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Abstract. In the paper we find, for certain values of the parameters, the spaces of
multipliers

(
H(p, q, α), H(s, t, β)

)
and

(
H(p, q, α), ls

)
, where H(p, q, α) denotes the

space of analytic functions on the unit disc such that (1 − r)αMp(f, r) ∈ Lq( dr
1−r

).

As corollaries we recover some new results about multipliers on Bergman spaces and
Hardy spaces.

§0. Introduction.

Given two sequence spaces X and Y , we denote by (X,Y ) the space of multipliers
from X into Y , that is the space of sequences of complex numbers (λn) such that
(λnan) ∈ Y for (an) ∈ X.

When dealing with spaces of analytic functions defined on the open unit disc
D we associate to each analytic function f(z) =

∑∞
n=0 anz

n the corresponding
sequence of Taylor coefficients (an). In this sense any space of analytic functions
is regarded as a sequence space and it makes sense to study multipliers acting on
different classes of spaces such as Hardy spaces, Bergman spaces and so on.

During the last decade lots of results were obtained (see [AS, BST, DS1, M, MP1,
MP2, S2, SW]). Recently the interest on similar questions has been renewed and
some new results on multipliers on Hardy and Bergman spaces have been achieved
(see [W, MP3, JP, MZ, V]).

The aim of this paper is to study spaces of multipliers acting on certain general
classes of analytic functions, denoted by H(p, q, α), which consists of functions on
the unit disc such that

( ∫ 1

0
(1 − r)αq−1Mq

p (f, r)dr
)1/q

< ∞.
The definition of these classes goes back to the work of Hardy and Littlewood

(see [HL1,HL2]) and they were intensively studied for different reasons and by
several authors. The reader is referred to the papers [DRS, F1, F2, MP1, S1, Sh]
for information and properties on the spaces.

There are two different techniques used in the paper. On one hand the use of
a general theorem on operators acting on H(p, q, α) for 0 < p ≤ 1 which allows
us to find

(
H(p, q, α), H(s, t, β)

)
and

(
H(p, q, α), ls

)
for the cases 0 < p, q ≤ 1 and

1 ≤ s, t ≤ ∞ and also for 0 < p ≤ 1 ≤ q although only for particular cases of s and
t. In particular we can get a proof of the recent theorem, due to M. Mateljevic and
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2 O. BLASCO

M. Pavlovic (see [MP3]), which says that
(
H1, BMO

)
= Bloch and to realize that

this result still has an extension to the setting of H(p, q, α) spaces.
On the other hand, the use of Kintchine’s inequality allows us to see that mul-

tipliers on H(p, q, α) for values p ≥ 2 depend in most cases on those for H(2, q, α),
being these spaces isomorphic to l(2, q) (see definition below) and hence very easy
to deal with them. This will allow us, in particular, to extend an give simpler
proofs of the results on Bergman spaces Bp (corresponding to H(p, p, 1/p)) due to
P. Wojtaszczyk (see [W]).

The paper is divided into six sections. The first one has a preliminary character
and several general facts and properties on the spaces are shown. Sections 2 and
3 are devoted to the cases H(p, q, α) for values p = 2 and 0 < p ≤ 1 respectively,
finding useful Littlewood-Paley type characterizations of the spaces and a general
theorem on operators acting on H(p, q, α) when 0 < p, q ≤ 1. In Section 4 we
deal with multipliers

(
H(p, q, α), ls

)
recalling the known results and proving a

new one regarding the case 0 < p ≤ 1 ≤ q. Section 5 concerns with multipliers(
H(p, q, α), H(s, t, β)

)
and finally we obtain applications to Bergman and Hardy

spaces in the last section. Besides the results in [W, MP] just pointed out above
we can recover some new ones on multipliers acting on Bergman spaces Bp for
1 ≤ p ≤ 2 obtained in [MZ, V].

Throughout the paper all functions f will be analytic on the unit disc and λ may
be considered as a function λ(z) =

∑∞
n=0 λnz

n or as the sequence (λn) given by
its Taylor coefficients. If f(z) =

∑∞
n=0 anz

n and g(z) =
∑∞
n=0 bnz

n then we shall

write f ∗ g(z) =
∑∞
n=0 anbnz

n. As usual Mp(f, r) stands for
( ∫ 2π

0
|f(reiθ)|p dθ2π

)1/p

and we denote by Hp and Bp the classical Hardy and Bergman spaces respectively.
Finally recall that the notation p′ will be used for the conjugate exponent of p
verifying 1/p + 1/p′ = 1 and C will stand for a constant that may vary from line
to line.

§1. Background and preliminary results.

Definition 1.1. Let 0 < p ≤ ∞ and 0 < α, q < ∞. H(p, q, α) will be the space of
analytic functions on the open unit disc D satisfying

‖f‖p,q,α =
( ∫ 1

0

(1 − r)αq−1Mq
p (f, r)dr

)1/q
< ∞.

Let 0 < p ≤ ∞ and 0 < α. Hp
α (or H(p,∞, α)) will be the space of analytic

functions on the open unit disc D satisfying

‖f‖p,∞,α = sup
0<r<1

(1 − r)αMp(f, r)dr < ∞.

Let us collect some estimates to be used in the sequel.

Lemma A (General estimates). Let p1 ≤ p2, γ > 1 and δ < β. Then

(1.1) Mp2(f, r) ≤ C(1 − r)1/p2−1/p1Mp1(f, r)(see [D, page 84]),



MULTIPLIERS ON SPACES OF ANALYTIC FUNCTIONS 3

(1.2)
∫ 2π

0

dθ

|1 − zeiθ|γ = O(1/(1 − |z|)γ−1)(see [D, page 65]),

(1.3)
∫ 1

0

(1 − r)δ−1

(1 − rs)β
dr = O(1/(1 − s)β−δ)(see [SW, Lemma 6]).

We are going to formulate the results and properties that will be needed later
on. We start with some very elementary embeddings which follow easily from (1.1).

Lemma B (Embeddings). If 0 < p, q, α, p1 ≤ p2, q1 ≤ q2 and α1 ≤ α2. Then

(1.4) Hp2 ⊂ H(p2, q1, α1) ⊂ H(p1, q2, α2) ⊂ Hp1
α2
,

(1.5) H(p1, q, α) ⊂ H(p2, q, α + 1/p1 − 1/p2),

(1.6) H(p, q2, α) ⊂ H(p, q1, α + 1/q1 − 1/q2).

Now we shall state two easy results about multipliers with hold in general cases.

Lemma C (Multipliers). Let 0 < p1, p2, q1, q2, α, β < ∞, 1
p1

+ 1
p2

≥ 1, 1
p =

1
p1

+ 1
p2

− 1 and 1
q = 1

q1
+ 1
q2

. Then

(1.7) ‖f ∗ g‖p,q,α+β ≤ ‖f‖p1,q1,α‖g‖p2,q2,β .

Let 0 < q, α < ∞ and f(z) =
∑∞
n=0 anz

n. Then

(1.8)
( ∞∑
n=0

|an|q
(n + 1)qα+1

)1/q ≤ C‖f‖1,q,α.

Proof. (1.7) follows by applying consecutively Young’s and Hölder’s inequalities.
To show (1.8) we simply use the trival estimate |an|rn ≤ M1(f, r).

‖f‖1,q,α =
( ∞∑
n=1

∫ 1−1/(n+1)

1−1/n

(1 − r)qα−1Mq
1 (f, r)dr

)1/q

≥
( ∞∑
n=1

∫ 1−1/(n+1)

1−1/n

(1 − r)qα−1rqn|an|qdr
)1/q

≥
( ∞∑
n=1

|an|q
(n + 1)qα−1

1
n(n + 1)

(1 − 1
n

)nq
)1/q

≥ C
( ∞∑

0

|an|q
(n + 1)qα+1

)1/q
. �

The interest on these spaces appeared from their conection with Hardy spaces
and mainly from inequalities like the ones we mention in the next lemma. They
were shown in [HL1, F1, LP].
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Lemma D (Inequalities). Let 1 ≤ p ≤ 2 ≤ q < ∞. Then

(1.9)
( ∫ 1

0

(1 − r)
p
2Mp

2 (f ′, r)dr
) 1

p ≤ C‖f‖Hp
,

(1.10)
( ∫ 1

0

(1 − r)M2
p (f

′, r)dr
) 1

2 ≤ C‖f‖Hp
,

(1.11)
( ∫ 1

0

(1 − r)q−1Mq
q (f

′, r)dr
) 1

q ≤ C‖f‖Hq .

Remark 1.1. It is easy to see that (1.9) is equivalent to

(1.9′)
( ∫ 1

0

(1 − r)
−p
2 Mp

2 (f, r)dr
) 1

p ≤ C‖f‖Hp .

The two first inequalities are due to Hardy and Littlewood. The case p = 2 follows
from the Plancherel’s theorem, the case p = 1 from factorization of H1-functions
as product of two H2-functions and finally the cases 1 < p < 2 from interpolation
(see [D, Theorems 5.11, 5.6]). An alternative much simpler proof of (1.9), based
upon Marcinkiewich’s interpolation, was shown by Flett (see [F1]).

The inequality (1.11) is due to Littlewood an Paley (see [LP]) and it can be
obtained by means of the operator T (f) = (1− |z|)f ′(z). This operator is bounded
from H2 into L2

(
dr

1−r , L
2(dθ)

)
and from H∞ into L∞(

dr
1−r , L

∞(dθ)
)
, then we get

the other cases using interpolation.

Given f(z) =
∑∞
n=0 anz

n and β > 0 we denote by f (β) the fractional derivative
of f defined by f (β)(z) =

∑∞
n=0

Γ(β+n+1)
Γ(β)n! anz

n.
The reader is referred to [HL1, F1, F2, DRS] for different results on fractional

derivatives. Let us recall that for 1 ≤ p ≤ ∞, 0 < α, β < ∞ we have (see [D,
Theorem 5.5] for β = 1)

(1.12) f ∈ Hp
α if and only if f (β) ∈ Hp

α+β .

Next result cover other values of 0 < q < ∞ and although part of the folklore
we include here a proof because of the lack of any reference.

Theorem A (Fractional derivatives). Let 1 ≤ p ≤ ∞, 0 < q, α, β < ∞. Then
f belongs to H(p, q, α) if and only if f (β) belongs to H(p, q, α + β).

Proof. Let us assume f ∈ H(p, q, α). Denoting by Kβ(z) = 1/(1 − z)β+1 we can
write f (β) = f ∗Kβ , therefore

Mp(f (β), r2) ≤ Mp(f, r)M1(Kβ , r) ≤ C
1

(1 − r)β
Mp(f, r).
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From this easily follows that f (β) ∈ H(p, q, α + β).
Conversely, let us assume f (β) ∈ H(p, q, α + β) and β ≥ 1. Observe first that

f(z) =
∫ 1

0

(1 − s)β−1f (β)(sz)ds.

This gives

Mp(f, r) ≤
∫ 1

0

(1 − s)β−1Mp(f (β), rs)ds

= r−β
∫ r

0

(r − s)β−1Mp(f (β), s)ds

≤
∫ r

0

(1 − s)β−1Mp(f (β), s)ds

Hence

‖f‖p,q,α ≤
( ∫ 1

0

(1 − r)qα−1(
∫ r

0

(1 − s)β−1Mp(f (β), s)ds)qdr
)1/q = A.

To estimate A we consider first the case 0 < q ≤ 1. Then

Aq ≤
∫ 1

0

(1 − r)qα−1

∫ r

0

(1 − s)βq−1Mq
p (f

(β), s)dsdr

≤
∫ 1

0

(1 − s)qβ−1Mp(f (β), s)(
∫ 1

s

(1 − r)qα−1dr)ds

= (1/qα)‖f (β)‖qp,q,α+β .

Assume now q > 1. From(1.4) we have that f (β) ∈ H(p, 1, α + β) and then
integration by parts gives

Aq = (1/qα)
∫ 1

0

(1 − r)qα+β−1Mp(f (β), r)(
∫ r

0

(1 − s)β−1Mp(f (β), s)ds)q−1dr.

Now writting (1− r)qα+β−1 = (1− r)α+β−1/q(1− r)(q−1)α−1/q′ , Hölder’s inequality
gives

Aq ≤ C(
∫ 1

0

(1 − r)q(α+β)−1Mq
p (f

(β), r)dr)1/qAq/q
′
,

which is the desired inequality.
For general value of β we now argue as follows: If f (β) ∈ H(p, q, α + β) and

0 < β < 1 then f (β+1) ∈ H(p, q, α + β + 1) and now apply the previous case. �

Let us finish this section with a theorem about duality that we shall use later.
The reader is referred to [S1, F2, DRS, ACP, SW, Ma] for different duality resuls
on several cases.

We denote by H0(p, q, α) the closure of polynomials in H(p, q, α). It follows from
standard techniques that the polynomials are dense in H(p, q, α) when p, q < ∞,
that is H0(p, q, α) = H(p, q, α). Next theorem is due to T, M. Flett (see [F2,
Theorem 2]). We present here a proof by using a pairing which is convinient for
our purposes.
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Theorem B (Duality). Let 1 ≤ p ≤ ∞ and q ∈ {1,∞}. Then

(
H0(p, q, α)

)∗ = H(p′, q′, α)

under the pairing

< f, g >α=
∞∑
n=0

B(2α, n + 1)anbn

where B(a, b) =
∫ 1

0
(1 − r)a−1rb−1dr.

Proof. Let f(z) =
∑m
n=0 anz

n and g(z) =
∑∞
n=0 bnz

n. It is clear that

< f, g >α=
1
4π

∫ 1

0

(1 − r2)2α−1
( ∫ 2π

0

f(reiθ)g(re−iθ)dθ
)
rdr

Therefore using Hölder’s inequality twice one gets

| < f, g >α | ≤ C

∫ 1

0

(1 − r)2α−1Mp(f, r)Mp′(g, r)rdr ≤ C‖f‖p,q,α‖g‖p′,q′,α.

Assume now φ ∈
(
H0(p, 1, α)

)∗
and define f(z) = φ(Kz) where Kz(w) =

1
(1−zw)2α+1 .

Assume first q = 1. Using duality one can write

Mp′(f, r) = sup
‖g‖p=1

|
∫ 2π

0

f(reiθ)g(e−iθ)
dθ

2π
| = sup

‖g‖p=1

|φ(hr)|

where hr(z) =
∫ 2π

0
g(e−iθ)

(1−zreiθ)2α+1
dθ
2π = Kr ∗ g(z).

Observe that since Mp(hr, s) ≤ ‖g‖pM1(Kr, s), a simple computation, using
(1.2) and(1.3), gives ‖hr‖p,1,α ≤ C 1

(1−r)α . This and the previous equality imply
that f ∈ H(p′,∞, α).

Assume now q = ∞. Let us denote by fs(z) = f(sz) for 0 < s < 1. Using the
previous case one has

‖fs‖p′,1,α = sup
‖g‖p,∞,α=1

| < fs, g >α | = sup
‖g‖p,∞,α=1

|φ(gs)|.

Observe now that ‖gs‖p,∞,α ≤ ‖g‖p,∞,α for all 0 < s < 1. Hence ‖fs‖p′,1,α ≤ C‖φ‖.
Now apply Lebesgue convergence Theorem to get f ∈ H(p′, 1, α). �

§2. The space H(2, q, α).

A sequence space S is called a solid if (an) ∈ S and |a′n| ≤ |an| implies (an) ∈ S.
It is clear, from Plancherel’s theorem, that H(2, q, α) is a solid space. In fact,
since B(β, n) ≈ n−β , we can identify H(2, 2, α) with the space of sequences (λn)
such that (n−αλn) ∈ l2. Our aim is to get similar identification for other values of
0 < q < ∞ (see [MP1, S1]). For such a purpose we shall need the following spaces.
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Definition 2.1. Let 0 < p, q ≤ ∞. Denote by In = {k ∈ Z : 2n−1 ≤ k < 2n} and
I0 = {0}. The spaces l(p, q) consist of sequences (an) ∈ C such that

‖(an)‖p,q =
( ∑
n

(
∑
k∈In

|ak|p)q/p
)1/q

< ∞,

(with the obvious modifications for the cases where p or q = ∞.)

It is very elementary and well known that if αn ≥ 0 and α > 0 then

(2.1)
∞∑
n=0

αnr
n = O(

1
(1 − r)α

) if and only if
∑
k∈In

αk = O(2kα).

As a simple consequence of (2.1) and Plancherel’s theorem we can obtain, for
any α > 0,
(2.2) H2

α = {(λn) : n−αλn ∈ l(2,∞)}.
To characterize H(2, q,∞) for other values of q we shall use the following lemma.

Lemma 2.1. Let 0 < q, β < ∞ and αn ≥ 0. Then∫ 1

0

(1 − r)βq−1(
∞∑
n=0

αnr
n)qdr ≈

∞∑
n=0

2−nβq(
∑
k∈In

αk)q.

Proof.∫ 1

0

(1 − r)βq−1(
∞∑
n=0

αnr
n)qdr =

∞∑
n=0

∫ 1−2−(n+1)

1−2−n

(1 − r)βq−1(
∞∑
n=0

αnr
n)qdr

≥ C

∞∑
n=0

2−n(βq−1)

∫ 1−2−(n+1)

1−2−n

(
∑
k∈In

αkr
k)qdr

≥ C

∞∑
n=0

2−n(βq−1)(
∑
k∈In

αk)q
∫ 1−2−(n+1)

1−2−n

r2nqdr

≥ C

∞∑
n=0

2−nβq(
∑
k∈In

αk)q.

Let us now show the converse inequality. Assume first 0 < q ≤ 1.∫ 1

0

(1 − r)βq−1(
∞∑
n=0

αnr
n)qdr ≤ C

∫ 1

0

(1 − r)βq−1
( ∞∑
n=0

(
∑
k∈In

αk)r2n−1
)q
dr

≤ C

∫ 1

0

(1 − r)βq−1
( ∞∑
n=0

(
∑
k∈In

αk)qr(2n−1)q
)
dr

≤ C

∞∑
n=0

∫ 1

0

(1 − r)βq−1r2nq−1(
∑
k∈In

αk)qdr

≤ C

∞∑
n=0

B(βq, 2nq)(
∑
k∈In

αk)q

≤ C

∞∑
n=0

2−nβq(
∑
k∈In

αk)q.
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Assume now 1 < q < ∞. Write

Φ(λn) = (1 − r)β(
∞∑
n=0

nβλnr
n).

Clearly (2.1) gives that Φ is a bounded operator from l(1,∞) to L∞([0, 1], dr1−r )
and the previous case q = 1 shows that Φ is also bounded from l(1, 1) into L1([0, 1], dr1−r ),
then an interpolation argument shows

∫ 1

0

(1 − r)βq−1(
∞∑
n=0

αnr
n)qdr ≤ C

∞∑
n=0

2−nβq(
∑
k∈In

αk)q. �

Theorem 2.1 (see [S1, MP1]). Let 0 < q ≤ ∞, α > 0 and f(z) =
∑∞
n=1 anz

n.
Then

f ∈ H(2, q, α) if and only if n−αan ∈ l(2, q).

Proof. Use Plancherel’s Theorem together with Lemma 2.1 or (2.1) according to
q < ∞ or q = ∞ respectively.

Remark 2.1. Clearly one can formulate Theorem 2.1 by writing

‖f‖2,q,α ≈
( ∞∑
n=0

2−nqα‖∆nf‖q2
)1/q

where ∆nf(θ) =
∑
k∈In ake

ikθ.
This can be extended to 1 < p < ∞, 0 < q < ∞ and α > 0 (see [S1, MP2]) to

get

(2.3) ‖f‖p,q,α ≈
( ∞∑
n=0

2−nqα‖∆nf‖qp
)1/q

.

Using (2.3) one can easily obtain the following duality result for 1 < p, q < ∞ and
α > 0 (see [S1])

(2.4)
(
H(p, q, α)

)∗
= H(p′, q′, α),

under the pairing < f, g >α=
∑∞
n=0 2−2αn

∫ 2π

0
∆nf(θ)∆ng(−θ) dθ2π .

Given a sequence space X, we denote by s(X) and S(X) the largest solid sub-
space contained within X and the smallest solid containing X respectively.

It is not hard to show (see [BST, AS]) the following two characterizations:

s(X) = {λn : anλn ∈ X for every (an) ∈ l∞} = (l∞, X),

S(X) = {λn : there exists (an) ∈ X such that |λn| ≤ |an|}.

Let us give S
(
H(p, q, α)

)
and s

(
H(p, q, α)

)
in the cases which are easy to com-

pute. Next results follows from either Kintchine’s inequality the case p < ∞ or a
result by Kisliakov (see [Ki]) the case p = ∞.
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Lemma 2.2. Let 0 < t ≤ 2 ≤ p < ∞, 0 < q ≤ ∞ and α > 0. Then

(2.5) S
(
H(∞, q, α)

)
= H(2, q, α),

(2.6) S
(
H(p, q, α)

)
= H(2, q, α),

(2.7) s
(
H(t, q, α)

)
= H(2, q, α).

Remark 2.2. We refer the reader to [BST, Theorem 1.8] and [MP2, Theorem 2.4]
for a proof of (2.5), to [MP2, Theorem 2.5] for a proof of (2.6) and to [AS, Lemma
6] for a particular case of (2.7).

§3. The space H(p, q, α) for 0 < p ≤ 1.

Our objective now is to extend (2.3) to values 0 < p ≤ 1. This can be achieved
by replacing the convolution with Dirichlet kernels

∑
k∈In eikθ by smooth kernels.

In [JP] the following functions wn were considered:

w0(z) = 1 + z, wn(z) =
2n+1∑
k=2n−1

φ(
k

2n−1
)zn

where φ(t) = w(t/2) − w(t) and w(t) is any infinitely differentiable function with
w(t) = 1 for t ≤ 1, 0 ≤ w(t) ≤ 1 for 1 ≤ t ≤ 2 and w(t) = 0 for t ≥ 2.

For such functions they showed that for 0 < p ≤ 1 and any analytic function f
one has

(3.1) f =
∞∑
n=0

f ∗ wn,

(3.2) ‖f ∗ wn‖p ≤ C‖f‖p.

Theorem 3.1. Let 0 < p ≤ 1, 0 < q, α < ∞ and f an analytic function. Then

(3.3) ‖f‖p,q,α ≈
( ∞∑
n=0

2−nqα‖f ∗ wn‖qp
)1/q

.

Proof. Using (3.1) it easily follows

Mp(f, r) ≤
( ∞∑
n=0

Mp
p (f ∗ wn, r)

)1/p

.
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Using now the fact (see [MP2, S2])

(3.4) Mp(f ∗ wn, r) ≈ r2n‖f ∗ wn‖p,

we can write

‖f‖qp,q,α ≤ C

∫ 1

0

(1 − r)αq−1
( ∞∑
n=0

‖f ∗ wn‖pprp2
n)q/p

dr.

Applying now Lemma 2.1 we get

‖f‖p,q,α ≤ C
( ∞∑
n=0

2−nqα‖f ∗ wn‖qp
)1/q

.

For the converse inequality we use (3.2) and (3.4) to get

∫ 1

0

(1 − r)qα−1Mq
p (f, r)dr =

∞∑
n=0

∫ 1−2−(n+1)

1−2−n

(1 − r)qα−1Mq
p (f, r)dr

≥ C

∞∑
n=0

2−n(qα−1)

∫ 1−2−(n+1)

1−2−n

Mq
p (f, r)dr

≥ C

∞∑
n=0

2−n(qα−1)‖f ∗ wn‖qp
∫ 1−2−(n+1)

1−2−n

r2nqdr

≥ C

∞∑
n=1

2−nqα‖f ∗ wn‖qp. �

Remark 3.1. A similar argument to the one used above, replacing wn ∗ f by ∆nf ,
gives an alternative proof of (2.3) (the restriction on 1 < p < ∞ coming from the
use of the boundedness of the Riesz transform).

Corollary 3.1. Let 0 < p ≤ 1 and 0 < q, α < ∞ and f(z) =
∑∞
n=0 anz

n. Then

‖n−(α+ 1
p−1)an‖∞,q ≤ C‖f‖p,q,α.

Proof. Note that if φn = wn−1 + wn then |φ̂n(k)| ≥ C for k ∈ In. Therefore

sup
k∈In

|ak| ≤
1
C
‖φn ∗ f‖1.

This together with (3.3) implies that for any β,

‖n−βan‖∞,q ≤ C‖f‖1,q,β .

The proof is completed taking β = α + 1
p − 1 and using that ‖f‖1,q,α+ 1

p−1 ≤
‖f‖p,q,α which is given by (1.5). �
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Corollary 3.2. Let 1 ≤ p ≤ 2 ≤ s < ∞, 0 < q < ∞, 1 < t < ∞ and 0 < α, β < ∞.
If f(z) =

∑∞
n=0 anz

n then

(3.4) ‖n−αan‖p′,q ≤ C‖f‖p,q,α,

(3.5) ‖f‖s,t,β ≤ C‖n−βan‖s′,t.

Proof. Using Corollary 3.1 and Theorem 2.2 we have

H(1, q, α) ⊂ {an : n−αan ∈ l(∞, q)},

H(2, q, α) = {an : n−αan ∈ l(2, q)}.
Hence an interpolation argument gives

H(p, q, α) ⊂ {an : n−αan ∈ l(p′, q)}.

To get (3.5) we apply duality. Since 1 < s′, t′ < ∞ applying (2.4) we get

< f, g >β=
∞∑
n=0

2−2βn
∑
k∈In

akbk.

Then (3.4) easily gives

‖f‖s,t,β = sup
‖g‖s′,t′,β≤1

|
∞∑
n=0

2−2βn
∑
k∈In

akbk|

≤ sup
‖g‖s′,t′,β≤1

‖(n−βan)‖s′,t‖(n−βbn)‖s,t′

≤ C‖(n−βan)‖s′,t. �

Next we shall show that the study of multipliers and, in general, of operators
acting on H(p, q, α) for 0 < p, q ≤ 1 relies upon the case H(1, 1, α + 1

p − 1). The
reader is referred to [B1] for a more general formulation of the following result and
its applications.

Theorem 3.2. Let α > 0, 0 < p, q ≤ 1 and E be a Banach space. Let T be a
linear map from the space of polynomials into E. Then the following are equivalent

(i) T extends to a bounded operator from H(p, q, α) into E.
(ii) ‖T (Kw)‖E = O( 1

(1−|w|)α ) where Kw(z) = 1

(1−zw̄)
2α+ 1

p

(iii) T extends to a bounded operator from H(1, 1, α + 1
p − 1) into E.

Proof. (a) ⇒ (b). It follows from estimating ‖Kw‖p,q,α, since ‖T (Kw)‖E ≤ C‖Kw‖p,q,α.
Using (1.2) and (1.3) we have

( ∫ 1

0

(1 − r)αq−1Mq
p (Kw, r)dr

)1/q ≤ C
( ∫ 1

0

(1 − r)αq−1

(1 − |w|r)2αq dr
)1/q ≤ C

1
(1 − |w|)α .
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(b) ⇒ (c). Since the polynomials are dense in H(1, 1, α + 1
p − 1) then it suffices to

prove ‖T (f)‖E ≤ C‖f‖1,1,α+ 1
p−1 for all polynomials f .

It is immediate to show that if β > 0 and f is a polynomial then

f(z) =
∫ 1

0

∫ 2π

0

(1 − r)β−1 f(reiθ)
(1 − zre−iθ)β+1

dr
dθ

2π
.

Take β = 2α + 1
p − 1 and a polynomial f , then we have

f(z) =
∫ 1

0

∫ 2π

0

(1 − r)β−1f(reiθ)Kre−iθ (z)dr
dθ

2π
.

Then, by linearity

T (f) =
∫ 1

0

∫ 2π

0

(1 − r)β−1f(reiθ)T (Kre−iθ )dr
dθ

2π
.

Therefore

‖T (f)‖E ≤
∫ 1

0

∫ 2π

0

(1 − r)β−1|f(reiθ)|‖T (Kre−iθ )‖Edr
dθ

2π

≤ C

∫ 1

0

(1 − r)β−1M1(f, r)
(1 − r)α

dr = C‖f‖1,1,α+ 1
p−1

(c) ⇒ (a). It follows from (1.5). �

Remark 3.2. Note that the previous result essentially shows that the Banach enve-
lope of H(p, q, α) for 0 < p, q ≤ 1 is H(1, 1, α+ 1

p − 1) (see [DRS, Sh] for particular
cases).

§4. Multipliers
(
H(p, q, α), ls

)
.

There is a general procedure to deal with multipliers from spaces of analytic
functions into lp spaces (see [BST, AS]) which consists of identifying the smallest
solid containing the space. This approach can be applied for values 2 ≤ p ≤ ∞.

Lemma 4.1 (see [AS, Lemma 3]). Let X be a sequence space and S be a solid.
Then

(4.1) (X,S) = (S(X), S),

(4.2) (S,X) = (S, s(X)).

Lemma 4.2 (see [K]). Let 0 < p1, q1, p2, q2 ≤ ∞. If we write 1
p = 1

min(p1,p2)
− 1
p1

and 1
q = 1

min(q1,q2)
− 1
q1

then

(
l(p1, q1), l(p2, q2)

)
= l(p, q).

As a simple consequence of (4.1), Lemmas 2.2 and 4.2 and Theorem 2.1, we can
state the following
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Theorem 4.1. Let 2 ≤ p ≤ ∞, 0 < q ≤ ∞ and 0 < α < ∞. If 1
r = 1

min(s,2) − 1
2

and 1
t = 1

min(s,q) − 1
q then

(
H(p, q, α), ls

)
= {λn : nαλn ∈ l(r, t)}.

Now we shall try to study the case H(p, q, α) for p ≤ 1. Our main tool will be
the Theorem 3.2.

Theorem 4.2. Let 0 < p, q ≤ 1 ≤ s ≤ ∞
(
H(p, q, α), ls

)
= {λn : nα+ 1

p−1λn ∈ l(s,∞)}.

Proof. Apply Theorem 3.2 and observe that condition (ii) says that (λn) belongs
to

(
H(p, q, α), ls

)
if and only if

∞∑
n=0

(
|µn||λn||w|n

)s = O(1/(1 − |w|)αs),

where (µn) are the Taylor coefficients of 1/(1 − z)2α+1/p.
Therefore, estimating µn ≈ n2α+1/p−1 and using (2.1) we get nα+ 1

p−1λn ∈
l(s,∞). �
Remark 4.1. The case p = q = 1 of the previous result was already known (see
[DS1, Theorem 2]), and then, the equivalence between (i) and (iii) in Theorem 3.2
might have been used, but we have decided to include here this simple direct proof.

Theorem 4.3. Let 0 < p ≤ 1 ≤ q ≤ s and 0 < α < ∞. If 1
r = 1

min( s
s−q ,q)

+ q
s − 1

then (
H(p, q, α), ls

)
= {λn : nα+ 1

p−1λn ∈ l(r,∞)}.

Proof. Let us start with the case s = q. Then also r = q. Assume first that
(λn) ∈ (H(p, q, α), ls). Denoting by Vn the de la Vallé Poussin kernel, we consider

φn(t) = V2n(t + 2n)

Since ‖Vn‖1 ≤ 3 for all n ∈ N then it follows that M1(φn, r) ≤ Cr2n

and therefore
‖φ‖1,q,β ≤ C2−nβ for any β > 0.

On the other hand Vn is a polynomial of degree 2n+1 having V̂n(j) = 1 for
|j| ≤ n + 1 and then the assumption on (λn) and (1.5) imply

(
∑
k∈In

|λn|s)1/s ≤ (
∑
k∈In

|φ̂n(k)λk|s)1/s ≤ C‖φ‖p,q,α

≤ C‖φ‖1,q,α+1/p−1 ≤ C2−n(α+1/p−1).
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Assume now that nα+ 1
p−1λn ∈ l(q,∞) and use Corollary 3.1 to have

∞∑
n=0

|λn|q|an|q ≤
∞∑
n=0

( ∑
k∈In

|λn|q|an|q
)

≤
∞∑
n=1

( ∑
k∈In

n(α+ 1
p−1)q|λn|q

)(
sup
k∈In

n−(α+ 1
p−1)q|an|q

)

≤ C‖nα+ 1
p−1λn‖qq,∞‖n−(α+ 1

p−1)an‖q∞,q ≤ C‖f‖qp,q,α.

Let us now show that the case q < s follows from the previous one. Using duality
one has that if 1

t = 1 − q
s then

(λn) ∈
(
H(p, q, α), ls

)
if and only if (λnβn) ∈

(
H(p, q, α), lq

)
for all (βn) ∈ lt.

From the previous case this means (nα+ 1
p−1λnβn) ∈ l(q,∞) for all (βn) ∈ lt,

that is nα+ 1
p−1λn ∈

(
l(t, t), l(q,∞)

)
. Then the proof is completed by invoking

Lemma 4.2. �
Remark 4.2. For 0 < p ≤ 1 and q = ∞ the multipliers can be characterized for all
0 < s ≤ ∞. The reader is referred to [M, Theorem 1] for a proof of the following
result

(4.3)
(
Hp
α, l

s
)

= {λn : nα+ 1
p−1λn ∈ ls}.

Let us conclude with a partial result for the values 1 ≤ p ≤ 2.

Theorem 4.4. Let 1 ≤ p ≤ 2. Let 0 < q < ∞ and s ≤ min(p′, q). Put 1
p + 1

p′ = 1,
1
r = 1

s − 1
p′ and 1

t = 1
s − 1

q .

If (nαλn) ∈ l(r, t) then (λn) ∈
(
H(p, q, α), ls

)
.

Proof. Using (3.4) and Hölder’s inequality for p′

s and q
s consecutively we have

∞∑
n=0

|λn|s|an|s ≤
∞∑
n=1

( ∑
k∈In

|λn|s|an|s
)

∞∑
n=1

( ∑
k∈In

n−αp′ |an|p
′)s/p′( ∑

k∈In
nαr|λn|r

)s/r

≤ C‖(n−αan)‖sp′,q
( ∞∑
n=1

(
∑
k∈In

nαr|λn|r)t/r
)s/t

≤ C‖f‖sp,q,α‖nαλn‖sr,t. �

§5. Multipliers
(
H(p, q, α), H(s, t, β)

)
.

Lemma 5.1. Let 0 < p, q < ∞. Let f(z) =
∑∞
n=0 anz

n. Let us denote by
fx(z) =

∑∞
n=0 rn(x)anzn where rn stand for the Rademacher functions. Then

Mq
2 (f, r) ≈

∫ 1

0

Mq
p (fx, r)dx.
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Proof. For p ≤ q we have

( ∫ 1

0

Mp
p (fx, r)dx

)1/p ≤
( ∫ 1

0

Mq
p (fx, r)dx

)1/q ≤
( ∫ 1

0

Mq
q (fx, r)dx

)1/q
.

For q ≤ p we have

( ∫ 1

0

Mq
q (fx, r)dx

)1/q ≤
( ∫ 1

0

Mq
p (fx, r)dx

)1/q ≤
( ∫ 1

0

Mp
p (fx, r)dx

)1/p
.

Then the proof follows form these estimates together with Kintchine’s inequality
which says

( ∫ 1

0

Mq
q (fx, r)dx

)1/q ≈ M2(f, r) ≈
( ∫ 1

0

Mp
p (fx, r)dx

)1/p
. �

Theorem 5.1. Let 0 < s ≤ 2 ≤ p < ∞, 0 < q, t < ∞ and α, β > 0. Let
1/r = 1/min(q, t) − 1/q. Then

(
H(p, q, α), H(s, t, β)

)
= {(λn) : nα−βλn ∈ l(∞, r)}.

Proof. Using Theorem 2.1 and Lemma 4.2 we have
(
H(2, q, α), H(2, t, β)

)
= {(λn) : nα−βλn ∈ l(∞, r)}.

We shall show that
(
H(p, q, α), H(s, t, β)

)
=

(
H(2, q, α), H(2, t, β)

)
.

It is immediate that ((H(2, q, α), H(2, t, β)) ⊂
(
(H(p, q, α), H(s, t, β)

)
.

Take now λn ∈
(
(H(p, q, α), H(s, t, β)

)
and f(z) =

∑∞
n=0 anz

n ∈ H(p, q, α).

Denote by (f ∗ λ)x(z) =
∑∞
n=0 rn(x)anλnzn.

In the case t < ∞ an application of Lemma 5.1 and Fubini’s Theorem give
∫ 1

0

(1 − r)βt−1M t
2(f ∗ λ, r)dr ≤ C

∫ 1

0

(1 − r)βt−1
( ∫ 1

0

M t
s((f ∗ λ)x, r)dx

)
dr

≤ C

∫ 1

0

( ∫ 1

0

(1 − r)βt−1M t
s(fx ∗ λ, r)dr

)
dx

≤ C

∫ 1

0

( ∫ 1

0

(1 − r)αq−1Mq
p (fx, r)dr

)t/q
dx = A.

Now if t ≤ q then apply Jensen’s inequality, Fubini and use Lemma 5.1 again, to
get

A ≤ C
( ∫ 1

0

(1 − r)αq−1(
∫ 1

0

Mq
p (fx, r)dx

)
dr

)t/q

≤ C
( ∫ 1

0

(1 − r)αq−1Mq
2 (f, r)dr

)t/q
.
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If t > q put r = t
q and apply duality and Lemma 5.1 to get

A ≤ C sup
‖h‖r′=1

( ∫ 1

0

( ∫ 1

0

(1 − r)αq−1Mq
p (fx, r)dr

)
h(x)dx

)t/q

≤ C
( ∫ 1

0

(1 − r)αq−1
( ∫ 1

0

M t
p(fx, r)dx

)q/t
dr

)t/q

≤ C
( ∫ 1

0

(1 − r)αq−1Mq
2 (f, r)dr

)t/q
. �

Theorem 5.2. Let 1 < s ≤ 2 ≤ p ≤ ∞, 1 < t ≤ ∞ and α, β > 0. Then
(
Hp
α, H(s, t, β)

)
= {(λn) : nα−βλn ∈ l(∞, t)}.

Proof. Arguing as in the previous theorem we only need to show
(
Hp
α, H(s, t, β)

)
⊂

(
H2
α, H(2, t, β)

)
.

Observe that (X,Y ) ⊂ (Y ∗, X∗) then Theorem B or (2.4) in Remark 2.1 imply
(
H(p,∞, α), H(s, t, β)

)
⊂

(
H0(p,∞, α), H0(s, t, β)

)
⊂

(
H(s′, t′, β), H(p′, 1, α)

)
.

Now apply Theorem 5.1 and duality again to get(
H(s′, t′, β), H(p′, 1, α)

)
=

(
H(2, t′, β), H(2, 1, α)

)
⊂

(
H(2,∞, α), H(2, t, β)

)
.

The proof is completed by combining both sequences of embeddings. �
Remark 5.1. Theorems 5.1 and 5.2 have a natural extension to weights more general
than power weights w(t) = tα(see [B2]).

Lemma 5.2. Let 0 < p, q ≤ ∞ and 0 < α, β < ∞. Let f be an analytic function
on the disc and fr(z) = f(rz). Then

f ∈ Hp
α+β if and only if ‖fr‖p,q,α = O(

1
(1 − r)β

).

Proof. Let us assume q < ∞ (since q = ∞ is obvious) and Mp(f, s) = O( 1
(1−s)α+β ).

Then it follows from (1.3) that
∫ 1

0

(1 − s)qα−1Mq
p (fr, s)ds ≤ C

∫ 1

0

(1 − s)qα−1

(1 − rs)(α+β)q
ds ≤ C

(1 − r)qβ
.

Conversely observe that

(1 − s)αMp(fr, s) ≤
( ∫ 1

s

(1 − t)αq−1Mq
p (fr, t)dt

)1/q ≤ ‖fr‖p,q,α.

Therefore if ‖fr‖p,q,α = O( 1
(1−r)β ) then Mp(f, rs) ≤ C

(1−s)α(1−r)β which gives f ∈
Hp
α+β . �
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Theorem 5.3. Let 0 < p, q ≤ 1, 1 ≤ s, t ≤ ∞ and α, β > 0. Let γ = α + 1/p− 1.
Then (

H(p, q, α), H(s, t, β)
)

= {(λn) : λ(γ) ∈ Hs
β}.

Proof. From Theorem 3.2 the condition for λ to be a multiplier is

‖λ ∗Kw‖s,t,β = O(
1

(1 − |w|)α ),

where Kw(z) = 1/(1 − zw̄)2α+1/p. In other words, writing δ = 2α + 1/p − 1 and
w = r,

‖λ(δ)
r ‖s,t,β = O(

1
(1 − r)α

).

Hence Lemma 5.2 implies that λ(δ) ∈ Hs
α+β and then (1.12) gives λ(γ) ∈ Hs

β . �

Theorem 5.4. Let 0 < p ≤ 1, 1 ≤ s, q ≤ ∞ and α, β > 0. Let γ = α + 1/p − 1.
Then (

H(p, q, α), H(s, q, β)
)

= {(λn) : λ(γ) ∈ Hs
β}.

Proof. Assume (λn) ∈
(
H(p, q, α), H(s, q, β)

)
and fix 0 < r < 1. Therefore

‖
∞∑
n=0

Γ(2γ + n + 1)
Γ(2γ)n!

λnr
nzn‖s,q,β ≤ C‖Kγ,r‖p,q,α,

where Kγ,r(z) = 1
(1−rz)2γ+1 .

Since ‖Kγ,r‖p,q,α ≤ C
(1−r)γ then ‖λ(2γ)

r ‖s,q,β ≤ C
(1−r)γ . Now Lemma 5.2 and

(1.12) imply that λ(γ) ∈ Hs
β .

For the converse first note that since H(p, q, α) ⊂ H(1, q, γ) then it suffices to
show that if λγ ∈ Hs

β then λ ∈
(
H(1, q, γ), H(s, q, β)

)
.

Assume first that γ ≥ 1
2 and λ(γ) ∈ Hs

β . From (1.12) we have λ(2γ) ∈ Hs
γ+β .

To show that (λn) ∈
(
H(p, q, α), H(s, q, β)

)
is equivalent, by duality (see Theo-

rem B and (2.4), to show that

(5.1) |
∞∑
n=0

B(2β, n + 1)λnanbn| ≤ C‖f‖1,q,γ‖g‖s′,q′,β ,

for all f(z) =
∑∞
n=0 anz

n ∈ H(1, q, γ) and g(z) =
∑∞
n=0 bnz

n ∈ H0(s′, q′, β).
On the other hand given f and g as above, (1.7) in Lemma C implies that∑∞
n=0 anbnz

n ∈ H0(s′, 1, γ + β), and duality again gives

|
∞∑
n=0

B(2β, n + 1)λnanbn| =|
∞∑
n=0

B(2β + 2γ, n + 1)µnanbn|

≤ C‖h‖s,∞,γ+β‖f ∗ g‖s′,1,γ+β ,
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where µn = B(2β,n+1)
B(2β+2γ,n+1)λn and h(z) =

∑∞
n=0 µnz

n.
Hence the proof of (5.1) will be finished, using (1.7), by showing h ∈ Hs

γ+β .

Now observe that denoting by δn = B(2β,n+1)
B(2(β+γ),n+1) , a simple computation, under

the assumption γ ≥ 1
2 , shows that δn+1 + δn−1 ≥ 2δn. This allows us to consider

K(t) =
∑∞

−∞ δne
int which from the convexity condition is integrable (see [Ka, page

22]). Therefore since h(reiθ) = K ∗ λ(reiθ) we get ‖h‖s,∞,γ+β ≤ C‖λ(2γ)‖s,∞,γ+β .
The case γ < 1

2 follows from the previous case by observing that (1.12) gives
that λ(γ) ∈ Hs

β is equivalent to λ(γ+1) ∈ Hs
β+1 and that Theorem A gives that(

H(1, q, γ), H(s, q, β)
)

=
(
H(1, q, γ + 1), H(s, q, β + 1)

)
. �

Let us finisish the section with a partial result for 1 ≤ p ≤ 2.

Theorem 5.5. Let 1 ≤ p ≤ 2 ≤ s < ∞. Let 0 < q < ∞, 1 < t < ∞ and
0 < α, β < ∞. Put 1

r = 1
p − 1

s and 1
u = 1

min{q,t} − 1
q .

If (nα−βλn) ∈ l(r, u) then (λn) ∈
(
H(p, q, α), H(s, t, β)

)
.

Proof. The proof follows by combining Corollary 3.2 and Lemma 4.2.
If f(z) =

∑∞
n=0 anz

n we can write

‖
∞∑
n=0

λnanz
n‖s,t,β ≤ ‖(n−βλnan)‖s′,t

≤ ‖(nα−βλn)‖r,u‖(n−αan)‖p′,q
≤ C‖(nα−βλn)‖r,u‖f‖p,q,α.qed

§6. Applications to multipliers on Bergman and Hardy spaces.

Since Bp = H(p, p, 1/p) Theorems 5.1 and 5.2 give

Corollary 6.1 (see [W, Theorems 7 and 11]). Let α > 0, 1 < p ≤ 2 ≤ q < ∞ and
1
r = 1

q − 1
p . Then

(Bq, Bp) = {λn : n− 1
r λn ∈ l(r,∞)},

(H∞
α , Bp) = {λn : nα−

1
pλn ∈ l(p,∞)}.

Remark 6.1. Assume λn ∈ (X,Y ) can be written as λn = µnνn where µn ∈ (X,S)
and νn ∈ (S, Y ) for some solid space S, then it follows from (4.1) and (4.2) that
(X,Y ) =

(
S(X), s(Y )

)
. Therefore an alternative proof of Corollary 6.1 consists of

showing that λn ∈ (Bq, Bp) can be written as λn = µnνn where µn ∈ (Bq, l2) and
νn ∈ (l2, Bp) (see [W, Proposition 1]).

Let us recall that an analytic function is said to be a Bloch function if

|f ′(z)| = O(1/(1 − |z|).
Hence we have for any α > 0

Bloch = {f : f (α) ∈ H(∞,∞, α)}.
With this notation Theorems 5.3 and 5.4 give the following
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Corollary 6.2. Let 1 ≤ p, q ≤ ∞, 1 ≤ t ≤ ∞ and β > α > 0.

(6.1)
(
H(1, 1, α), H(∞, t, α)

)
= Bloch,

(6.2)
(
H(1, q, α), H(∞, q, α)

)
= Bloch,

(6.3)
(
H1
α, H

p
β

)
= Hp

β−α.

To get our next applications let us denote by Jp,q the space of analytic functions
f such that f ′ ∈ H(p, q, 1). With this notation Bloch corresponds to J∞,∞, and
Lemma D allows us to write the following embeddings:

(6.4) J1,1 ⊂ H1 ⊂ J1,2.

(6.5) Jq,q ⊂ Hq (q ≥ 2).

Note that for “nice” analytic functions f and g

∫ 2π

0

f(eiθ)g(e−iθ)
dθ

2π
=

1
2

∫ 1

0

∫ 2π

0

(1 − r2)f ′(reiθ)g′(re−iθ)rdr
dθ

2π
.

Using this equality a simple duality argument gives

(6.4′) J∞,2 ⊂ BMO ⊂ Bloch.

(6.5′) Hp ⊂ Jp,p (p ≤ 2).

Corollary 6.3 (see [MP, Theorem 1]). (H1, BMO) = Bloch.

Proof. Note that we have (Jp,q, Jr,s) =
(
H(p, q, 1), H(r, s, 1)

)
.

Using (6.4),(6.4’) and (6.2) we have

Bloch =
(
H(1, 2, 1), H(∞, 2, 1)

)
= (J1,2, J∞,2) ⊂ (H1, BMO).

Using (6.4),(6.4’) and (6.1) we have

(H1, BMO) ⊂ (J1,1, J∞,∞) =
(
H(1, 1, 1), H(∞,∞, 1)

)
= Bloch.

Let us now give a different approach to the following result due to MacGregor
and Zhu.
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Corollary 6.4 ([MZ, Theorem A]). Let 1 ≤ p ≤ 2.
Then B(n + 1, 1/p) ∈ (Bp, Hp).

Proof. Observe that to show that for all (an) we have

‖
∞∑
n=0

B(n + 1, 1/p)anzn‖Hp ≤ C‖
∞∑
n=0

anz
n‖Bp ,

is equivalent to show that for all (an) we have

‖
∞∑
n=0

anz
n‖Hp ≤ C‖

∞∑
n=0

Γ(n + 1 + 1/p)
Γ(1/p)n!

anz
n‖Bp .

Then the proof is finished by using (6.5’) together with Theorem A which implies
that f (1/p) ∈ H(p, p, 1/p) if and only if f ∈ Jp,p. �

We shall finish the section with some new results on multipliers on Bergman
spaces. Let us first show two elementary lemmas.

Lemma 6.1. Let 1 ≤ p ≤ 2 ≤ q < ∞. Let f(z) =
∑∞
n=0 anz

n.

(i) If f ∈ Bp then (n1/2−2/pan) ∈ l(2, p).
(ii) If (n1/2−2/qan) ∈ l(2, q) then f ∈ Bq.

Proof. From (1.9) one has
∫ 1

0

(1 − r)p/2Mp
2 (f ′, r)dr ≤ C‖f‖pHp .

This implies ∫ 1

0

∫ 1

0

(1 − r)p/2Mp
2 (f ′, rs)drds ≤ C‖f‖pBp .

Now applying Plancherel together with Lemma 2.1 one easily gets

‖(n1/2−2/pan)‖2,p ≤ C‖f‖Bp .

This gives the proof of (i).
We can easily get (ii) from (i) using a dual argument from the identity

∞∑
n=0

1
n + 1

anbn =
1
2

∫ 1

0

∫ 2π

0

f(reiθ)g(re−iθ)rdr
dθ

2π
. �

Remark 6.2. Lemma 6.1 might have been shown by using Corollary 3.2 which gives
better estimates.

Lemma 6.2. Let 2 ≤ q < ∞ and 0 < α, β < ∞.
If λn = O(nα−β−1/q′) then λ(β) ∈ Hq

α.

Proof. It is elementary to see that λn = O(nα−β−1/q′) implies

M2(λ(β), r) = O(1/(1 − r)α+1/q−1/2).

Now use (1.1) to get λ(β) ∈ Hq
α. �
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Corollary 6.5 (see [V, Theorem 2]). Let 0 < p ≤ 2 ≤ q < ∞.
If λn = O(n2/q−2/p) then λn ∈ (Bp, Bq)

Proof. The case 1 < p ≤ 2 follows trivially combining (i) and (ii).
For the case 0 < p ≤ 1 we can use Theorem 5.3 to get

(Bp, Bq) = {(λn) : λ(2/p−1) ∈ Hq
1/q},

and then apply Lemma 6.2 with α = 1/q and β = 2/p − 1 to show that λn =
O(n2/q−2/p) gives λ(2/p−1) ∈ Hq

1/q. �

In [V] Vukotic showed that for sequences λn = O(nγ) the exponent γ = 2/q − 2/p
was sharp in the case of multipliers in (Bp, Bq). A better result in the setting of
l(p, q) spaces follows from Theorem 5.5.

Corollary 6.6. Let 1 < p ≤ 2 ≤ q < ∞. Put 1
r = 1

p − 1
q .

If
∑
k∈In |λk|r = O(2n) then λn ∈ (Bp, Bq).
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