006), 53-66.
[5] O. Blasco, Norm estimates for operators from H^{p} to ℓ^{q}, Submitted.
[6] D.M. Campbell, R.J. Leach, A survey of H^{p} multipliers as related to classical function theory, Complex Variables 3 (1984), 85-111.
[7] P. Duren, Theory of H^{p}-spaces, Academic Press (1970).
[8] P.L. Duren, B.W. Romberg, A.L. Shields, Linear functionals on H^{p} spaces with $0<p<1$, J. Reine Angew. Math. 238 (1969), 32-60.
[9] P.L. Duren, A.L. Shields, Coefficient multipliers of H^{p} and B^{p} spaces, Pacific J. Math. 32 (1970), 69-78.
[10] C.N. Kellogg, An extension of the Hausdorff-Young theorem, Michigan Math. J. 18 (1971), 121-127.
[11] Y. Kim, Coefficient multipliers of H^{p} and G^{p} spaces, Math. Japonica 30 (1985),no 5, 671679.
[12] M. Mateljevic, M. Pavlovic, L^{p}-behaviour of the integral means of analytic functions, Studia Math. 84, (1976), 45-90.
[13] B. Osikiewicz, A. Tonge, An interpolation approach to Hardy-Littlewood inequalities for norms of operators on sequence spaces, Linear Alg. and Appl. 331 (2001), 1-9.
[14] B. Osikiewicz, Norm estimates for operators $T ; H_{p} \rightarrow l_{q}$ involving the $L_{r}\left(l_{s}\right)$ norms, Quaestiones Math. 28 (2005), 263-270.
[15] B. Osikiewicz, Multipliers of Hardy spaces, Quaestiones Math. 27 (2004), 57-73.
[16] J. Peetre, Sur la transformation de Fourier des fonctions a valeurs vectorielles, Rend. Sem. Mat. Univ. Padova 42 (1969), 15-46.

Departmento de Análisis Matemático, Universidad de Valencia, Burjassot (ValenCIA), Spain 46100

E-mail address: oblasco@uv.es

[^0]: 1991 Mathematics Subject Classification. Primary 47B38 ; Secondary 30D55, 47A30, 47B37.
 Key words and phrases. Hardy spaces, vector-valued sequence spaces.
 The author was supported in part by Proyecto MTM2005-08350-C03-03.

