MULTIPLIERS ON WEIGHTED BESOV
 SPACES OF ANALYTIC FUNCTIONS

Oscar Blasco
Departamento de Matemáticas
Universidad de Zaragoza

Abstract

We characterize the space of multipliers between certain weighted Besov spaces of analytic functions. This extend and give a new proof of a result of Wojtaszczyk about multipliers between Bergman spaces.

Introduction.

P. Wojtaszczyk [W], using certain factorization theorems due to Maurey and Grothendieck, proved the following results:

Let $\alpha>0,0<p \leq 2 \leq q<\infty$ and $\frac{1}{r}=\frac{1}{p}-\frac{1}{q}$.

$$
\begin{equation*}
\left(B_{q}, B_{p}\right)=\left\{\lambda_{n}: \sup _{2^{n} \leq k<2^{n+1}}\left(k^{-1 / r}\left|\lambda_{k}\right|\right) \in l^{r}\right\} \tag{0.1}
\end{equation*}
$$

$$
\begin{equation*}
\left(X_{\alpha}, B_{p}\right)=\left\{\lambda_{n}: \sup _{2^{n} \leq k<2^{n+1}}\left(k^{\alpha-1 / p}\left|\lambda_{k}\right|\right) \in l^{p}\right\} \tag{0.2}
\end{equation*}
$$

where B_{p} and X_{α} stand for the spaces

$$
\begin{gathered}
B_{p}=\left\{f: D \rightarrow \mathbb{C} \text { analytic }:\left(\int_{D}|f(z)|^{p} d \sigma(z)\right)^{1 / p}<\infty\right\} \text { and } \\
X_{\alpha}=\left\{f: D \rightarrow \mathbb{C} \text { analytic }:|f(z)|=O\left(\frac{1}{(1-|z|)^{\alpha}}\right)\right\}
\end{gathered}
$$

The main objective of this paper is to extend such results to a much more general situation of general weighted Bergman and Besov spaces. We shall present a proof based simply on Kintchine's inequality for the analogue to (0.1) and then we shall use the previous case combined with some duality arguments to get the analogue to (0.2).

[^0]Given be a nondecreasing function on $(0,1)$, say ρ, such that $\frac{\rho(t)}{t} \in L^{1}((0,1))$, we denote by $B_{p}(\rho), 0<p<\infty$, the space of analytic function f on the unit disc such that

$$
\|f\|_{p, \rho}=\left(\int_{D} \frac{\rho(1-|z|)}{(1-|z|)}|f(z)|^{p} d \sigma(z)\right)^{1 / p}<\infty
$$

For certain weights the spaces $B_{p}(\rho)$ have been extensively studied in the literature. They can be regarded as extensions of the classical Bergman spaces $(\rho(t)=t)$. Although the condition appearing in the case $p=1$ and $\rho(t)=t^{1 / q-1}$ for $q<1$ goes back to the work of Hardy and Littlewood (see [HL1, Theorem 3.1], the corresponding spaces were first studied as Banach spaces by P. Duren, B.W. Romberg and A.L. Shield in [DRS] and by A.L. Shields and D.L. Williams [SW] for certain weights. Later J. Shapiro [Sh] considered the spaces, denoted by A_{α}^{p} and called weighted Bergman spaces, for $0<p \leq \infty$ and $\rho(t)=t^{\alpha+1}$.

The extension of (0.1) and (0.2) for weighted Bergman spaces can be achieved from similar arguments as those used by Wojtaszczyk, as it was pointed out in [W], when we deal with weights of the type considered in [SW]. In fact they can be obtained, as we shall prove, not only for these weights but for bit more general weights, defined by Janson $[\mathrm{J}]$, under Dini and b_{α} condition (see definitions below).

In [B1] the author gave a procedure to characterize multipliers acting on $B_{p}(\rho)$ when $0<p \leq 1$ and ρ verifies the previous conditions (see [B1, section 3]). Here we shall complete the cases when $2 \leq p<\infty$, and not only for weighted Bergman spaces but for weighted Besov classes of analytic functions.

For $0<p \leq \infty, 0<q<\infty$, we denote by $H(p, q, \rho)$ the spaces formed by analytic functions on the unit disc D satisfying

$$
\|f\|_{p, q, \rho}=\left(\int_{0}^{1} \frac{\rho(1-r)}{1-r} M_{p}^{q}(f, r) d r\right)^{1 / q}<\infty
$$

and by H_{ρ}^{p} the spaces of analytic functions such that

$$
M_{p}(f, r)=O\left(\frac{\rho(1-r)}{1-r}\right) \quad(r \rightarrow 1)
$$

The definition of these classes for the particular case of $\rho(t)=t^{\alpha}$, goes back to Hardy and Littlewood (see [HL1] [HL2]) and they were extensively studied for different reasons and by different authors (see [F1, F2, M, MP1, MP2, S]).

Given two sequence spaces X, Y we denote by (X, Y) the space of multipliers from X to Y, that is $(X, Y)=\left\{\left(\lambda_{n}\right):\left(\lambda_{n} a_{n}\right) \in Y\right.$ for every $\left.\left(a_{n}\right) \in X\right\}$.

We identify $H(p, q, \rho)$ and H_{ρ}^{p} with sequence spaces by associating with each analytic function the sequence of its Taylor coefficients. Hence λ will stand for either the sequence $\left(\lambda_{n}\right)$ or the function $\lambda(z)=\sum_{n=0}^{\infty} \lambda_{n} z^{n}$.
Theorem 1. Let $0<p_{2} \leq 2 \leq p_{1}<\infty, 0<q_{1}, q_{2}<\infty$, and ρ_{1}, ρ_{2} weight functions verifying Dini and $b_{\alpha_{1}}$ and $b_{\alpha_{2}}$ respectively for some $\alpha_{1}, \alpha_{2}>0$. Let $\frac{1}{r}=\frac{1}{\min \left(q_{1}, q_{2}\right)}-\frac{1}{q_{1}}$. Then
$\left(H\left(p_{1}, q_{1}, \rho_{1}\right), H\left(p_{2}, q_{2}, \rho_{2}\right)\right)=\left\{\lambda_{n}: \sup _{2^{n} \leq k<2^{n+1}}\left(\rho_{2}\left(k^{-1}\right)^{1 / q_{2}} \rho_{1}\left(k^{-1}\right)^{-1 / q_{1}}\left|\lambda_{k}\right|\right) \in l^{r}\right\}$.

Theorem 2. Let $2 \leq p_{1} \leq \infty, 1<p_{2} \leq 2,1<q_{2}<\infty$ and ρ_{1}, ρ_{2} weight functions verifying Dini and b_{1} and $b_{\alpha_{2}}$ respectively for some $\alpha_{2}>0$. Then

$$
\left(H_{\rho_{1}}^{p_{1}}, H\left(p_{2}, q_{2}, \rho_{2}\right)\right)=\left\{\lambda_{n}: \sup _{2^{n} \leq k<2^{n+1}}\left(k \rho_{2}\left(k^{-1}\right)^{1 / q_{2}} \rho_{1}\left(k^{-1}\right)\left|\lambda_{k}\right|\right) \in l^{q_{2}}\right\} .
$$

The reader is referred to [B2] for these and more results about multipliers when $\rho(t)=t^{\alpha}$.

The key point for these results is that for $p \geq 2$ multipliers on $H(p, q, \rho)$ depend on those on $H(2, q, \rho)$ and this space is isomorphic to $l(2, q)$ which makes them very easy to deal with.Then some duality arguments allow us to get Theorem 2 from Theorem 1.

Throughout the paper all functions f will be analytic on the unit disc and $M_{p}(f, r)$ stands for $\left(\int_{0}^{2 \pi}\left|f\left(r e^{i \theta}\right)\right|^{p} \frac{d \theta}{2 \pi}\right)^{1 / p}$. A weight function ρ will be a nondecreasing function on $(0,1)$ with $\rho\left(0^{+}\right)=0$ such that $\frac{\rho(t)}{t} \in L^{1}((0,1))$ and C will be a numerical constant not necessarily the same in each instance.

§1. Definitions and Lemmas.

There are several types of weight functions that have been considered to extend those results valid for $\rho(t)=t^{\alpha}$ to more general situations (see [SW, BS, BTS, MP2, J]). We shall be dealing with conditions considered in [J], which cover the other cases and have been found adequated to many other situations.

Definition 1. A weight function will be a non negative non-decreasing function on $(0,1)$ such that $\rho(t) / t \in L^{1}((0,1))$. ρ is said to be a Dini-weight if

$$
\begin{equation*}
\int_{0}^{s} \frac{\rho(t)}{t} d t \leq C \rho(s) \tag{1.1}
\end{equation*}
$$

Given $0<\alpha<\infty, \rho$ is said to be a b_{α}-weight, $\rho \in b_{\alpha}$, if

$$
\begin{equation*}
\int_{s}^{1} \frac{\rho(t)}{t^{\alpha+1}} d t \leq C \frac{\rho(s)}{s^{\alpha}} \tag{1.2}
\end{equation*}
$$

Remark 1. The main example of a Dini-weight ρ such that $\rho \in b_{\alpha+\varepsilon}$ for any $\varepsilon>0$ is

$$
\rho(t)=C_{\alpha, \beta} t^{\alpha}\left(\log \frac{e}{t}\right)^{\beta} .
$$

Remark 2. It is not difficult to see that if $\rho \in b_{\alpha}$ for some $\alpha>0$, then the Dini condition is equivalent to

$$
\int_{0}^{s} \frac{\rho(t)}{t} d t=O(\rho(s)) \quad(s \rightarrow 0)
$$

It is clear that b_{α} condition can be written

$$
\int_{s}^{1} \frac{\rho(t)}{t^{\alpha+1}} d t \approx \frac{\rho(s)}{s^{\alpha}}
$$

which implies that there is a constant $C<1$ such that

$$
\begin{equation*}
C \rho(2 s) \leq \rho(s) \leq \rho(2 s) \quad\left(0<s<\frac{1}{2}\right) . \tag{1.3}
\end{equation*}
$$

Let us include now some results on weights to be used later on.

Lemma 1. Let ρ be a Dini weight such that $\rho \in b_{\alpha}$. Then

$$
\begin{equation*}
\rho\left(2^{-n}\right) \in l^{1} \text { and } \quad \sum_{m=n}^{\infty} \rho\left(2^{-m}\right)=O\left(\rho\left(2^{-n}\right)\right) \quad(n \rightarrow \infty) \tag{1.4}
\end{equation*}
$$

$$
\begin{equation*}
\int_{0}^{1} \frac{\rho(1-r)}{(1-r)} r^{n} d r=O\left(\rho\left(\frac{1}{n}\right)\right) \quad(n \rightarrow \infty) \quad(\text { see }[\mathrm{B} 1, \text { Lemma 1.1]) } \tag{1.5}
\end{equation*}
$$

Proof. Note that from (1.3)

$$
\rho\left(2^{-n}\right) \approx \int_{1-2^{-n}}^{1-2^{-(n+1)}} \frac{\rho(1-r)}{1-r} d r
$$

Therefore $\rho\left(2^{-n}\right) \in l^{1}$ follows from $\frac{\rho(t)}{t} \in L^{1}((0,1))$ and

$$
\sum_{m=n}^{\infty} \rho\left(2^{-m}\right) \approx \int_{1-2^{-n}}^{1} \frac{\rho(1-r)}{1-r} d r \approx \int_{0}^{2^{-n}} \frac{\rho(t)}{t} d t=O\left(\rho\left(2^{-n}\right)\right)
$$

Definition 2. Let $0<p \leq \infty, 0<q<\infty$ and ρ a weight function. $H(p, q, \rho)$ will denote the space of analytic functions on the unit disc D satisfying

$$
\|f\|_{p, q, \rho}=\left(\int_{0}^{1} \frac{\rho(1-r)}{1-r} M_{p}^{q}(f, r) d r\right)^{1 / q}<\infty
$$

Let ρ be a weight function with inf $\frac{\rho(1-r)}{1-r}>0 . H_{\rho}^{p}$ will denote the space of analytic functions on the unit disc D satisfying

$$
M_{p}(f, r)=O\left(\frac{\rho(1-r)}{1-r}\right)
$$

We define the norm by

$$
\|f\|_{p, \rho}=\inf \left\{C: M_{p}(f, r) \leq C \frac{\rho(1-r)}{1-r}, 0<r<1\right\}
$$

Definition 3. Let $0<p \leq \infty, 0<q<\infty$ and $\bar{\gamma}=\left(\gamma_{n}\right)$ a sequence of positive real numbers. Denote by $I_{n}=\left\{k \in \mathbb{N}: 2^{n-1} \leq k<2^{n}\right\}$ and $I_{0}=\{0\}$.

$$
l(p, q, \bar{\gamma})=\left\{\left(a_{n}\right) \in \mathbb{C}:\left\|\left(a_{n}\right)\right\|_{p, q, \bar{\gamma}}=\left(\sum_{n}\left(\sum_{k \in I_{n}}\left|a_{n}\right|^{p}\right)^{q / p} \gamma_{n}\right)^{1 / q}<\infty\right\}
$$

We denote by $l(p, q)$, with the obvious modification for $q=\infty$, the case where $\gamma_{n}=1$ for all $n \in \mathbb{N}$.

Let us recall a very useful example of multipliers to be used later on.

Lemma 2. ([K]) Let $0<p_{1}, q_{1}, p_{2}, q_{2} \leq \infty$ Then

$$
\left(l\left(p_{1}, q_{1}\right), l\left(p_{2}, q_{2}\right)\right)=l(p, q)
$$

where $\frac{1}{p}=\frac{1}{\min \left(p_{1}, p_{2}\right)}-\frac{1}{p_{1}}$ and $\frac{1}{q}=\frac{1}{\min \left(q_{1}, q_{2}\right)}-\frac{1}{q_{1}}$.
Note that Plancherel's theorem implies

$$
\begin{aligned}
\|f\|_{2,2, \rho} & =\left(\int_{0}^{1} \frac{\rho(1-r)}{1-r} \sum_{n=0}^{\infty}\left|a_{n}\right|^{2} r^{2 n} d r\right)^{1 / 2} \\
& =\left(\sum_{n=0}^{\infty}\left|a_{n}\right|^{2} \int_{0}^{1} \frac{\rho(1-r)}{1-r} r^{2 n} d r\right)^{1 / 2} \approx\left(\sum_{n=0}^{\infty}\left|a_{n}\right|^{2} \rho\left(n^{-1}\right)\right)^{1 / 2} .
\end{aligned}
$$

Hence, for ρ verifying (1.3), we have

$$
\begin{equation*}
H(2,2, \rho)=\left\{\lambda_{n}: \lambda_{n} \in l\left(2,2, \rho\left(2^{-n}\right)\right)\right\} \tag{1.6}
\end{equation*}
$$

To extend this to other values of $0<q<\infty$ (see [MP1, S] for the case $\rho(t)=t^{\alpha}$) we shall use the following lemma.
Lemma 3. Let $0<q<\infty, \rho$ a Dini weight with $\rho \in b_{\alpha}$ for some $\alpha>0$ and $\alpha_{n} \geq 0$.Then

$$
\int_{0}^{1} \frac{\rho(1-r)}{1-r}\left(\sum_{n=0}^{\infty} \alpha_{n} r^{n}\right)^{q} d r \approx \sum_{n=0}^{\infty}\left(\sum_{k \in I_{n}} \alpha_{k}\right)^{q} \rho\left(2^{-n}\right)
$$

Proof.

$$
\begin{aligned}
\int_{0}^{1} \frac{\rho(1-r)}{1-r}\left(\sum_{n=0}^{\infty} \alpha_{n} r^{n}\right)^{q} d r & =\sum_{n=0}^{\infty} \int_{1-2^{-n}}^{1-2^{-(n+1)}} \frac{\rho(1-r)}{1-r}\left(\sum_{n=0}^{\infty} \alpha_{n} r^{n}\right)^{q} d r \\
& \geq C \sum_{n=0}^{\infty} \int_{1-2^{-n}}^{1-2^{-(n+1)}} \frac{\rho(1-r)}{1-r}\left(\sum_{k \in I_{n}} \alpha_{k}\right)^{q} r^{2^{n} q} d r \\
& \geq C \sum_{n=0}^{\infty}\left(\sum_{k \in I_{n}} \alpha_{k}\right)^{q} \rho\left(2^{-n}\right)
\end{aligned}
$$

Let us now show the converse inequality. Assume first $0<q \leq 1$.

$$
\begin{aligned}
\int_{0}^{1} \frac{\rho(1-r)}{1-r}\left(\sum_{n=0}^{\infty} \alpha_{n} r^{n}\right)^{q} d r & \leq \int_{0}^{1} \frac{\rho(1-r)}{1-r}\left(\sum_{n=0}^{\infty}\left(\sum_{k \in I_{n}} \alpha_{k}\right) r^{2^{n}-1}\right)^{q} d r \\
& \leq \int_{0}^{1} \frac{\rho(1-r)}{1-r}\left(\sum_{n=0}^{\infty}\left(\sum_{k \in I_{n}} \alpha_{k}\right)^{q} r^{\left(2^{n}-1\right) q}\right) d r \\
& \leq \sum_{n=0}^{\infty}\left(\sum_{k \in I_{n}} \alpha_{k}\right)^{q} \int_{0}^{1} \frac{\rho(1-r)}{1-r} r^{\left(2^{n}-1\right) q} d r \\
& \leq C \sum_{n=0}^{\infty}\left(\sum_{k \in I_{n}} \alpha_{k}\right)^{q} \rho\left(2^{-n}\right)
\end{aligned}
$$

where the last inequality follows from (1.5).
Let us then asumme $q>1$.

$$
\begin{aligned}
\int_{0}^{1} \frac{\rho(1-r)}{1-r}\left(\sum_{n=0}^{\infty} \alpha_{n} r^{n}\right)^{q} d r & =\sum_{n=0}^{\infty} \int_{1-2^{-n}}^{1-2^{-(n+1)}} \frac{\rho(1-r)}{1-r}\left(\sum_{n=0}^{\infty} \alpha_{n} r^{n}\right)^{q} d r \\
& \leq C \sum_{n=0}^{\infty} \int_{1-2^{-n}}^{1-2^{-(n+1)}} \frac{\rho(1-r)}{1-r}\left(\sum_{m=0}^{n} \sum_{k \in I_{m}} \alpha_{k}\right)^{q} d r \\
& +C \sum_{n=0}^{\infty} \int_{1-2^{-n}}^{1-2^{-(n+1)}} \frac{\rho(1-r)}{1-r}\left(\sum_{m=n+1}^{\infty}\left(\sum_{k \in I_{m}} \alpha_{k}\right) r^{2^{m-1}}\right)^{q} d r \\
& =(I)+(I I) .
\end{aligned}
$$

In order to estimate (I) note that for any sequence $\beta_{n} \geq 0$ we have

$$
\begin{equation*}
\sum_{n=0}^{\infty}\left(\sum_{m=0}^{n} \beta_{m}\right)^{q} \rho\left(2^{-n}\right) \leq C \sum_{n=0}^{\infty} \beta_{n}^{q} \rho\left(2^{-n}\right) \tag{1.7}
\end{equation*}
$$

Indeed, put $\gamma_{n+1}=\sum_{m=0}^{n} \beta_{m}, \gamma_{0}=0$ and $\mu(A)=\sum_{n \in A} \rho\left(2^{-n}\right)$, then

$$
\begin{aligned}
\sum_{n=0}^{\infty}\left(\sum_{m=0}^{n} \beta_{m}\right)^{q} \rho\left(2^{-n}\right) & =q \int_{0}^{\infty} \lambda^{q-1} \mu\left(\left\{n: \sum_{m=0}^{n} \beta_{m}>\lambda\right\}\right) d \lambda \\
& =q \sum_{n=0}^{\infty} \int_{\gamma_{n}}^{\gamma_{n+1}} \lambda^{q-1} \mu\left(\left\{k: \sum_{m=0}^{k} \beta_{m}>\lambda\right\}\right) d \lambda \\
& \leq C \sum_{n=0}^{\infty}\left(\sum_{m=0}^{n} \beta_{m}\right)^{q-1}\left(\sum_{m=n}^{\infty} \rho\left(2^{-m}\right)\right)\left(\gamma_{n+1}-\gamma_{n}\right) \\
& \leq C \sum_{n=0}^{\infty}\left(\sum_{m=0}^{n} \beta_{m}\right)^{q-1} \beta_{n} \rho\left(2^{-n}\right) \\
& \leq C\left(\sum_{n=0}^{\infty}\left(\sum_{m=0}^{n} \beta_{m}\right)^{q} \rho\left(2^{-n}\right)\right)^{1 / q^{\prime}}\left(\sum_{n=0}^{\infty} \beta_{m}^{q} \rho\left(2^{-n}\right)\right)^{1 / q}
\end{aligned}
$$

This gives (1.7), what allows us to get by writing $\beta_{n}=\sum_{k \in I_{n}} \alpha_{k}$

$$
(I) \leq C \sum_{n=0}^{\infty} \sum_{m=0}^{n}\left(\sum_{k \in I_{m}} \alpha_{k}\right)^{q} \rho\left(2^{-n}\right) \leq C \sum_{n=0}^{\infty}\left(\sum_{k \in I_{n}} \alpha_{k}\right)^{q} \rho\left(2^{-n}\right)
$$

In order to estimate $(I I)$, first observe that for any $\beta_{n} \geq 0$

$$
\begin{aligned}
\left(\sum_{m=n+1}^{\infty} \beta_{m} r^{2^{m-1}}\right)^{q} & \leq\left(\sum_{m=n+1}^{\infty} 2^{-m \alpha} \beta_{m}^{q}\right)\left(\sum_{m=n+1}^{\infty} 2^{m \alpha\left(q^{\prime}-1\right)} r^{\left(2^{m-1}\right) q^{\prime}}\right)^{q-1} \\
& \leq C\left(\sum_{m=n+1}^{\infty} 2^{-m \alpha} \beta_{m}^{q}\right)\left(\sum_{m=2^{n}}^{\infty} m^{\alpha\left(q^{\prime}-1\right)-1} r^{m q^{\prime}}\right)^{q-1} \\
& \leq C\left(\sum_{m=n+1}^{\infty} 2^{-m \alpha} \beta_{m}^{q}\right) \frac{1}{(1-r)^{\alpha}}
\end{aligned}
$$

Hence

$$
\begin{aligned}
(I I) & \leq C \sum_{n=0}^{\infty} \int_{1-2^{-n}}^{1-2^{-(n+1)}} \frac{\rho(1-r)}{1-r}\left(\sum_{m=n+1}^{\infty}\left(\sum_{k \in I_{m}} \alpha_{k}\right) r^{2^{m-1}}\right)^{q} d r \\
& \leq C \sum_{n=0}^{\infty}\left(\sum_{m=n+1}^{\infty} 2^{-m \alpha}\left(\sum_{k \in I_{m}} \alpha_{k}\right)^{q}\right) \int_{1-2^{-n}}^{1-2^{-(n+1)}} \frac{\rho(1-r)}{(1-r)^{\alpha+1}} d r \\
& \leq C \sum_{m=0}^{\infty}\left(\sum_{k \in I_{m}} \alpha_{k}\right)^{q} 2^{-m \alpha} \sum_{n=0}^{m} \int_{1-2^{-n}}^{1-2^{-(n+1)}} \frac{\rho(1-r)}{(1-r)^{\alpha+1}} d r \\
& =C \sum_{m=0}^{\infty}\left(\sum_{k \in I_{m}} \alpha_{k}\right)^{q} 2^{-m \alpha} \int_{0}^{1-2^{-(m+1)}} \frac{\rho(1-r)}{(1-r)^{\alpha+1}} d r \\
& \leq C \sum_{m=0}^{\infty}\left(\sum_{k \in I_{m}} \alpha_{k}\right)^{q} \rho\left(2^{-m}\right) .
\end{aligned}
$$

Corollary 1. Let $0<q<\infty, \rho$ a Dini weight, $\rho \in b_{\alpha}$ and $f(z)=\sum_{n=1}^{\infty} a_{n} z^{n}$. Then

$$
f \in H(2, q, \rho) \text { if and only if } a_{n} \in l\left(2, q, \rho\left(2^{-n}\right)\right) .
$$

Corollary 2. Let $1<q<\infty, \frac{1}{q}+\frac{1}{q^{\prime}}=1, \rho$ a Dini weight and $\rho \in b_{\alpha}$. Then

$$
(H(2, q, \rho))^{*}=H\left(2, q^{\prime}, \rho\right) .
$$

under the duality pair $\langle f, g\rangle=\sum_{n=0}^{\infty} a_{n} \bar{b}_{n} \rho\left(\frac{1}{n}\right)$.
Remark 3. For other values of $1 \leq p \leq \infty$ using (1.5)

$$
\begin{aligned}
\sum_{n=0}^{\infty} a_{n} \bar{b}_{n} \rho\left(n^{-1}\right) & \approx \int_{0}^{1} \frac{\rho(1-r)}{1-r} \sum_{n=0}^{\infty} a_{n} \bar{b}_{n} r^{n} d r \\
& =\int_{0}^{1} \frac{\rho(1-r)}{1-r} \int_{0}^{2 \pi} f\left(r e^{i t}\right) \bar{g}\left(r e^{i t}\right) \frac{d t}{2 \pi} \\
& \leq C \int_{0}^{1} \frac{\rho(1-r)}{1-r} M_{p}(f, r) M_{p^{\prime}}(g, r) d r \\
& \leq C\|f\|_{p, q, \rho}\|g\|_{p^{\prime}, q^{\prime}, \rho}
\end{aligned}
$$

This shows that for $1 \leq p \leq \infty$ and $1<q<\infty$

$$
\begin{equation*}
H\left(p^{\prime}, q^{\prime}, \rho\right) \subset(H(p, q, \rho))^{*} \tag{1.8}
\end{equation*}
$$

Actually for the case $1<p<\infty$ it can be shown that $H\left(p^{\prime}, q^{\prime}, \rho\right)$ is the dual of $H(p, q, \rho)$. Altough we shall not need the duality result the reader is referred to [S] for a proof that can be easily extended to the weighted case.

Let us finally mention the duality for the case $q=1$.

Theorem A. (See [BS, Theorem 3.2]. Let $1 \leq p<\infty$ and ρ a Dini weight such that $\rho \in b_{1}$. Then

$$
(H(p, 1, \rho))^{*}=H_{\rho}^{p^{\prime}}
$$

under the pairing $<f, g>_{\alpha}=\lim _{r \rightarrow 1} \sum_{n=0}^{\infty}(n+1)^{-1} a_{n} b_{n} r^{n}$.
Remark 4. This can be extended to weights having b_{α} condition by means of fractional derivatives (see [B2]).

$\S 4$ The Theorems and their proofs.

Next result follows easily from Kintchine's inequality.
Lemma 4. Let $0<p, q<\infty$. Let $f(z)=\sum_{n=0}^{\infty} a_{n} z^{n}$. Let us denote by $f_{t}(z)=$ $\sum_{n=0}^{\infty} r_{n}(t) a_{n} z^{n}$ where r_{n} are the Rademacher functions.

$$
\begin{equation*}
M_{2}^{q}(f, r) \approx \int_{0}^{1} M_{p}^{q}\left(f_{t}, r\right) d t \tag{2.1}
\end{equation*}
$$

Proposition 1. Let $0<p_{2} \leq 2 \leq p_{1}<\infty, 0<q_{1}, q_{2}<\infty$ and ρ_{1}, ρ_{2} weight functions. Then

$$
\left(\left(H\left(p_{1}, q_{1}, \rho_{1}\right), H\left(p_{2}, q_{2}, \rho_{2}\right)\right)=\left(\left(H\left(2, q_{1}, \rho_{1}\right), H\left(2, q_{2}, \rho_{2}\right)\right)\right.\right.
$$

Proof. It is immediate that

$$
\left((H (2 , q _ { 1 } , \rho _ { 1 }) , H (2 , q _ { 2 } , \rho _ { 2 })) \subset \left(\left(H\left(p_{1}, q_{1}, \rho_{1}\right), H\left(p_{2}, q_{2}, \rho_{2}\right)\right)\right.\right.
$$

Take now $\lambda_{n} \in\left(\left(H\left(p_{1}, q_{1}, \rho_{1}\right), H\left(p_{2}, q_{2}, \rho_{2}\right)\right)\right.$ and $f \in H\left(p_{1}, q_{1}, \rho_{1}\right)$. Denote by $(f * \lambda)(z)=\sum_{n=0}^{\infty} a_{n} \lambda_{n} z^{n}$ and $(f * \lambda)_{t}(z)=\sum_{n=0}^{\infty} r_{n}(t) a_{n} \lambda_{n} z^{n}$ where $r_{n}(t)$ stand for the Rademacher functions.

An application of (2.1) and Fubini's Theorem give

$$
\begin{aligned}
\int_{0}^{1} \frac{\rho_{2}(1-r)}{1-r} M_{2}^{q_{2}}(f * \lambda, r) d r & \leq C \int_{0}^{1} \frac{\rho_{2}(1-r)}{1-r} \int_{0}^{1} M_{p_{2}}^{q_{2}}\left((f * \lambda)_{t}, r\right) d t d r \\
& =C \int_{0}^{1} \int_{0}^{1} \frac{\rho_{2}(1-r)}{1-r} M_{p_{2}}^{q_{2}}\left((f * \lambda)_{t}, r\right) d r d t \\
& \leq C \int_{0}^{1}\left(\int_{0}^{1} \frac{\rho_{1}(1-r)}{1-r} M_{p_{1}}^{q_{1}}\left(f_{t}, r\right) d r\right)^{q_{2} / q_{1}} d t=A
\end{aligned}
$$

Now if $q_{2} \leq q_{1}$ then from Fubini and (2.1) again

$$
\begin{aligned}
A & \leq\left(\int_{0}^{1} \int_{0}^{1} \frac{\rho_{1}(1-r)}{1-r} M_{p_{1}}^{q_{1}}\left(f_{t}, r\right) d r d t\right)^{q_{2} / q_{1}} \\
& \leq\left(\int_{0}^{1} \frac{\rho_{1}(1-r)}{1-r} \int_{0}^{1} M_{p_{1}}^{q_{1}}\left(f_{t}, r\right) d t d r\right)^{q_{2} / q_{1}} \\
& \leq C\left(\int_{0}^{1} \frac{\rho_{1}(1-r)}{1-r} M_{2}^{q_{1}}(f, r) d r\right)^{q_{2} / q_{1}}
\end{aligned}
$$

If $q_{2}>q_{1}$ put $s=\frac{q_{2}}{q_{1}}$ and apply duality

$$
\begin{aligned}
A & =\sup _{\|h\|_{s^{\prime}=1}}\left(\int_{0}^{1}\left(\int_{0}^{1} \frac{\rho_{1}(1-r)}{1-r} M_{p_{1}}^{q_{1}}\left(f_{t}, r\right) d r\right) h(t) d t\right)^{q_{2} / q_{1}} \\
& =\sup _{\|h\|_{s^{\prime}=1}}\left(\int_{0}^{1}\left(\int_{0}^{1} M_{p_{1}}^{q_{1}}\left(f_{t}, r\right) h(t) d t\right) \frac{\rho_{1}(1-r)}{1-r} d r\right)^{q_{2} / q_{1}} \\
& \leq\left(\int_{0}^{1}\left(\int_{0}^{1} M_{p_{1}}^{q_{2}}\left(f_{t}, r\right) d t\right)^{q_{1} / q_{2}} \frac{\rho(1-r)}{1-r} d r\right)^{q_{2} / q_{1}} \\
& \leq C\left(\int_{0}^{1} \frac{\rho(1-r)}{1-r} M_{2}^{q_{1}}(f, r) d r\right)^{q_{2} / q_{1}}
\end{aligned}
$$

Theorem 1. Let $0<p_{2} \leq 2 \leq p_{1}<\infty, 0<q_{1}, q_{2}<\infty$, and ρ_{1}, ρ_{2} weight functions verifying Dini and $b_{\alpha_{1}}$ and $b_{\alpha_{2}}$ respectively for some $\alpha_{1}, \alpha_{2}>0$. Let $\frac{1}{r}=\frac{1}{\min \left(q_{1}, q_{2}\right)}-\frac{1}{q_{1}}$. Then
$\left(H\left(p_{1}, q_{1}, \rho_{1}\right), H\left(p_{2}, q_{2}, \rho_{2}\right)\right)=\left\{\lambda_{n}: \sup _{2^{n} \leq k<2^{n+1}}\left(\rho_{2}\left(k^{-1}\right)^{1 / q_{2}} \rho_{1}\left(k^{-1}\right)^{-1 / q_{1}}\left|\lambda_{k}\right|\right) \in l^{r}\right\}$.

Proof. Using Proposition 1 and Corollary 1 we simply have to find

$$
\left(l\left(2, q_{1}, \rho_{1}\left(2^{-n}\right)\right), l\left(2, q_{2}, \rho_{2}\left(2^{-n}\right)\right)\right)
$$

Note that $\left(\lambda_{n}\right) \in\left(l\left(2, q_{1}, \rho_{1}\left(2^{-n}\right)\right), l\left(2, q_{2}, \rho_{2}\left(2^{-n}\right)\right)\right)$ is equivalent to

$$
\rho_{2}\left(n^{-1}\right)^{1 / q_{2}} \lambda_{n} \rho_{1}\left(n^{-1}\right)^{-1 / q_{1}} \in\left(l\left(2, q_{1}\right), l\left(2, q_{2}\right)\right) .
$$

Hence the proof is completed by invoking Lemma 2.
Lemma 5. (see [B1, Lemma 5.1 and 5.2]) Let ρ be a Dini weight and $\rho(t) \in b_{\alpha}$ for some $\alpha>0$. Let $\left(\alpha_{n}\right) \geq 0$. Then

$$
\sum_{n=0}^{\infty} \alpha_{n} r^{n}=O\left(\frac{\rho(1-r)}{(1-r)^{\alpha}}\right) \quad \text { if and only if } \quad \sum_{m \in I_{n}} n^{-\alpha} \alpha_{n}=O\left(\rho\left(2^{-n}\right)\right)
$$

Theorem 2. Let $2 \leq p_{1} \leq \infty, 1<p_{2} \leq 2,1<q_{2}<\infty$ and ρ_{1}, ρ_{2} weight functions verifying Dini and b_{1} and $b_{\alpha_{2}}$ respectively for some $\alpha_{2}>0$. Then

$$
\left(H_{\rho_{1}}^{p_{1}}, H\left(p_{2}, q_{2}, \rho_{2}\right)\right)=\left\{\lambda_{n}: \sup _{2^{n} \leq k<2^{n+1}}\left(k \rho_{2}\left(k^{-1}\right)^{1 / q_{2}} \rho_{1}\left(k^{-1}\right)\left|\lambda_{k}\right|\right) \in l^{q_{2}}\right\}
$$

Proof. It is clear that $\left(H_{\rho_{1}}^{2}, H\left(2, q_{2}, \rho_{2}\right)\right) \subset\left(H_{\rho_{1}}^{p_{1}}, H\left(p_{2}, q_{2}, \rho_{2}\right)\right)$.

Let $\left(\lambda_{n}\right) \in\left(H_{\rho_{1}}^{p_{1}}, H\left(p_{2}, q_{2}, \rho_{2}\right)\right)$. It is not hard to see from duality (see (1.8) and Theorem A) that then

$$
(n+1) \lambda_{n} \rho_{2}\left(n^{-1}\right) \in\left(H\left(p_{2}^{\prime}, q_{2}^{\prime}, \rho_{2}\right), H\left(p_{1}^{\prime}, 1, \rho_{1}\right)\right)
$$

Using Proposition 1 and duality again this implies $\left(\lambda_{n}\right) \in\left(H_{\rho_{1}}^{2}, H\left(2, q_{2}, \rho_{2}\right)\right)$, which, from Corollary 1 and Lemma 5 , is equivalent to

$$
\rho_{2}\left(n^{-1}\right)^{1 / q_{2}} \lambda_{n} \rho_{1}\left(n^{-1}\right)(n+1) \in\left(l(2, \infty), l\left(2, q_{1}\right)\right) .
$$

The proof is again finished from invoking Lemma 2.

References

[AS] J.M. Anderson, A.L. Shields, Coefficient multipliers on Bloch functions, Trans. Amer. Math. Soc. 224 (1976), 256-265.
[BST] G. Bennett, D.A. Stegenga, R.M. Timoney, Coefficients of Bloch and Lipschitz functions, Illinois J. of Math. 25 (1981), 520-531.
[B1] O. Blasco, Operators on weighted Bergman spaces and applications, Duke Math. J. (to appear).
[B2] O. Blasco, Multipliers on spaces of analytic functions (to appear).
[BS] O. Blasco, G.S. de Souza, Spaces of analytic functions on the disc where the growth of $M_{p}(F, r)$ depends on a weight, J. Math. Anal. and Appl. 147 (1990), 580-598.
[BlS] S. Bloom, G.S. de Souza, Atomic decomposition of generalized Lipschitz spaces, Illinois J. Math. 33 (1989), 181-189.
[D] P. Duren, Theory of H_{p}-spaces (1970), Academic Press, New York.
[DS1] P. Duren, A.L. Shields, Coefficient multipliers of H^{p} and B^{p} spaces, Pacific J. Math. 32 (1970), 69-78.
[DS2] P. Duren, A.L. Shields, Properties of $H^{p}(0<p<1)$ and its containing Banach space, Trans. Amer. Math. Soc. 141 (1969), 255-262.
[DRS] P.L. Duren, B.W. Romberg, A.L. Shields, Linear functionals on H_{p}-spaces with $0<p<1$, J. Reigne Angew. Math. 238 (1969), 32-60.
[F1] T.M. Flett, The dual of an inequality of Hardy and Littlewood and some related inequalities, J. Math. Anal. and Appl. 38 (1972), 746-765.
[F2] T.M. Flett, Lipschitz spaces of functions on the circle and the disc, J. Math. Anal. and Appl. 39 (1972), 125-158.
[F3] T.M. Flett, On the rate of growth of mean valeus of holomorphic and harmonic functions, Proc. London Math. Soc. 20 (1970), 749-768.
[HL1] G.H. Hardy, J.E. Littlewood, Some properties of fractional integrals II, Math. Z. 34 (1932), 403-439.
[HL2] G.H. Hardy, J.E. Littlewood, Theorems concerning mean values of analytic or harmonic functions, Quart. J. Math. 12 (1941), 221-256.
[K] C. N. Kellogg, An extension of the Hausdorff-Young Theorem, Michigan. Math. J. 18 (1971), 121-127.
[J1] S. Janson, Generalization on Lipschitz spaces and applications to Hardy spaces and bounded mean oscillation, Duke Math. J. 47 (1980), 959-982.
[M] M. Marzuq, Linear functionals on some weighted Bergman spaces, Bull. Austral. Math. Soc. 42 (1990), 417-425.
[MP1] M. Mateljevic, M. Pavlovic, L^{p} behaviour of power series with positive coefficients and Hardy spaces, Proc. Amer. Math. Soc. 87 (1983), 309-316.
[MP2] M. Mateljevic, M. Pavlovic, L^{p} behaviour of the integral means of analytic functions, Studia Math. 77 (1984), 219-237.
[M] A. Matheson, A Multipliers theorem for analytic functions of slow mean growth, Proc. Amer. Math. Soc. 77 (1979), 53-57.
[S] W. Sledd, Some results about spaces of analytic functions introduced by Hardy and Littlewood, J. London Math. Soc. 2 (1974), 328-336.
[Sh] J.H. Shapiro, Mackey topologies, reproducing kernels and diagonal maps on the Hardy and Bergman spaces, Duke Math. J. 43 (1976), 187-202.
[SW] A.L.Shields, D.L. Williams, Bounded projections, duality and multipliers in spaces of analytic functions, Trans. Amer. Math. Soc. 162, (1971), 287-302.
[W] P. Wojtaszcyk, Multipliers into Bergman spaces and Nevalinna class, Canad. Math. Bull. 33 (1990), 151-161.
[Z] K. Zhu, Operator theory in function spaces, Marcel Dekker, Inc., New York, 1990.

Departamento de Matemáticas, Universidad de Zaragoza, 50009 Zaragoza, Spain.
Current address:
E-mail address: Blasco@cc.unizar.es

[^0]: 1991 Mathematics Subject Classification. 42A45.
 Key words and phrases. Besov spaces, multipliers.
 This research has been partially supported by the Spanish DGICYT, Proyecto PS89-0106

