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Abstract. For a given positive function φ defined in [0, 1) and 1 ≤ p < ∞, we consider

the space L(p, φ) which consists of all functions f analytic in the unit disc ∆ for which(
1
2π

∫ π
−π

∣∣f ′(reiθ)
∣∣p dθ

)1/p
= O(φ(r)), as r → 1. A result of Bourdon, Shapiro and Sledd

implies that such a space is contained in BMOA for φ(r) = (1 − r)
1
p
−1

. Among other

results, in this paper we prove that this result is sharp in a very strong sense, showing that,

for a large class of weight functions φ, the function φ(r) = (1 − r)
1
p
−1

is the best one to

get L(p, φ) ⊂ BMOA. Actually, if φ(r)(1 − r)
1− 1

p ↑ ∞, as r ↑ 1, we construct a function

f ∈ L(p, φ) which is not a normal function. These results improve other obtained recently

by the second author. We also characterize the functions φ, among a certain class of weight

functions, to be able to embedd L(p, φ) into Hq for q > p or into the space B of Bloch

functions.

1. Introduction and statement of results.

Let ∆ denote the unit disc {z ∈ C : |z| < 1} and T the unit circle {ξ ∈ C : |ξ| = 1}. If
0 < r < 1 and g is a function which is analytic in ∆, we set

Mp(r, g) =
(

1
2π

∫ π

−π

∣∣g(reiθ)
∣∣p dθ)1/p

, 0 < p <∞,

M∞(r, g) = max
|z|=r

|g(z)|.

For 0 < p ≤ ∞ the Hardy space Hp consists of those functions g, analytic in ∆, for which

||g||Hp = sup
0<r<1

Mp(r, g) <∞.

The space BMOA consists of those functions f ∈ H1 whose boundary values have
bounded mean oscillation on T. We refer to [3] and [9] for the main properties of BMOA-
functions.
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In this paper we shall be dealing with functions f , analytic in ∆, for which the integral
means Mp(r, f ′) are dominated by a certain weight function φ(r). Namely, let 1 ≤ p ≤ ∞
and let φ be a non-negative function defined in [0, 1). We define the space L(p, φ) as the
space of all functions f analytic in ∆ for which

(1.1) Mp(r, f ′) = O(φ(r)), as r → 1.

The spaces L(p, φ) are closely related to mean Lipschitz spaces. If f is a function which
is analytic in ∆ and has a non-tangential limit f(eiθ) at almost every eiθ ∈ T, we define

ωp(δ, f) = sup
0<|t|≤δ

(
1
2π

∫ π

−π

∣∣∣f(ei(θ+t)) − f(eiθ)
∣∣∣p dθ)1/p

, δ > 0, if 1 ≤ p <∞,

ω∞(δ, f) = sup
0<|t|≤δ

(
ess. sup
θ∈[−π,π]

|f(ei(θ+t)) − f(eiθ)|
)
, δ > 0.

Then ωp(., f) is the integral modulus of continuity of order p of the boundary values f(eiθ)
of f .

Throughout the paper ω : [0, 1] → [0,∞) will be a continuous and increasing function
with ω(0) = 0. Then, for 1 ≤ p ≤ ∞, the mean Lipschitz space Λ(p, ω) consists of those
functions f ∈ Hp which satisfy

ωp(δ, f) = O(ω(δ)), as δ → 0.

If 0 < α ≤ 1 and ω(δ) = δα, we shall write Λp
α instead of Λ(p, ω), that is, we set

Λp
α = Λ(p, δα), 0 < α ≤ 1, 1 ≤ p ≤ ∞.

A classical result of Hardy and Littlewood [12] (see also Chapter 5 of [7]) asserts that
for 1 ≤ p ≤ ∞ and 0 < α ≤ 1, we have that

(1.2) Λp
α =

{
f analytic in ∆: Mp(r, f ′) = O

(
1

(1−r)1−α

)
, as r → 1

}
.

Notice that (1.2) can be written as

(1.3) Λp
α = L

(
p,

1
(1 − r)1−α

)
, 1 ≤ p ≤ ∞, 0 < α ≤ 1.

The question of finding conditions on ω so that it is possible to obtain results on the
spaces Λ(p, ω) analogous to those proved by Hardy and Littlewood for the spaces Λp

α has
been studied by several authors (see e.g. [4] and [16]). We shall say that ω satisfies the
Dini condition or that ω is a Dini-weight if there exists a positive constant C such that

(1.4)
∫ δ

0

ω(t)
t

dt ≤ Cω(δ), 0 < δ < 1.

Given 0 < q < ∞, we shall say that ω satisfies the condition bq or that ω ∈ bq if there
exists a positive constant C such that

(1.5)
∫ 1

δ

ω(t)
tq+1

dt ≤ C
ω(δ)
δq

, 0 < δ < 1.

The infimum over all possible constants verifying (1.5) will be denoted by ||ω||bq .
The first author and de Souza proved in [4, Th. 2.1] the following extension of (1.2).
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Theorem A. Let 1 ≤ p ≤ ∞ and let ω : [0, 1] → [0,∞) be a continuous and increasing
function with ω(0) = 0. If ω is a Dini-weight and satisfies the condition b1 then,

(1.6) Λ(p, ω) =
{
f analytic in ∆ : Mp(r, f ′) = O

(
ω(1−r)

1−r

)
, as r → 1

}
,

or, equivalently,

Λ(p, ω) = L
(
p,
ω(1 − r)

1 − r

)
.

A well known result of Privalov [7, Th. 3.11] asserts that a function f analytic in ∆
has a continuous extension to the closed unit disc ∆ whose boundary values are absolutely
continuous on T if and only if f ′ ∈ H1. Consequently, using (1.2), we can state the
following.

Theorem B. Let f be a function which is analytic in ∆. Then, the three following
conditions are equivalent:

(i) f ∈ Λ1
1.

(ii) f ′ ∈ H1.
(iii) f has a continuous extension to the closed unit disc ∆ whose boundary values are

absolutely continuous on T.

Cima and Petersen proved in [6] that Λ2
1/2 ⊂ BMOA. This result was extended by

Bourdon, Shapiro and Sledd who proved the following result in [5].

Theorem C. For 1 < p <∞, Λp
1/p ⊂ BMOA.

The second author has recently proved in [10] and [11] that Theorem B and Theorem
C are sharp in a very strong sense. In this paper we shall improve these results.

We recall that a function f analytic in ∆ is a Bloch function if

sup
z∈∆

(1 − |z|2)|f ′(z)| <∞.

The space of all Bloch functions is denoted by B. Notice that we have B = L(∞, 1
1−r ). It

is well known that
H∞ ⊂ BMOA ⊂ B.

Note that ω(t) = tα for 0 < α < 1 is a Dini and b1 weight. We can state the following
result, which says that Theorem C is the best among these weights.

Theorem 1.1. Let 1 < p < ∞ and let ω be a Dini-weight, continuous, non-decreasing
with ω(0) = 0 and ω ∈ b1. Then the following conditions are equivalent:

(i) Λ(p, ω) ⊂ BMOA.
(ii) Λ(p, ω) ⊂ B.
(iii) ω(δ) = O(δ1/p), as δ → 0.

In Theorem 1.1 the implication (i)⇒(ii) follows trivially from the inclusion BMOA ⊂
B and the implication (iii)⇒(i) follows from Theorem C. The remaining implication,
(ii)⇒(iii), follows from the following result.
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Theorem 1.2. Let 1 < p < ∞ and let ω : [0, 1) → [0,∞) be a continuous and non-
decreasing function with ω(0) = 0 such that ω is a Dini-weight and ω ∈ b1. If

(1.7) lim sup
δ→0

ω(δ)
δ1/p

= ∞,

then there exists a function f ∈ Λ(p, ω) which is not a Bloch function.

We remark that Theorem 1.2 is essentially proved in Theorem 1 of [11] (with the con-
dition limδ→0

ω(δ)
δ1/p = ∞ instead of (1.7)). The arguments used there to prove the result

make use of certain sequences associated with ω which were introduced by Oskolkov in
several papers (see e.g. [17], [18], [19] and [20]). In section 2 we shall present a proof of
Theorem 2 which is much simpler than that of Theorem 1 of [11]. In particular, we shall
not make use of the Oskolkov’s sequences.

For the case p = 1 we can state a stronger result even without conditions on φ. We
recall that a function f which is meromorphic in ∆ is a normal function if and only if

(1.8) sup
z∈∆

(1 − |z|2) |f ′(z)|
1 + |f(z)|2 <∞.

We refer to [1] and [21] for the theory of normal functions. For simplicity, let N denote
the set of all holomorphic normal functions in ∆. It is well known that any Bloch function
is a normal function, that is, B ⊂ N . The second author has proved in [10] the following
result.

Theorem D. Let φ be any positive continuous function defined in [0, 1) with φ(r) → ∞,
as r → 1. Then, there exists a function f ∈ L(1, φ) which is not a normal function.

We remark that the function f constructed in [10] to prove Theorem D is of the form
f(z) = F (z)B(z) where B is a Blaschke product while the function F is given by a series
of analytic functions in ∆ which converges uniformly on every compact subset of ∆. In
constructing both F and B we made use of the Oskolkov’s sequences.

These results lead to the following improvement of Theorem B.

Theorem 1.3. Let φ be a non-negative and increasing function defined in [0, 1). Then
the following conditions are equivalent:

(i) L(1, φ) ⊂ H∞.
(ii) L(1, φ) ⊂ BMOA.
(iii) L(1, φ) ⊂ B.
(iv) L(1, φ) ⊂ N .
(v) φ is bounded.

In Theorem 1.3 the implications (i)⇒(ii)⇒(iii) ⇒(iv) follow trivially from the inclusions
H∞ ⊂ BMOA ⊂ B ⊂ N , the implication (iv)⇒(v) follows from Theorem D and the
implication (v)⇒(i) follows from Theorem B.

In view of Theorem D and Theorem 1.3, it seems natural to expect that, in the conclusion
of Theorem 1.2, the condition f /∈ B can be changed to f not normal. This question was
already considered in [11] where only a partial result was obtained in this direction [11,
Th. 2]. Now we can prove the following much stronger result.
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Theorem 1.4. Let 1 ≤ p <∞ and let ω : [0, 1] → [0,∞) be a continuous and increasing
function with ω(0) = 0. Suppose that

(1.9)
ω(δ)
δ1/p

→ ∞, as δ → 0.

Then there exists a function f analytic in ∆ with

Mp(r, f ′) = O
(
ω(1 − r)

1 − r

)
, as r → 1

which is not a normal function.

We remark that the function ω of Theorem 1.4 is supposed neither to be a Dini-weight
nor to satisfy the condition b1. When ω is required to satisfy these two conditions, we
obtain the following extension of Theorem 2 which shows that the condition ρ1/2 ∈ b 1

2p
is

not needed in Theorem 2 of [11].

Theorem 1.5. Let 1 ≤ p <∞ and let ω : [0, 1] → [0,∞) be a continuous and increasing
function with ω(0) = 0. Suppose that ω is a Dini-weight, and ω ∈ b1. If

lim
δ→0

ω(δ)
δ1/p

= ∞,

then there exists a function f ∈ Λ(p, ω) which is not a normal function.

The function f that we are going to construct to prove Theorem 1.4 will be of the form
f(z) = F (z)B(z) where F is a conformal mapping from ∆ onto an appropiate domain
D and B is a Blaschke product. The construction of the conformal mapping F will be
independent of the Oskolkov’s sequences and, in the case p > 1, the Blaschke product
can be taken to be that with zeros at the points 1 − 2−n. However, in the case p = 1
we need to take as B one of the Blaschke products considered in [10] and [11] whose
construction depends on the Oskolkov’s sequences. Section 3 will be devoted to present
the results concerning conformal mappings needed to construct the function F and the
proof of Theorem 1.4 will be presented in Section 4.

Assuming that φ(t) = ω(1−t)
1−t is integrable in (0, 1) it is simple to see that L(p, φ) ⊂ Hp

for p ≥ 1. Upon looking at Theorem 1.1 and Theorem 1.3, it is rather natural to look for
conditions on the weight to get the embeddings from L(p, φ) into the Hardy spaces Hq for
q > p. Our next results give a complete answer to such a question.

Theorem 1.6. Let 1 < p < q <∞ and let ω be a Dini-weight, continuous, non-decreasing

with ω(0) = 0 and ω ∈ b1. Then Λ(p, ω) ⊂ Hq if and only if ω(t)t−
1
p ∈ Lq((0, 1)).

Theorem 1.7. Let 1 < q < ∞ and let φ be a continuous and non-decreasing function
defined in [0, 1) such that ω(t) = tφ(1− t) is a Dini-weight. Then L(1, φ) ⊂ Hq if and only
if φ ∈ Lq((0, 1)).

The proofs of Theorem 1.2, Theorem 1.6 and Theorem 1.7 will be given in Section 2.
Let us remark that from now on we shall be using the convention that C will denote a

positive constant (which may depend on ω, p, B, f , F but not on t, r, δ or n) and which
may be different at each occurrence.
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2. Proofs of the Theorems for special weight functions.

Proof of Theorem 1.2.
Let ω and p be as in Theorem 1.2. Set

f(z) =
∫ 1

0

ω(t)
t(1 + t− z)1/p

dt, z ∈ ∆.

It is clear that f is holomorphic in ∆. Using Minkowski’s integral inequality and the well
known fact that

∫ π

−π
dθ

|1−reiθ|λ ≤ Cλ

(1−r)λ−1 , 0 < r < 1, λ > 1, we have

(2.1)

Mp(r, f ′) =
(

1
2π

∫ π

−π

|f ′(reiθ)|p dθ
)1/p

≤C
(

1
2π

∫ π

−π

[∫ 1

0

ω(t)

|1 + t− reiθ|1+ 1
p

dt

t

]p

dθ

)1/p

≤C
∫ 1

0

(
1
2π

∫ π

−π

[
1

|1 + t− reiθ|1+ 1
p

]p

dθ

)1/p

ω(t)
t

dt

≤C
∫ 1

0

ω(t)
t(1 + t− r)

dt

=C
∫ 1−r

0

ω(t)
t(1 + t− r)

dt+ C

∫ 1

1−r

ω(t)
t(1 + t− r)

dt.

Since ω is a Dini-weight, we obtain

(2.2)
∫ 1−r

0

ω(t)
t(1 + t− r)

dt ≤ 1
1 − r

∫ 1−r

0

ω(t)
t

dt ≤ C
ω(1 − r)

1 − r
.

On the other hand, ∫ 1

1−r

ω(t)
t(1 + t− r)

dt =
∫ 1

1−r

ω(t)
t2

t

1 + t− r
dt,

which, having in mind that t
1+t−r ≤ 1, if 1− r ≤ t < 1, and using that ω ∈ b1, shows that

(2.3)
∫ 1

1−r

ω(t)
t(1 + t− r)

dt ≤
∫ 1

1−r

ω(t)
t2

dt ≤ C
ω(1 − r)

1 − r
.

Then (2.1), (2.2) and (2.3) imply Mp(r, f ′) ≤ C ω(1−r)
1−r and, hence, f ∈ Λ(p, ω).

Finally, having in mind that ω is increasing and the trivial inequality (1+t−r) ≤ 3(1−r),
which holds if (1 − r) ≤ t ≤ 2(1 − r), we obtain

f ′(r) ≥ C

∫ 2(1−r)

1−r

ω(t)

t(1 + t− r)1+
1
p

dt ≥ C
ω(1 − r)

(1 − r)1+
1
p

log 2,
1
2
< r < 1.
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Hence (1 − r)|f ′(r)| ≥ C ω(1−r)
(1−r)1/p . This and (1.7) clearly imply that f /∈ B. This finishes

the proof of Theorem 1.2.

Proof of Theorem 1.6.
Let ω, p and q be as in Theorem 1.6. Let p′ and q′ denote the conjugate exponents of

p and q, respectively, that is, 1
p′ + 1

p = 1 and 1
q′ + 1

q = 1.
First, assume that Λ(p, ω) ⊂ Hq. Let f be the function constructed in the proof of

Theorem 1.2, that is

f(z) =
∫ 1

0

ω(t)
t(1 + t− z)1/p

dt

we have shown that f ∈ Λ(p, ω). Hence f ∈ Hq.
Applying now the Fejér-Riesz inequality (see [7] , page 46), we conclude that

∫ 1

0

|f(r)|qdr <∞.

On the other hand, having in mind that ω is increasing, we obtain

∫ 1

0

|f(r)|qdr =
∫ 1

0

(∫ 1

0

ω(t)
t(1 + t− r)1/p

dt

)q

dr

=
∫ 1

0

(∫ 1

0

ω(t)
t(s+ t)1/p

dt

)q

ds

≥
∫ 1

0

ω(s)q

(∫ 1

s

dt

t(s+ t)
1
p

)q

ds

≥C
∫ 1

0

ω(s)q

(∫ 1

s

t−(1+ 1
p )dt

)q

ds

≥C
∫ 1

0

ω(s)q

s
q
p

ds.

Therefore ω(t)t−
1
p ∈ Lq((0, 1)).

Conversely, let us assume that ω(t)t−
1
p ∈ Lq((0, 1)). Using duality (see [ 4]) it is enough

to show that ∫ 1

0

ω(1 − r)
1 − r

Mp′(f, r)dr ≤ C||f ||Hq′ .

Recall now the following remarkable fact proved by Hardy and Littlewood (see page 87
of [7]):

If 0 < p1 < p2 ≤ ∞ then for any λ ≥ p1 we have

(2.4)
(∫ 1

0

(1 − r)λ( 1
p1

− 1
p2

)−1Mλ
p2

(f, r)dr
) 1

λ

≤ C||f ||Hp1 .
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Now from Hölder’s inequality and (2.4) (for p1 = q′, p2 = p′, λ = q′) we obtain∫ 1

0

ω(1 − r)
1 − r

Mp′(f, r)dr

≤
(∫ 1

0

ωq(1 − r)

(1 − r)
q
p

dr

) 1
q (∫ 1

0

(1 − r)
−q′
p′ Mq′

p′ (f, r)dr
) 1

q′

≤C||f ||Hq′ .

This finishes the proof of Theorem 1.3.

Proof of Theorem 1.7.
Let q, φ and ω be as in Theorem 1.7.
Assume first that L(1, φ) ⊂ Hq. Set F (t) = −φ(1− t), 0 < t ≤ 1. Then F is continuous

and increasing. Define

f(z) =
∫ 1

0

tdF (t)
1 + t− z

, z ∈ ∆,

that is, f(z) is the Lebesgue-Stieltjes integral of t
1+t−z with respect to F . We remark that,

since F is increasing, dF is a positive measure.
It is clear that f is holomorphic in ∆ and we have

(2.5)

M1(r, f ′) =
1
2π

∫ π

−π

|f ′(reiθ)| dθ

≤ 1
2π

∫ π

−π

∫ 1

0

tdF (t)
|1 + t− reiθ|2 , dθ

=
∫ 1

0

t
1
2π

∫ π

−π

dθ

|1 + t− reiθ|2 dF (t)

≤
∫ 1

0

t

1 + t− r
dF (t)

≤ 1
1 − r

∫ 1−r

0

t dF (t) +
∫ 1

1−r

dF (t).

Now, integrating by parts and having in mind the definitions of F and ω and the fact that
ω is a Dini-weight, we obtain

(2.6)

∫ 1−r

0

t dF (t) =
∫ 1−r

0

φ(1 − t)dt− (1 − r)φ(r)

=
∫ 1−r

0

ω(t)
t
dt− (1 − r)φ(r) ≤ Cω(1 − r) − (1 − r)φ(r)

=C(1 − r)φ(r).

On the other hand, ∫ 1

1−r

dF (t) = φ(r) − φ(0)
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which, with (2.5) and (2.6), gives M1(r, f ′) ≤ Cφ(r), that is, f ∈ L(1, φ) and, hence
f ∈ Hq. Observe that, since t

1+t−r ≥ 1
2 if 1 − r ≤ t < 1,

f(r) ≥ C

∫ 1

1−r

dF (t) ≥ C(φ(r) − φ(0)).

Then, again the Fejér-Riesz inequality gives that φ ∈ Lq ((0, 1)).

Conversely, assume that φ ∈ Lq((0, 1)) and take f(z) =
∑∞

n=0 anz
n ∈ L(1, φ). Then,

for 0 < r < 1 and n ≥ 1,
nrn−1|an| ≤ Cφ(r).

Therefore,

|an| ≤ C
1
n
φ

(
1 − 1

n

)
.

Consequently, since φ is increasing,
∞∑

n=1

|an|qnq−2 ≤ C
∞∑

n=1

φq(1 − 1
n )

n(n+ 1)

≤ C

∞∑
n=1

∫ 1− 1
n+1

1− 1
n

φq(t)dt

≤ C

∫ 1

0

φq(t)dt.

Consequently, we have that
∞∑

n=1

|an|qnq−2 <∞.

Then, using Theorem 6.3 in p. 97 of [7], we have that f ∈ Hq if 2 < q <∞.
To deal with the case 1 < q < 2 we shall use duality. Take a polynomial g. ¿From (2.4)

(for λ = p1 = q′, p2 = ∞) we can write

(2.7)
(∫ 1

0

Mq′

∞(r, g)dr
) 1

q′

≤ C||g||Hq′

Therefore, using (2.7),∣∣∣∣
∫ π

−π

(
f(eiθ) − f(0)

)
ḡ(eiθ)

dθ

2π

∣∣∣∣ =
1
2

∣∣∣∣
∫ 1

0

∫ π

−π

f ′(reiθ)ḡ(reiθ)eiθ dθ

2π
dr

∣∣∣∣
≤ 1

2

∫ 1

0

M1(r, f ′)M∞(r, g)dr

≤ C

∫ 1

0

φ(r)M∞(r, g)dr

≤ C

(∫ 1

0

φ(r)qdr

) 1
q

(∫ 1

0

Mq′

∞(r, g)dr
) 1

q′

≤ C||g||Hq′ .

By duality, this shows that f ∈ Hq. This finishes the proof for all values of q.
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3. Some results on conformal mappings.

We start recalling a few facts about circularly symmetric functions. A domain D in C

is said to be circularly symmetric if, for every r with 0 < r < ∞, D ∩ {|z| = r} is either
empty, is the whole circle |z| = r, or is a single arc on |z| = r which contains z = r and is
symmetric with respect to the real axis.

Let D be a simply connected and circularly symmetric domain in C with D �= C and
0 ∈ D and let F be the conformal mapping from ∆ onto D with F (0) = 0 and F ′(0) > 0.
Then (see [14] or the Corollary in p. 154 of [2]) it is known that:

(a) M∞(r, F ) = F (r), 0 < r < 1.
(b) For every r with 0 < r < 1, |F (reiθ)| is a decreasing function of θ in [0, π].

We shall also be interested on some results about starlike functions. Let D �= C be
a domain in C with 0 ∈ D which is starlike with respect to the origin and let F be the
conformal mapping from ∆ onto D with F (0) = 0, F ′(0) > 0. Then (see p. 43 of [21] or
p. 41 of [8])

(c) For every r with 0 < r < 1, argF (reiθ) is an increasing function of θ in [0, 2π].
We have the following result.

Theorem 3.1. Let D be a domain in C with 0 ∈ D and D �= C. Suppose that D is both
circularly symmetric and starlike with respect to 0. Let F be the conformal mapping from
∆ onto D with F (0) = 0 and F ′(0) > 0. Then there exists a positive constant C such that

(3.1) 2πrM1(r, F ′) ≤ CM∞(r, F ), 0 < r < 1.

Remark 1. Since 2πrM1(r, F ′) represents the length of the curve F (reiθ) , 0 ≤ θ ≤ 2π, the
inequality M∞(r, F ) ≤ 2πrM1(r, F ′) is trivial.

Remark 2. The conclusion of Theorem 3.1 is not true if we only assume that D is starlike
with respect to the origin. Indeed, Hayman proved in [13] that there exists a domain D
in C which is both bounded and starlike with respect to the origin such that if F is the
conformal mapping from ∆ onto D with F (0) = 0 and F ′(0) > 0 then

(3.2) lim sup
r→1

M1(r, F ′)
log 1

1−r

> 0.

For this F we have that F ∈ H∞ and (3.2) shows that F does not satisfy (3.1).

Proof of Theorem 3.1. Given 0 < r < 1 let Cr denote the image under F of the circle
{|z| = r}, that is, Cr = {F (reiθ), 0 ≤ θ ≤ 2π}. Since F is conformal, 2πrM1(r, F ′)
represents the length of the curve Cr. Now, since D is symmetric with respect to the real
axis,

length(Cr) = 2 length(C+
r )

where, C+
r = {F (reiθ), 0 ≤ θ ≤ π}.

Hence, let 0 < r < 1 and let 0 = θ0 < θ1 < · · · < θn = π be any partition of [0, π].
Denote

F (reiθj ) = sje
iϕj , j = 0, 1, . . . , n.
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Since D is circularly symmetric, using (b), we see that s0 ≥ s1 ≥ · · · ≥ sn. Also, it is clear
that 0 = ϕ0 ≤ ϕ ≤ ϕn = π for all ϕ ∈ [0, π]. Then, since D is starlike, using (c), we obtain
that 0 = ϕ0 ≤ ϕ1 ≤ · · · ≤ ϕn = π.

Then

n∑
j=1

|F (reiθj ) − F (reiθj−1)| =
n∑

j=1

|sje
iϕj − sj−1e

iϕj−1 |

≤
n∑

j=1

(
|sje

iϕj − sj−1e
iϕj | + |sj−1e

iϕj − sj−1e
iϕj−1 |

)

=
n∑

j=1

(
(sj−1 − sj) + sj−1|eiϕj − eiϕj−1 |

)

≤s0 + Cs0

n∑
j=1

(ϕj − ϕj−1) = s0 + Cs0π

=(1 + Cπ)F (r) = CF (r) = CM∞(r, F ).

Since the partition is arbitrary, this shows that length(C+
r ) ≤ CM∞(r, F ) and, hence,

length(Cr) ≤ CM∞(r, F ) which is equivalent to (3.1).

The functions F mentioned in Section 1 which will be used to prove Theorem 1.4 are
constructed in Theorem 3.2.

Theorem 3.2. Let φ : [0, 1) → [0,∞) be a function with φ(r) → ∞ as r → 1. Then there
exists a domain D in C with 0 ∈ D �= C which is both circularly symmetric and starlike
with respect to 0 such that if F is the conformal mapping from ∆ onto D with F (0) = 0
and F ′(0) > 0 then

(3.3) M∞(r, F ) = F (r) ≤ φ(r), for all r sufficiently close to 1,

(3.4) M1(r, F ′) ≤ φ(r), for all r sufficiently close to 1,

and

(3.5) F (r) → ∞, as r → 1.

Proof of Theorem 3.2. First let us notice that we may assume without loss of generality
that φ is increasing. Otherwise consider φ1, the greatest increasing minorant of φ, defined
by

φ1(r) = inf
r≤s<1

φ(s), 0 ≤ r < 1.

Then it is clear that φ1 ≤ φ and that φ1(r) → ∞, as r → 1.
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Hence we shall assume that φ is increasing. Let {rn}∞n=1 be a sequence of real numbers
with 0 < r1 < r2 < · · · < 1, such that φ(rn) > n for all n. Then it is clear that rn → 1, as
n→ ∞.

We define the domain

(3.6) D = ∆ ∪
( ∞⋃

n=1

{z : | Im z| < γn,Re z > 0, n ≤ |z| < n+ 1}
)

where {γn}∞n=1 is a decreasing sequence of real numbers with 0 < γn < 1 to be specified
below.

Define D0 = ∆,

(3.7)

Dn =Dn−1 ∪ {z : | Im z| < γn,Re z > 0, n ≤ |z| < n+ 1}

=∆ ∪


 n⋃

j=1

{z : | Im z| < γj ,Re z > 0, j ≤ |z| < j + 1}


 , n ≥ 1.

We also define

(3.8) Gn = Dn−1 ∪ {z : | Im z| < γn,Re z > 0}, n ≥ 1.

For every n ≥ 1 let gn be the conformal mapping from ∆ onto Gn with gn(0) = 0 and
g′n(0) > 0 and let fn be the conformal mapping from ∆ onto Dn with fn(0) = 0 and
f ′n(0) > 0. By the Carathèodory kernel theorem (see [8, p. 78] or [21, p. 29]), we can
choose γ1 with 0 < γ1 < 1 so small that

(3.9) M∞(r2, g1) ≤ φ(r1).

Suppose that γ1 > γ2 > · · · > γn−1 have been chosen so that

(3.10) M∞(rj+1, gj) ≤ φ(rj), 1 ≤ j ≤ n− 1.

Again, using the Carathèodory kernel theorem, we see that we can choose γn with 0 <
γn < γn−1 such that

(3.11) M∞(rn+1, gn) ≤ φ(rn).

Notice that, for j ≤ n, fn is subordinate to gj and hence (3.10) and (3.11) (see Chapter 2
of [21]) show that

(3.12) M∞(rj+1, fn) ≤ φ(rj), 1 ≤ j ≤ n, n ≥ 1.

Notice that D = ∪∞
n=1Dn. Then D is a domain which is both circularly symmetric and

starlike with respect to the origin. Also, it is clear that D is the kernel of the sequence
{Dn}. Hence, by the Carathèodory kernel theorem, if F is the conformal mapping from
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∆ onto D with F (0) = 0 and F ′(0) > 0, we have that fn → F , as n → ∞ uniformly on
every compact subset of ∆. Then, using (3.12), se obtain

(3.13) M∞(rj+1, F ) ≤ φ(rj), for all j ≥ 1.

Now, if r1 < r < 1, there exists j ≥ 1 such that rj < r ≤ rj+1. Then, since M∞(r, F ) and
φ(r) are increasing functions of r,

M∞(r, F ) ≤M∞(rj+1, F ) ≤ φ(rj) ≤ φ(r).

This proves (3.3). Now (3.4) follows from (3.3) and Theorem 3.1.
To prove (3.5) just notice that, since D is circularly symmetric and F ′(0) > 0,

F (r) = |F (r)| = M∞(r, F ), 0 < r < 1,

and that, since D is not bounded, M∞(r, F ) → ∞, as r → 1. This finishes the proof.

4. Proof of Theorem 1.4.

We start with the following simple result on a particular Blaschke product.

Proposition 4.1. Let
an = 1 − 2−n, n ≥ 1,

and let B be the Blaschke product whose zeros are {an}∞n=1. Then, for 1 < p <∞,

(4.1) Mp(r,B′) = O

(
1

(1 − r)1−
1
p

)
, as r → 1.

Proof of Proposition 4.1. We have B(z) =
∏∞

n=1
an−z
1−anz . Hence,

|B′(z)| ≤
∞∑

n=1

1 − |an|2
|1 − anz|2

∣∣∣∣∣∣
∏
j �=n

aj − z

1 − ajz

∣∣∣∣∣∣ ≤
∞∑

n=1

1 − a2
n

|1 − anz|2
≤ 2

∞∑
n=1

1 − an

|1 − anz|2
.

Therefore,

Mp(r,B′) ≤ C
∞∑

n=1

(1 − an)
(

1
2π

∫ 2π

0

dθ

|1 − anreiθ|2p

)1/p

≤ C
∞∑

n=1

1 − an

(1 − anr)2−
1
p

.

The inequality 2(1 − anr) ≥ 1 − an + 1 − r and the definition of an now imply that

Mp(r,B′) ≤C
∞∑

n=1

2−n

(2−n + 1 − r)2−
1
p

≤C
∞∑

n=0

∫ 2−n

2−(n+1)

dt

(t+ 1 − r)2−
1
p

=C
∫ 1

0

dt

(t+ 1 − r)2−
1
p

≤ C

(1 − r)1−
1
p .
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This proves (4.1).

Proof of Theorem 1.4. We shall consider first the case 1 < p <∞. Set

φ(r) =
ω(1 − r)
(1 − r)1/p

, 0 < r < 1.

Then φ satisfies the conditions of Theorem 3.2. Hence, let F be the function constructed
in Theorem 3.2 with this φ. Then F satisfies (3.3), (3.4) and (3.5). Using (3.3) and arguing
as in the proof of Theorem 5.5 of [7], we obtain

M∞(r, F ′) ≤ C
M∞( 1+r

2 , F )
1 − r

,

which, with (3.4), implies

Mp(r, F ′)p ≤M1(r, F ′)M∞(r, F ′)p−1

≤Cφ(r)
φ( 1+r

2 )p−1

(1 − r)p−1
.

But, since ω is increasing,

φ

(
1 + r

2

)
=

ω( 1−r
2 )

( 1−r
2 )1/p

≤ Cφ(r).

Hence, we have

Mp(r, F ′)p ≤ C
φ(r)p

(1 − r)p−1

or, equivalently,

(4.2) Mp(r, F ′) ≤ C
φ(r)

(1 − r)1−
1
p

= C
ω(1 − r)

1 − r
.

Now, we let B be the Blaschke product considered in Proposition 4.1, that is, that with
zeros at the points an = 1 − 2−n, n ≥ 1. Finally, we set f(z) = F (z)B(z), z ∈ ∆. Since
{an} is uniformly separated, using (3.5) we dedude that f is not a normal function arguing
just as in the proofs of Theorem 1 of [10] or in that of Theorem 2 of [11]. Furthermore,

Mp(r, f ′) ≤Mp(r, F ′)M∞(r,B) +M∞(r, F )Mp(r,B′).

Then, (4.2), the fact that B ∈ H∞, (3.3), Proposition 4.1 and the definition of φ imply

Mp(r, f ′) = O
(
ω(1 − r)

1 − r

)
, as r → 1.

This finishes the proof in the case p > 1.
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In the case p = 1 we take F as in the case p > 1 but taking

φ(r) =
(
ω(1 − r)

1 − r

)1/2

,

and we take as B an interpolating Blaschke product B with positive zeros having the
property that

M1(r,B′) = O(φ(r)), as r → 1.

Such a Blaschke product is constructed in Theorem 3 of [11]. We omit the details.

Remark 3. It is natural to expect that Theorem 1.4 remains true with (1.7) in the place of
(1.9). However, our proof does not yield this since it uses that the function F constructed
there satisfies M∞(r, F ) = O

(
ω(1−r)

(1−r)1/p

)
, as r → 1.
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