Norm estimates for operators from H^{p} to ℓ^{q}.

Oscar Blasco
Department of Mathematics, Universitat de Valencia, Burjassot 46100 (Valencia) Spain

Abstract

We give upper and lower estimates of the norm of a bounded linear operator from the Hardy space H^{p} to ℓ^{q} in terms of the norm of the rows and the columns of its associated matrix in certain vector-valued sequence spaces.

Key words: Hardy spaces, vector-valued sequence spaces, vector-valued BMO, absolutely summing operators.

1 Introduction

Let $1 \leq p, q \leq \infty$ and let $T: H^{p} \rightarrow \ell^{q}$ be a linear and bounded operator where H^{p} denote the Hardy space in the unit disc. To such an operator we associate the matrix $\left(t_{k n}\right)_{k, n}$, defined by

$$
T\left(u_{n}\right)=\sum_{k \in \mathbb{N}} t_{k n} e_{k}
$$

where $u_{n}(z)=z^{n}, n \geq 0$, and $\left(e_{k}\right)_{k \in \mathbb{N}}$ stands for the canonical basis of ℓ^{q}. We denote by $T_{k}=\left(t_{k n}\right)_{n \geq 0}$ and $x_{n}=\left(t_{k n}\right)_{k \in \mathbb{N}}$ its rows and its columns respectively. Although explicitly computing the norm is not possible (even for $p=q=2$) several theorems concerning upper and lower estimates of the norm $\|T\|$ in terms of

$$
\left\|\left(T_{k}\right)\right\|_{\ell^{r}\left(\ell^{s}\right)}=\left(\sum_{k=1}^{\infty}\left(\sum_{n=0}^{\infty}\left|t_{k n}\right|^{s}\right)^{r / s}\right)^{1 / r}
$$

[^0]for different values of r and s were proved by B. Osikiewicz in [23]. The following results are the content of Theorems 2.1, 2.2, 2.3 and 2.4 in [23]: If $1 \leq p \leq 2,1 \leq q \leq \infty$ and $1 / r=(1 / q-1 / 2)^{+}$then
\[

$$
\begin{equation*}
\left\|\left(T_{k}\right)\right\|_{\ell^{r}\left(\ell^{2}\right)} \leq\|T\| \leq\left\|\left(T_{k}\right)\right\|_{\ell q\left(\ell^{p}\right)} . \tag{1}
\end{equation*}
$$

\]

If $2 \leq p<\infty, 1 \leq q \leq \infty$ and $1 / s=\left(1 / q-1 / p^{\prime}\right)^{+}$then

$$
\begin{equation*}
\left\|\left(T_{k}\right)\right\|_{\ell^{s}\left(\ell^{p}\right)} \leq\|T\| \leq\left\|\left(T_{k}\right)\right\|_{\ell^{q}\left(\ell^{2}\right)} . \tag{2}
\end{equation*}
$$

Whilst the upper estimates were shown to be sharp in the scale of $\ell^{r}\left(\ell^{s}\right)$ spaces, it was left open whether the values of r and s in the lower estimates could be improved.

The reader is referred to [8] for some results in the same spirit in the cases $0<p<1$. In this paper we shall see (1) and (2) can actually be improved in different directions. On the one hand we shall use not only the norm of the rows $\left(T_{k}\right)$ but also the norm of the columns $\left(x_{n}\right)$, which, sometimes gives better estimates. On the other hand we shall consider $\ell(p, q)$-spaces instead of ℓ^{q}-spaces to produce more precise estimates. Our main tool will be the description of the boundedness of operators between H^{p} and ℓ^{q} by means of vector-valued functions which will allow us to use results from vector-valued Hardy spaces and absolutely summing operators to get our theorems.

Let X be a complex Banach space with dual space X^{*}. We denote by $\ell^{s}(X)$ and $\ell_{\text {weak }}^{s}(X)$ the spaces of bounded sequences in X for $s=\infty$, and, for $1 \leq s<\infty$, the spaces of sequences $\left(A_{j}\right) \subset X$ such that

$$
\left\|\left(A_{j}\right)\right\|_{\ell^{s}(X)}=\left(\sum_{j}\left\|A_{j}\right\|^{s}\right)^{1 / s}<\infty
$$

and

$$
\left\|\left(A_{j}\right)\right\|_{\ell_{w e a k}^{s}(X)}=\sup _{\left\|x^{*}\right\|=1}\left(\sum_{j}\left|\left\langle A_{j}, x^{*}\right\rangle\right|^{s}\right)^{1 / s}<\infty
$$

It is easy to see that, for $1 \leq p \leq \infty, 1 / p+1 / p^{\prime}=1$,

$$
\left\|\left(A_{j}\right)\right\|_{\ell_{w e a k}^{p}(X)}=\sup \left\{\left\|\sum_{j} \beta_{j} A_{j}\right\|:\left\|\left(\beta_{j}\right)\right\|_{\ell p^{\prime}}=1\right\} .
$$

Hence $\ell_{\text {weak }}^{p}(X)$ can be identified with $L\left(\ell^{p^{\prime}}, X\right)$ for $1<p<\infty$ and $L\left(c_{0}, X\right)$ for $p=1$. Also, for reflexive Banach spaces X and $1 \leq p<\infty, \ell_{\text {weak }}^{p}(X)$ can be identified with $L\left(X^{*}, \ell^{p}\right)$ by defining $T\left(x^{*}\right)=\left(\left\langle A_{j}, x^{*}\right\rangle\right)_{j}$ and $\|T\|=$ $\left\|\left(A_{j}\right)\right\|_{\ell_{w e a k}^{p}(X)}$.

We denote by $\ell(s, r, X), 0<r, s \leq \infty$, the space of sequences $\left(x_{n}\right)_{n \geq 0} \subset X$ such that

$$
\left\|\left(x_{n}\right)\right\|_{\ell(s, \infty, X)}=\max \left\{\left\|x_{0}\right\|, \sup _{k \in \mathbb{N}}\left(\left(\sum_{n=2^{k-1}}^{2^{k}-1}\left\|x_{n}\right\|^{s}\right)^{1 / s}\right\}<\infty\right.
$$

or

$$
\left\|\left(x_{n}\right)\right\|_{\ell(s, r, X)}=\left(\left\|x_{0}\right\|^{r}+\sum_{k \in \mathbb{N}}\left(\sum_{n=2^{k-1}}^{2^{k}-1}\left\|x_{n}\right\|^{s}\right)^{r / s}\right)^{1 / r}<\infty
$$

In particular, $\ell(s, s, X)=\ell^{s}(X)$.
We denote by $H^{p}(X)$ (resp. $\left.H_{w e a k}^{p}(X)\right)$ the vector-valued Hardy spaces consisting of analytic functions $F: \mathbb{D} \rightarrow X$ such that

$$
\|F\|_{H^{p}(X)}=\sup _{0<r<1}\left(\int_{0}^{2 \pi}\left\|F\left(r e^{i t}\right)\right\|^{p} \frac{d t}{2 \pi}\right)^{1 / p}<\infty
$$

(resp.

$$
\left.\|F\|_{H_{w e a k}^{p}(X)}=\sup _{\left\|x^{*}\right\|=1}\left\|\left\langle F, x^{*}\right\rangle\right\|_{H^{p}}<\infty .\right)
$$

As usual we write $M_{p}(F, r)=\left(\int_{0}^{2 \pi}\left\|F\left(r e^{i t}\right)\right\|^{p} \frac{d t}{2 \pi}\right)^{1 / p}$.
We shall use the notation $\ell^{p}=\ell^{p}(\mathbb{C}), \ell(p, q)=\ell(p, q, \mathbb{C}), L^{p}=L^{p}(\mathbb{T})$ and $H^{p}=H^{p}(\mathbb{C})$ where H^{p} will be sometimes understood as functions in L^{p} using the fact that H^{p} isometrically embeds into L^{p} for $1 \leq p \leq \infty$. We also make use of the duality results $\left(H^{1}\right)^{*}=B M O A$ (see [17]) and $\left(H^{p}\right)^{*}=H^{p^{\prime}}$ (see [16]) for $1<p<\infty$.

We shall prove, among other things, the following estimates.
Theorem 1 Let $1<p<\infty, 1 \leq q<\infty$ and let $T: H^{p} \rightarrow \ell^{q}$ be a bounded operator. Then, for $p_{1}=\min \{p, 2\}, p_{2}=\max \{p, 2\}, 1 / r=\left(1 / q-1 / p_{1}\right)^{+}$and $1 / s_{u}=\left(1 / q-1 / p_{2}^{\prime}-(1 / u-1 / 2)^{+}\right)^{+}$, we have

$$
\begin{equation*}
\|T\| \leq \min \left\{\left\|\left(T_{k}\right)\right\|_{\ell q\left(\ell^{p_{1}}\right)},\left\|\left(x_{n}\right)\right\|_{\ell^{p_{1}(\ell q)}}\right\} . \tag{3}
\end{equation*}
$$

For each $u \geq q$ there exists $C>0$ such that

$$
\begin{equation*}
\max \left\{\left\|\left(T_{k}\right)\right\|_{\ell^{r}\left(\ell^{p^{2}}\right)},\left\|\left(x_{n}\right)\right\|_{\ell^{s_{u}}\left(\ell^{u}\right)}\right\} \leq C\|T\| . \tag{4}
\end{equation*}
$$

Remark 2 Note that the use of columns in Theorem 1 provides sometimes better results than the use of rows. Indeed, taking into account that, for $q \leq p$,

$$
\left(\sum_{n=0}^{\infty}\left(\sum_{k=1}^{\infty}\left|a_{k n}\right|^{q}\right)^{p / q}\right)^{1 / p} \leq\left(\sum_{k=1}^{\infty}\left(\sum_{n=0}^{\infty}\left|a_{k n}\right|^{p}\right)^{q / p}\right)^{1 / q}
$$

we obtain, for instance, in the case $p>2, q=1$ and $u=2$, that $s_{u}=p$ and (4) improves (2) because

$$
\left\|\left(T_{k}\right)\right\|_{\ell^{p}\left(\ell^{p}\right)} \leq\left\|\left(x_{n}\right)\right\|_{\ell^{p}\left(\ell^{2}\right)} .
$$

Also in the case $1<p<\infty, 1 \leq q \leq \min \{p, 2\}=p_{1}$ we obtain that (3) improves (1) because

$$
\left\|\left(x_{n}\right)\right\|_{\ell^{p_{1}(\ell q)}} \leq\left\|\left(T_{k}\right)\right\|_{\ell^{q}\left(\ell^{p_{1}}\right)} .
$$

Selecting special values of u in Theorem 1 we obtain some new lower estimates of $\|T\|$.

Corollary 3 Let $1 \leq q \leq 2$ and let $T: H^{p} \rightarrow \ell^{q}$ be a bounded operator.
(i) If $1 \leq q \leq p \leq 2,1 / r=1 / q-1 / p$ and $1 / s=1 / q-1 / 2$ then

$$
C^{-1} \max \left\{\left\|\left(T_{k}\right)\right\|_{\ell^{r}\left(\ell^{2}\right)},\left\|\left(x_{n}\right)\right\|_{\ell^{s}\left(\ell^{2}\right)},\left\|\left(x_{n}\right)\right\|_{\ell^{r}\left(\ell^{p}\right)}\right\} \leq\|T\| .
$$

(ii) Let $1 \leq q \leq p^{\prime} \leq 2 \leq p<\infty$ such that $1 / q-1 / p^{\prime} \geq 1 / p^{\prime}-1 / 2$. If $1 / r=1 / q-1 / 2,1 / s=1 / q-1 / p^{\prime}$ and $1 / t=1 / q-2 / p^{\prime}+1 / 2$ then

$$
C^{-1} \max \left\{\left\|\left(T_{k}\right)\right\|_{\ell^{r}\left(\ell^{p}\right)},\left\|\left(x_{n}\right)\right\|_{\ell^{s}\left(\ell^{2}\right)},\left\|\left(x_{n}\right)\right\|_{\ell^{t}\left(\ell^{\prime}\right)}\right\} \leq\|T\| .
$$

In particular, for $1 \leq q \leq 2, p=2$ and $1 / r=1 / q-1 / 2$, we have

$$
\begin{equation*}
\max \left\{\left\|\left(T_{k}\right)\right\|_{\ell^{r}\left(\ell^{2}\right)},\left\|\left(x_{n}\right)\right\|_{\ell^{r}\left(\ell^{2}\right)}\right\} \leq C\|T\| . \tag{5}
\end{equation*}
$$

Proof. (i) Let $1 \leq q \leq p \leq 2$. For each $p \leq u \leq 2$, we write $1 / u=$ ($1-$ $\theta) / p+\theta / 2$ for some $0 \leq \theta \leq 1$. Hence the values in Theorem 1 become $p_{1}=p$, $p_{2}=2,1 / r=1 / q-1 / p$ and $1 / s_{u}=1 / q-1 / u=1 / r+\theta(1 / p-1 / 2)$. Now select $\theta=0$ and $\theta=1$ and apply (4) to get the desired estimates.
(ii) Let $1 \leq q \leq p^{\prime} \leq 2 \leq p<\infty$ such that $1 / q-1 / p^{\prime} \geq 1 / p^{\prime}-1 / 2$. For each $p^{\prime} \leq u \leq 2$ now we obtain $p_{1}=2, p_{2}=p, 1 / r=1 / q-1 / 2$ and $1 / s_{u}=\left(1 / q-1 / p^{\prime}-(1 / u-1 / 2)\right)^{+}$. Our assumption implies that $s_{u}=t$ for $u=p^{\prime}$ and $s_{u}=s$ for $u=2$. Apply again (4) to finish the proof.

Remark 4 Assume $1 \leq q \leq p^{\prime}<2<p<\infty$. Then (ii) in Corollary 3 gives $\left\|\left(T_{k}\right)\right\|_{\ell^{r}\left(\ell^{p}\right)} \leq C\|T\|$ for $1 / r=1 / q-1 / 2$ (which produces a better lower estimate than (2) since $r \leq s$ for $1 / s=1 / q-1 / p^{\prime}$).

Actually, for $p \geq 2$, the value $v=r$ given by $1 / r=1 / q-1 / 2$ is the smallest value in the scale $\ell^{v}\left(\ell^{p}\right)$ to get the estimate $\left\|\left(T_{k}\right)\right\|_{\ell^{v}\left(\ell^{p}\right)} \leq C\|T\|$ as the
following example shows: Consider a lacunary multiplier $T: H^{p} \rightarrow \ell^{q}$ given by

$$
T(f)(z)=\sum_{k=0}^{\infty} \lambda_{k} a_{2^{k}} e_{2^{k}}
$$

where $f(z)=\sum_{n=0}^{\infty} a_{n} z^{n}$.
In such a case $\left\|\left(T_{k}\right)\right\|_{\ell^{v}\left(\ell^{p}\right)}=\left\|\left(\lambda_{k}\right)\right\|_{\ell^{v}}$ and $\left\|\sum_{k} a_{2^{k}} z^{2^{k}}\right\|_{H^{p}} \approx\left(\sum_{k}\left|a_{2^{k}}\right|^{2}\right)^{1 / 2}$. This shows that $\|T\| \approx\left\|\left(\lambda_{k}\right)\right\|_{\ell^{r}}$ for $1 / r=1 / q-1 / 2$.

To present further improvements we shall replace the scale of ℓ^{p}-spaces by the $\ell(p, q)$-spaces (see [19]) when computing the norm of the rows and the columns of the matrix associated to the operator.

Our first result will be the following extension of Theorem 1.
Theorem 5 Let $1<p<\infty, 1 \leq q<\infty, p_{1}=\min \{p, 2\}$ and $p_{2}=\max \{p, 2\}$ and let $T: H^{p} \rightarrow \ell^{q}$ be a bounded operator. Then

$$
\begin{equation*}
\|T\| \leq \min \left\{\left\|\left(T_{k}\right)\right\|_{\ell\left(\ell\left(p_{1}, 2\right)\right)},\left\|\left(x_{n}\right)\right\|_{\ell\left(p_{1}, 2, \ell^{q}\right)}\right\} \tag{6}
\end{equation*}
$$

For each $u \geq q$ there exists $C>0$ such that

$$
\begin{equation*}
\max \left\{\left\|\left(T_{k}\right)\right\|_{\ell^{r}\left(\ell\left(p_{2}, 2\right)\right)},\left\|\left(x_{n}\right)\right\|_{\ell\left(s_{u}, 2, \ell^{u}\right)}\right\} \leq C\|T\|, \tag{7}
\end{equation*}
$$

where $1 / r=\left(1 / q-1 / p_{1}\right)^{+}$and $1 / s_{u}=\left(1 / q-1 / p_{2}^{\prime}-(1 / u-1 / 2)^{+}\right)^{+}$.
Of course, Theorem 1 follows from Theorem 5 using the inclusions $\ell^{q}\left(\ell^{p_{1}}\right) \subset$ $\ell^{q}\left(\ell\left(p_{1}, 2\right)\right), \ell^{p_{1}}\left(\ell^{q}\right) \subset \ell\left(p_{1}, 2, \ell^{q}\right), \ell^{r}\left(\ell\left(p_{2}, 2\right)\right) \subset \ell^{r}\left(\ell^{p_{2}}\right)$ and, since $s_{u} \geq 2$, also $\ell\left(s_{u}, 2, \ell^{u}\right) \subset \ell^{s_{u}}\left(\ell^{u}\right)$.

Using the inequalities(see Lemma 13 below)

$$
\begin{array}{ll}
\left\|\left(x_{n}\right)\right\|_{\ell\left(p, q, \ell^{r}\right)} \leq\left\|\left(T_{k}\right)\right\|_{\ell^{r}(\ell(p, q))}, & \min \{p, q\} \geq r, \\
\left\|\left(x_{n}\right)\right\|_{\ell^{r}(\ell(p, q))} \leq\left\|\left(T_{k}\right)\right\|_{\ell\left(p, q, \ell^{r}\right)}, \quad \max \{p, q\} \leq r,
\end{array}
$$

we can formulate the following corollaries of Theorem 5.
Corollary 6 Let $1 \leq q<p \leq 2$ and $T: H^{p} \rightarrow \ell^{q}$ be a bounded operator. If $1 / s=1 / q-1 / p$ then there exists $C>0$ such that

$$
\begin{equation*}
C^{-1}\left\|\left(x_{n}\right)\right\|_{\ell\left(s, 2, \ell^{p}\right)} \leq\|T\| \leq\left\|\left(x_{n}\right)\right\|_{\ell\left(p, 2, \ell^{q}\right)} . \tag{8}
\end{equation*}
$$

Corollary 7 Let $1 \leq q \leq p^{\prime} \leq 2 \leq p<\infty$ and $T: H^{p} \rightarrow \ell^{q}$ be a bounded operator. If $1 / r=1 / q-1 / 2$ and $1 / s=1 / q-1 / p^{\prime}$ then there exists $C>0$ such that

$$
\begin{equation*}
C^{-1} \max \left\{\left\|\left(T_{k}\right)\right\|_{\ell^{r}(\ell(p, 2))},\left\|\left(x_{n}\right)\right\|_{\ell\left(s, 2, \ell^{2}\right)}\right\} \leq\|T\| \leq\left\|\left(x_{n}\right)\right\|_{\ell^{2}\left(\ell^{q}\right)} . \tag{9}
\end{equation*}
$$

Theorem 5 will follow from very general arguments valid for many other spaces relying upon some geometrical properties which are shared by other spaces. However in the case $1 \leq p<2$ other tools are at our disposal and allow us to get better estimates. For instance, in the case $p=1$ we can produce new upper estimates using results on Taylor coefficients of functions in $B M O A$.

Theorem 8 Let $T: H^{1} \rightarrow \ell^{q}$ be a bounded operator.
(i) For $q=1$ we have

$$
\|T\| \leq C \min \left\{\left\|\left(x_{n}\right)\right\|_{\ell\left(1,2, \ell^{1}\right)},\left\|\left((n+1)^{1 / 2} x_{n}\right)\right\|_{\ell\left(2, \infty, \ell^{1}\right)}\right\} .
$$

(ii) For $1 \leq q \leq 2$ we have

$$
\|T\| \leq C \min \left\{\left\|\left(T_{k}\right)\right\|_{\ell^{q}(\ell(1,2))},\left\|\left(x_{n}\right)\right\|_{\ell\left(1,2, \ell^{q}\right)},\left\|\left((n+1)^{1 / 2} x_{n}\right)\right\|_{\ell(2, \infty, \ell q)}\right\} .
$$

(iii) For $q \geq 2$ we have

$$
\|T\| \leq C \min \left\{\left\|\left(T_{k}\right)\right\|_{\ell^{q}(\ell(1,2))},\left\|\left(A_{k}\right)\right\|_{\ell^{q}(\ell(2, \infty))},\left\|\left((n+1)^{1 / 2} x_{n}\right)\right\|_{\ell\left(2, \infty, \ell^{q}\right)}\right\},
$$

where $A_{k}=\left((n+1)^{1 / 2} t_{k n}\right)_{n}$.
Also new lower estimates can be achieved for $1<p<2$ using the factorization $H^{p}=H^{2} H^{t}$ where $1 / 2+1 / t=1 / p$.

Theorem 9 Let $1 \leq p<2,1 \leq q \leq 2,1 / r=1 / q-1 / 2$ and $1 / t=1 / p-1 / 2$ and let $T: H^{p} \rightarrow \ell^{q}$ be a bounded operator. Then there exists $C>0$ such that

$$
\sup _{\|\left(\alpha_{l} \|_{\ell\left(t^{\prime}, 2\right)}=1\right.} \max \left\{\left\|\left(\sum_{l=0}^{\infty} \alpha_{l} t_{k, l+n}\right)_{n}\right\|_{\ell^{r}\left(\ell^{2}\right)},\left\|\left(\sum_{l=0}^{\infty} \alpha_{l} t_{k, l+n}\right)_{k}\right\|_{\ell^{r}\left(\ell^{2}\right)}\right\} \leq C\|T\| .
$$

Finally the special behavior of the inclusion map $\ell^{1} \rightarrow \ell^{2}$ allows to get further extensions in the case $q=1$.

Theorem 10 Let $1 \leq p<2,1 / t=1 / p-1 / 2$ and $T: H^{p} \rightarrow \ell^{1}$ be a bounded operator. There exists $C>0$ such that
$\max \left\{\sup _{\left\|\sum_{l} \alpha_{l} z^{l}\right\|_{H^{t}}=1}\left\|\left(\sum_{l=0}^{\infty} \alpha_{l} t_{k, n+l}\right)_{n}\right\|_{\ell^{2}\left(\ell^{2}\right)}, \sup _{\left\|\left(\alpha_{l}\right)\right\|_{\ell\left(t^{\prime}, 2\right)}=1}\left\|\left(\sum_{l=0}^{\infty} \alpha_{l} t_{k, n+l}\right)_{k}\right\|_{\ell^{2}\left(\ell^{2}\right)}\right\} \leq C\|T\|$.

As a simple application of Theorem 8 and Theorem 10 (selecting sequences $\alpha_{j}=\frac{1}{\sqrt{N}}$ for $0 \leq j \leq N$ and $\alpha_{j}=0$ for $j \geq N+1$) we get the following new estimates, that can be compared with the known ones for particular types of operators such as multipliers, composition operators and so on.

Corollary 11 Let $T: H^{1} \rightarrow \ell^{1}$ be a bounded operator. There exists $C>0$ such that

$$
\begin{gathered}
\sup _{N \in \mathbb{N}}\left\|\left(\frac{1}{\sqrt{N}} \sum_{l=n}^{n+N} x_{l}\right)_{n}\right\|_{\ell^{2}\left(\ell^{2}\right)} \leq C\|T\| \\
\|T\| \leq C \min \left\{\left\|\left((n+1)^{1 / 2} x_{n}\right)\right\|_{\ell\left(2, \infty, \ell^{1}\right)},\left\|\left(x_{n}\right)\right\|_{\ell\left(1,2, \ell^{1}\right)}\right\}
\end{gathered}
$$

The paper is organized as follows. Section 2 contains some preliminary results concerning the reformulation of the boundedness of operators from H^{p} to ℓ^{q} and some facts on the spaces $\ell(p, q, X)$ to be used in the sequel. Some tools from the theory of vector-valued Hardy and $B M O A$ spaces are presented in Section 3. The proof of Theorem 5 is postponed to Section 4. Last section is devoted to the case $1 \leq p<2$ and to present the proofs of Theorems 8,9 and 10.

Throughout the paper, as usual, $L(X, Y)$ stands for the space of bounded linear operators, $a^{+}=\max \{a, 0\}, p^{\prime}$ for the conjugate exponent of p and C denotes a constant that may vary from line to line.

2 Preliminary results

As it was mentioned in the introduction for each $1 \leq p, q \leq \infty$ and each bounded operator $T: H^{p} \rightarrow \ell^{q}$ we define the matrix $\left(a_{k n}(T)\right)=\left(t_{k n}\right)$ given by

$$
\begin{equation*}
T\left(u_{n}\right)=\left(t_{k n}\right)_{k \in \mathbb{N}} \quad \text { for } \quad u_{n}(z)=z^{n}, n \geq 0 . \tag{10}
\end{equation*}
$$

Observe that for each $k \in \mathbb{N}$ the functional $\xi_{k} T(f)=\left\langle T(f), e_{k}\right\rangle$, which belongs to $\left(H^{p}\right)^{*}$, is represented by an analytic function, say $g_{k}=g_{k}(T)$. We denote by $F_{T}(z)=\left(g_{k}(z)\right)_{k \in \mathbb{N}}$ the ℓ^{q}-valued analytic function associated to T.

Clearly each row $T_{k}=\left(t_{k n}\right)_{n \geq 0}$ coincides with the sequence of Taylor coefficients of the function g_{k}, that is

$$
\begin{equation*}
g_{k}(z)=\sum_{n=0}^{\infty} t_{k n} z^{n} \tag{11}
\end{equation*}
$$

and each column $x_{n}=\left(t_{k n}\right)_{k \in \mathbb{N}}$ coincides with the n-Taylor coefficient of the vector-valued analytic function $F_{T}: \mathbb{D} \rightarrow \ell_{q}$ given by

$$
\begin{equation*}
F_{T}(z)=\sum_{n=0}^{\infty} x_{n} z^{n}, x_{n}=\sum_{k=1}^{\infty} t_{k n} e_{k} . \tag{12}
\end{equation*}
$$

With this notation, for a polynomial $f(z)$ with Taylor coefficients $\left(a_{n}\right)$, we have the expressions

$$
\begin{align*}
& T(f)=\sum_{n=0}^{\infty} a_{n} x_{n}=\lim _{r \rightarrow 1} \int_{-\pi}^{\pi} F_{T}\left(r e^{i \theta}\right) \overline{f\left(r e^{i \theta}\right)} \frac{d \theta}{2 \pi}, \tag{13}\\
& T(f)=\left(\sum_{n=0}^{\infty} a_{n} t_{k n}\right)_{k \in \mathbb{N}}=\left(\lim _{r \rightarrow 1} \int_{-\pi}^{\pi} g_{k}\left(r e^{i \theta}\right) \overline{f\left(r e^{i \theta}\right)} \frac{d \theta}{2 \pi}\right)_{k \in \mathbb{N}} . \tag{14}
\end{align*}
$$

Let us make explicit the conditions describing that a function belongs to the vector-valued Hardy spaces for $X=\ell^{s}$. If $1 \leq r, s<\infty,\left(f_{k}\right)$ is a sequence in H^{r} and $\sum_{k}\left|f_{k}(z)\right|^{s}<\infty,|z|<1$, then $F(z)=\left(f_{k}(z)\right)_{k \in \mathbb{N}}$ is a well defined ℓ^{s}-valued analytic function in the unit disc. Moreover

$$
\begin{equation*}
\|F\|_{H_{w e a k}^{r}\left(\ell^{s}\right)}=\sup \left\{\left\|\sum_{k=0}^{\infty} \lambda_{k} f_{k}\right\|_{H^{r}}:\left\|\left(\lambda_{k}\right)\right\|_{\ell^{s^{\prime}}}=1\right\} \tag{15}
\end{equation*}
$$

and

$$
\begin{equation*}
\|F\|_{H^{r}\left(\ell^{s}\right)}=\left\|\left(\sum_{k=0}^{\infty}\left|f_{k}\right|^{s}\right)^{1 / s}\right\|_{L^{r}} \tag{16}
\end{equation*}
$$

where in (16) f_{k} stands also for the boundary values of the same analytic function. Note that (16) follows from the fact that ℓ^{s} has the Radon-Nikodym property (see [15] and [9]) and therefore functions in $H^{r}\left(\ell^{s}\right)$ have radial boundary values in $L^{r}\left(\ell^{s}\right)$.

The following useful reformulation of the boundedness of operators from H^{p} to ℓ^{q} is straightforward.

Proposition 12 Let $1<p<\infty, 1 \leq q<\infty$ and let $T: H^{p} \rightarrow \ell^{q}$ be a linear operator. The following are equivalent:
(i) T is bounded.
(ii) $F_{T} \in H_{w e a k}^{p^{\prime}}\left(\ell^{q}\right)$.
(iii) $\left(g_{k}(T)\right)_{k} \in \ell_{\text {weak }}^{q}\left(H^{p^{\prime}}\right)$.

Moreover

$$
\begin{equation*}
\|T\|=\left\|F_{T}\right\|_{H_{\text {weak }}^{p^{\prime}}\left(\ell^{q}\right)}=\left\|\left(g_{k}(T)\right)\right\|_{\ell_{\text {weak }}^{q}\left(H^{p^{\prime}}\right)} . \tag{17}
\end{equation*}
$$

Let us now mention some facts about the spaces $\ell(p, q, X)$ which will be needed later on: If $1 \leq p_{1}, p_{2}, q_{1}, q_{2} \leq \infty, 1 / p=\left(1 / p_{2}-1 / p_{1}\right)^{+}$and $1 / q=\left(1 / q_{2}-\right.$ $\left.1 / q_{1}\right)^{+}$then

$$
\begin{equation*}
\ell(p, q)=\left\{\left(\lambda_{n}\right):\left(\lambda_{n} \beta_{n}\right) \in \ell\left(p_{2}, q_{2}\right) \text { for any }\left(\beta_{n}\right) \in \ell\left(p_{1}, q_{1}\right)\right\} . \tag{18}
\end{equation*}
$$

Let $q, \beta>0$. Then (see $[16]$ and $[4,21]$ respectively)

$$
\begin{align*}
& \left\|\left((n+1)^{-\beta} \alpha_{n}\right)_{n}\right\|_{\ell(1, \infty)} \approx \sup _{0<r<1}(1-r)^{\beta}\left(\sum_{n}\left|\alpha_{n}\right| r^{n}\right), \tag{19}\\
& \left\|\left((n+1)^{-\beta} \alpha_{n}\right)_{n}\right\|_{\ell(1, q)} \approx\left(\int_{0}^{1}(1-r)^{\beta q-1}\left(\sum_{n}\left|\alpha_{n}\right| r^{n}\right)^{q} d r\right)^{1 / q} . \tag{20}
\end{align*}
$$

For any Banach space X and $1 \leq p, q<\infty$ we have

$$
\begin{equation*}
\ell(p, q, X)^{*}=\ell\left(p^{\prime}, q^{\prime}, X^{*}\right) \tag{21}
\end{equation*}
$$

We finish the section with the following application of Minkowski's inequality.
Lemma 13 Let $\left(a_{k n}\right)_{k, n} \subset \mathbb{C}$ and write $A_{k}=\left(a_{k n}\right)_{n \geq 0}$ and $B_{n}=\left(a_{k n}\right)_{k \in \mathbb{N}}$. Then

$$
\begin{array}{ll}
\left\|\left(A_{k}\right)\right\|_{\ell\left(q, s, \ell^{p}\right)} \leq\left\|\left(B_{n}\right)\right\|_{\ell p(\ell(q, s))}, & 1 \leq p \leq \min \{q, s\} \leq \infty . \\
\left\|\left(A_{k}\right)\right\|_{\ell^{p}(\ell(q, s))} \leq\left\|\left(B_{n}\right)\right\|_{\ell\left(q, s, \ell^{p}\right)}, & 1 \leq \max \{q, s\} \leq p<\infty . \tag{23}
\end{array}
$$

Proof. Assume $1 \leq p \leq \min \{q, s\} \leq \infty$. Since $\ell(q / p, s / p)$ is a normed space (because $q / p \geq 1$ and $s / p \geq 1$) using Minkowski's inequality we have

$$
\begin{aligned}
\left\|\left(A_{k}\right)\right\|_{\ell\left(q, s, \ell^{p}\right)} & =\left\|\left(\sum_{n=0}^{\infty}\left|a_{k n}\right|^{p}\right)_{k}\right\|_{\ell(q / p, s / p)}^{1 / p} \\
& \leq\left(\sum_{n=0}^{\infty}\left\|\left(\left|a_{k n}\right|^{p}\right)_{k}\right\|_{\ell(q / p, s / p)}\right)^{1 / p} \\
& =\left(\sum_{n=0}^{\infty}\left\|B_{n}\right\|_{\ell(q, s)}^{p}\right)^{1 / p}=\left\|\left(B_{n}\right)\right\|_{\ell p}(\ell(q, s)) .
\end{aligned}
$$

Assume now that $1 \leq \max \{q, s\} \leq p<\infty$. Observe that applying (22) to the adjoint matrix, we conclude that for any matrix ($a_{k n}^{\prime}$) we also have

$$
\left\|\left(B_{n}^{\prime}\right)\right\|_{\ell\left(q^{\prime}, s^{\prime}, \ell p^{\prime}\right)} \leq\left\|\left(A_{k}^{\prime}\right)\right\|_{\ell p^{\prime}\left(\ell\left(q^{\prime}, s^{\prime}\right)\right)} .
$$

Now use (21) to conclude (23).

3 Some results for vector-valued Hardy and BMOA

One of the first uses of Hausdorff-Young's inequality for vector-valued Lebesgue spaces goes back to [25]. The next lemma is well known and its proof is sketched here for completeness.

Lemma 14 Let $1<p \leq 2, p \leq q \leq p^{\prime}$ and $F(z)=\sum_{n=0}^{\infty} x_{n} z^{n} \in H^{p}\left(\ell^{q}\right)$. Then

$$
\left(\sum_{n=0}^{\infty}\left\|x_{n}\right\|_{\ell q}^{p^{\prime}}\right)^{1 / p^{\prime}} \leq\|F\|_{H^{p}(\ell q)}
$$

Proof. For $p=2$ and $q=2$ Plancherel's theorem holds and gives

$$
\left(\sum_{n=0}^{\infty}\left\|x_{n}\right\|_{\ell^{2}}^{2}\right)^{1 / 2}=\|F\|_{L^{2}\left(\ell^{2}\right)}
$$

On the other hand for $q=1$ or $q=\infty$ we trivially have

$$
\sup _{n \geq 0}\left\|x_{n}\right\|_{\ell^{q}} \leq\|F\|_{L^{1}\left(\ell^{q}\right)} .
$$

Hence it follows, by interpolation, that

$$
\left(\sum_{n=0}^{\infty}\left\|x_{n}\right\|_{\ell^{s}}^{p^{\prime}}\right)^{1 / p^{\prime}} \leq\|F\|_{H^{p}\left(\ell^{s}\right)}
$$

for $s=p$ or $s=p^{\prime}$. Now interpolating again between ℓ^{p} and $\ell^{p^{\prime}}$ we get the general case.

Actually there exists a generalization of Hausdorff-Young's inequalities to the setting on $\ell(p, q, X)$ spaces valid for some Banach spaces X. We present here a self contained proof of the following result, although the reader should be aware that the proof relies upon certain vector-valued Littlewood-Paley inequalities (see $[6,5]$) and it can be extended to other spaces.

Lemma 15 Let $1 \leq p, q<\infty$ and $F(z)=\sum_{n=0}^{\infty} x_{n} z^{n} \in H^{p}\left(\ell^{q}\right)$.
(i) If $1<p \leq 2$ and $p \leq q \leq 2$ then $\left\|\left(x_{n}\right)\right\|_{\ell\left(p^{\prime}, 2, \ell^{q}\right)} \leq\|F\|_{H^{p}\left(\ell^{q}\right)}$.
(ii) If $2 \leq p<\infty$ and $2 \leq q \leq p$ then $\|F\|_{H^{p}\left(\ell^{q}\right)} \leq\left\|\left(x_{n}\right)\right\|_{\ell\left(p^{\prime}, 2, \ell^{q}\right)}$.

Proof. (i) It was shown in [1, Proposition 1.4] that, for $1 \leq p \leq q \leq 2$, we have

$$
\left(\int_{0}^{1}(1-r) M_{p}^{2}\left(F^{\prime}, r\right) d r\right)^{1 / 2} \leq C\|F\|_{H^{p}\left(\ell^{q}\right)}
$$

Using Lemma 14 we obtain

$$
\int_{0}^{1}(1-r)\left(\sum_{n=1}^{\infty} n^{p^{\prime}}\left\|x_{n}\right\|_{\ell q}^{p^{\prime}} r^{(n-1) p^{\prime}}\right)^{2 / p^{\prime}} d r \leq C\|F\|_{H^{p(\ell q)}}^{2}
$$

Applying now (20) to $\alpha_{n}=n^{p^{\prime}}\left\|x_{n}\right\|_{\ell}^{p^{\prime}}, \beta=p^{\prime}$ and $q=2 / p^{\prime}$ we get

$$
\int_{0}^{1}(1-r)\left(\sum_{n=1}^{\infty} n^{p^{\prime}}\left\|x_{n}\right\|_{\ell q}^{p^{\prime}} r^{(n-1) p^{\prime}}\right)^{2 / p^{\prime}} d r \approx\left\|\left(\left\|x_{n}\right\|_{\ell^{q}}^{p^{\prime}}\right)\right\|_{\ell\left(1,2 / p^{\prime}\right)} \approx\left\|\left(\left\|x_{n}\right\|_{\ell q}\right)\right\|_{\ell\left(p^{\prime}, 2\right)}^{2}
$$

which finishes this part.
(ii) follows from the dualities $\left(H^{p}\left(\ell^{q}\right)\right)^{*}=H^{p^{\prime}}\left(\ell^{q^{\prime}}\right)$ for $1<p, q<\infty$ and $\ell(r, s, X)^{*}=\ell\left(r^{\prime}, s^{\prime}, X^{*}\right)$ for $1<r, s<\infty$.

Let us now use the embedding $\ell^{1} \rightarrow \ell^{2}$ and its properties.
Lemma 16 Let $1 \leq p<\infty$. If $F \in H_{\text {weak }}^{p}\left(\ell^{1}\right)$ then $F \in H^{p}\left(\ell^{2}\right)$ and

$$
\|F\|_{H^{p}\left(\ell^{2}\right)} \leq C\|F\|_{H_{w e a k}^{p}\left(\ell^{1}\right)} .
$$

Proof. Write $F(z)=\left(f_{k}(z)\right)_{k \in \mathbb{N}}$ where $f_{k} \in H^{p}$ and

$$
\sup _{\left|\epsilon_{k}\right|=1}\left\|\sum_{k=1}^{\infty} \epsilon_{k} f_{k}\right\|_{H^{p}}=\|F\|_{H_{w e a k}^{p}\left(\ell^{1}\right)} .
$$

Now considering $\epsilon_{k}=r_{k}(t)$ for $t \in[0,1]$ where r_{k} are the Rademacher functions, we obtain

$$
\int_{0}^{1}\left\|\sum_{k=1}^{\infty} r_{k}(t) f_{k}\right\|_{L^{p}} d t \leq \sup _{t \in[0,1]}\left\|\sum_{k=1}^{\infty} r_{k}(t) f_{k}\right\|_{L^{p}}
$$

Hence Kintchine's inequality implies

$$
\left\|\left(\sum_{k=1}^{\infty}\left|f_{k}\right|^{2}\right)^{1 / 2}\right\|_{L^{p}} \leq C\|F\|_{H_{w e a k}^{p}\left(\ell^{1}\right)}
$$

The result now follows from (16).
Let us now introduce the vector-valued versions of $B M O A$ that we shall use in the paper. The reader is referred to [5,?] for other possible definitions and their connections. We write $B M O A_{\mathcal{C}}(X)$ (resp. $B M O A_{\text {weak }}(X)$) for the space of analytic functions $F: \mathbb{D} \rightarrow X$ such that

$$
\|F\|_{B M O A_{\mathcal{C}}(X)}=\|F(0)\|+\sup _{|z|<1}\left(\int_{\mathbb{D}}\left(1-|w|^{2}\right)\left\|F^{\prime}(w)\right\|^{2} P_{z}(w) d A(w)\right)^{1 / 2}<\infty
$$

(resp.

$$
\left.\|F\|_{B M O A_{\text {weak }}(X)}=\sup _{\left\|x^{*}\right\|=1}\left\|\left\langle F, x^{*}\right\rangle\right\|_{B M O A}<\infty\right)
$$

where, as usual, $P_{z}(w)=\frac{1-|z|^{2}}{|1-z \bar{w}|^{2}}$ is the Poisson kernel and $d A$ stands for the normalized Lebesgue measure on the unit disc \mathbb{D}.

Note that $B M O A_{\text {weak }}(X)=L\left(H^{1}, X\right)$. Therefore if $T: H^{1} \rightarrow \ell^{q}$ is a bounded linear operator for $1<q<\infty$ we have

$$
\begin{equation*}
\left\|\left(g_{k}(T)\right)\right\|_{\ell_{\text {weak }}^{q}(B M O A)}=\left\|T^{*}\right\|=\|T\|=\left\|F_{T}\right\|_{\text {BMOA }_{\text {weak }}\left(\ell^{q}\right)} . \tag{24}
\end{equation*}
$$

In the case $q=1$ we have that if $T: H^{1} \rightarrow \ell^{1}$ is bounded then

$$
\begin{equation*}
\left\|\left(g_{k}(T)\right)\right\|_{\ell_{\text {weak }}^{1}(B M O A)} \leq\left\|T^{*}\right\|=\|T\|=\left\|F_{T}\right\|_{\text {BMOA }_{\text {weak }}\left(\ell^{1}\right)} . \tag{25}
\end{equation*}
$$

Let us see that the following limiting case for $p=\infty$ of Lemma 16 also holds.
Lemma 17 If $F \in B M O A_{\text {weak }}\left(\ell^{1}\right)$ then $F \in B M O A_{\mathcal{C}}\left(\ell^{2}\right)$. Moreover

$$
\|F\|_{B M O A_{\mathcal{C}}\left(\ell^{2}\right)} \leq C\|F\|_{B M O A_{w e a k}\left(\ell^{1}\right)}
$$

Proof. Recall first that the inclusion map $i: \ell^{1} \rightarrow \ell^{2}$ is 2 -summing (it is even 1-summing from Grothendieck's theorem [14,?]), i.e. if $\left(A_{n}\right) \in \ell_{\text {weak }}^{2}\left(\ell^{1}\right)$ then $\left(A_{n}\right) \in \ell^{2}\left(\ell^{2}\right)$ with $\left\|\left(A_{n}\right)\right\|_{\ell^{2}\left(\ell^{2}\right)} \leq C\left\|\left(A_{n}\right)\right\|_{\ell_{\text {weak }}^{2}\left(\ell^{1}\right)}$. This implies (see [27]) that there exists $C>0$ such that, for any finite measure space (Ω, Σ, μ), if $f: \Omega \rightarrow \ell^{1}$ is measurable and $\sup _{\left\|x^{*}\right\|_{\ell \infty}=1}\left\|\left\langle f, x^{*}\right\rangle\right\|_{L^{2}(\mu)} \leq 1$ then $f \in L^{2}\left(\mu, \ell^{2}\right)$ and $\|f\|_{L^{2}\left(\mu, \ell^{2}\right)} \leq C$.

Let us fix $z \in \mathbb{D}$ and consider the probability measure on \mathbb{D} given by $d \mu_{z}(w)=$ $P_{z}(w) d A(w)$. Consider now $f(w)=\left(1-|w|^{2}\right)^{1 / 2} F^{\prime}(w)$ and note that, since $F \in B M O A_{\text {weak }}\left(\ell^{1}\right)$, we have

$$
\sup _{|z|<1} \sup _{\left\|x^{*}\right\|=1}\left\|\left\langle f(w), x^{*}\right\rangle\right\|_{L^{2}\left(d \mu_{z}\right)} \leq\|F\|_{B M O_{\text {weak }}\left(\ell^{1}\right)}
$$

Hence $f \in L^{2}\left(d \mu_{z}, \ell^{1}\right)$ for all $z \in \mathbb{D}$ with $\|f\|_{L^{2}\left(d \mu_{z}, \ell^{2}\right)} \leq C\|F\|_{B M O_{\text {weak }}\left(\ell^{1}\right)}$. This implies $F \in B M O A_{\mathcal{C}}\left(\ell^{2}\right)$ and $\|F\|_{B M O A_{\mathcal{C}}\left(\ell^{2}\right)} \leq C\|F\|_{B M O A_{\text {weak }}\left(\ell^{1}\right)}$.

4 Proof of Theorem 5

We start by showing the following general fact.

Proposition 18 Let $1<p<\infty, 1 \leq q<\infty, p_{1}=\min \{2, p\}$ and $1 / r=$ $\left(1 / q-1 / p_{1}\right)^{+}$. Let $T: H^{p} \rightarrow \ell^{q}$ be a bounded linear operator and $g_{k}=g_{k}(T)$ be given by (11). Then there exists $C>0$ such that

$$
\begin{align*}
& \|T\| \leq \min \left\{\left(\sum_{k=0}^{\infty}\left\|g_{k}\right\|_{H^{p^{\prime}}}^{q}\right)^{1 / q},\left\|\left(\sum_{k=0}^{\infty}\left|g_{k}\right|^{q}\right)^{1 / q}\right\|_{L^{p^{\prime}}}\right\} . \tag{26}\\
& C^{-1} \max \left\{\sup _{\|\left(\lambda_{k}\| \|_{q^{\prime}}=1\right.}\left\|\left(\sum_{k=0}^{\infty}\left|\lambda_{k}\right|^{2}\left|g_{k}\right|^{2}\right)^{1 / 2}\right\|_{L^{p^{\prime}}},\left(\sum_{k=0}^{\infty}\left\|g_{k}\right\|_{H^{p^{\prime}}}^{r}\right)^{1 / r} \leq\|T\|\right. \tag{27}
\end{align*}
$$

Proof. (26) follows by Proposition 12 using (16) and the facts $\left\|\left(g_{k}\right)\right\|_{\ell_{w e a k}^{p}(X)} \leq$ $\left\|\left(g_{k}\right)\right\|_{\ell^{p}(X)}$ and $\|F\|_{H_{w e a k}^{p}(X)} \leq\|F\|_{H^{p}(X)}$.

Let us show (27). For each $\lambda=\left(\lambda_{k}\right) \in \ell^{q^{\prime}}$, denote $T_{\lambda}: H^{p} \rightarrow \ell^{1}$ given by

$$
T_{\lambda}(f)=\sum_{k=0}^{\infty} \lambda_{k}\left\langle T(f), e_{k}\right\rangle
$$

Since $\|T\|=\sup \left\{\left\|T_{\lambda}\right\|:\left\|\left(\lambda_{k}\right)\right\|_{q^{\prime}}=1\right\}$, and $g_{k}\left(T_{\lambda}\right)=\lambda_{k} g_{k}(T)$, from (17), we have to get lower estimates of $\left\|\left(\lambda_{k} g_{k}\right)\right\|_{\ell_{\text {weak }}^{1}\left(H^{p^{\prime}}\right)}$.

Using that $H^{p^{\prime}}$ has cotype $u=\max \left\{p^{\prime}, 2\right\}$ (see for instance [14]), we have

$$
\left(\sum_{k=0}^{\infty}\left|\lambda_{k}\right|^{u}\left\|g_{k}\right\|_{H^{p^{\prime}}}^{u}\right)^{1 / u} \leq C\left\|\left(\lambda_{k} g_{k}\right)\right\|_{\ell_{\text {weak }}^{1}\left(H^{p^{\prime}}\right)}
$$

and, taking the supremum over $\left(\lambda_{k}\right)$ in the unit ball of $\ell^{q^{\prime}}$, we obtain that $\left\|\left(g_{k}\right)\right\|_{\ell^{r}\left(H^{p^{\prime}}\right)} \leq C\|T\|$ for $1 / r=\left(1 / u-1 / q^{\prime}\right)^{+}=\left(1 / q-1 / p_{1}\right)^{+}$.

On the other hand, Khinchine's inequality implies that

$$
\left\|\left(\sum_{k=0}^{\infty}\left|\lambda_{k}\right|^{2}\left|g_{k}\right|^{2}\right)^{1 / 2}\right\|_{L^{p^{\prime}}} \leq C\left\|\left(\lambda_{k} g_{k}\right)\right\|_{\ell_{\text {weak }}^{1}\left(H^{p^{\prime}}\right)},
$$

and the proof of the proposition is finished.
We now proceed to the proof of Theorem 5 . Let $1<p<\infty, 1 \leq q<\infty$, $p_{1}=\min \{p, 2\}$ and $p_{2}=\max \{p, 2\}$. Let $T: H^{p} \rightarrow \ell^{q}$ be a bounded linear operator and $F_{T}(z)=\left(g_{k}(z)\right)_{k}=\sum_{n=0}^{\infty} x_{n} z^{n}$ be defined by the formulas (11) and (12).

Let us first show that $\|T\| \leq \min \left\{\left\|\left(T_{k}\right)\right\|_{\ell^{q}\left(\ell\left(p_{1}, 2\right)\right)},\left\|\left(x_{n}\right)\right\|_{\ell\left(p_{1}, 2, \ell^{q}\right)}\right\}$.
Our proof will be based upon the following extension of Hausdorff-Young's inequalities (see [19]): If $p_{1}=\min \{p, 2\}$ and $p_{2}=\max \{p, 2\}$ then

$$
\|g\|_{H^{p^{\prime}}} \leq\left\|\left(\alpha_{n}\right)\right\|_{\ell\left(p_{1}, 2\right)}, \quad\left\|\left(\alpha_{n}\right)\right\|_{\ell\left(p_{2}, 2\right)} \leq\|g\|_{H^{p^{\prime}}}
$$

for any $g(z)=\sum_{n=0}^{\infty} \alpha_{n} z^{n}$.
Therefore (26) in Proposition 18 implies

$$
\|T\| \leq C\left\|\left(g_{k}\right)\right\|_{\ell^{q}\left(H^{p^{\prime}}\right)} \leq C\left\|\left(T_{k}\right)\right\|_{\ell q\left(\ell\left(p_{1}, 2\right)\right)} .
$$

On the other hand, $\|T\|=\left\|F_{T}\right\|_{H_{w e a k}^{p^{\prime}}\left(\ell^{q}\right)}$ and we have

$$
\begin{aligned}
\left\|F_{T}\right\|_{H_{w e a k}^{p^{\prime}}(\ell q)} & =\sup _{\left\|\left(\lambda_{k}\right)\right\|_{\ell q^{\prime}}=1}\left\|\left\langle\lambda, F_{T}\right\rangle\right\|_{H^{p^{\prime}}} \\
& \leq \sup _{\left\|\left(\lambda_{k}\right)\right\|_{\ell^{\prime}}=1}\left\|\left(\left\langle\lambda, x_{n}\right\rangle\right)_{n}\right\|_{\ell\left(p_{1}, 2\right)} \\
& \leq \sup _{\left\|\left(\lambda_{k}\right)\right\|_{\ell q^{\prime}}=1}\left\|\left(\sum_{k=1}^{\infty} \lambda_{k} t_{k n}\right)_{n}\right\|_{\ell\left(p_{1}, 2\right)} \\
& \leq\left\|\left(\sum_{k=1}^{\infty}\left|t_{k n}\right|^{q}\right)_{n}^{1 / q}\right\|_{\ell\left(p_{1}, 2\right)} \\
& \leq\left\|\left(x_{n}\right)\right\|_{\ell\left(p_{1}, 2, \ell^{q}\right)} .
\end{aligned}
$$

Let us now show that for each $u \geq q$ there exists $C>0$ such that

$$
\max \left\{\left\|\left(T_{k}\right)\right\|_{\ell^{r}\left(\ell\left(p_{2}, 2\right)\right)},\left\|\left(x_{n}\right)\right\|_{\ell\left(s_{u}, 2, \ell^{u}\right)}\right\} \leq C\|T\| \text {, }
$$

where $1 / r=\left(1 / q-1 / p_{1}\right)^{+}$and $1 / s_{u}=\left(1 / q-1 / p_{2}^{\prime}-(1 / u-1 / 2)^{+}\right)^{+}$.
Note that (27) in Proposition 18 together with the Hausdorff-Young's inequalities give

$$
\left\|\left(T_{k}\right)\right\|_{\ell^{r}\left(\ell\left(p_{2}, 2\right)\right)} \leq\left\|\left(g_{k}\right)\right\|_{\ell^{r}\left(H^{p^{\prime}}\right)} \leq C\|T\| .
$$

On the other hand, as above $\|T\|=\left\|F_{T}\right\|_{H_{w e a k}^{p^{\prime}}(\ell q)}$ and combining HausdorffYoung and (18), we obtain

$$
\begin{aligned}
\left\|F_{T}\right\|_{H_{w e a k}^{p^{\prime}}(\ell q)} & =\sup _{\left\|\left(\lambda_{k}\right)\right\|_{\ell q^{\prime}}=1}\left\|\left\langle\lambda, F_{T}\right\rangle\right\|_{H^{p^{\prime}}} \\
& \geq \sup _{\left\|\left(\lambda_{k}\right)\right\|_{\ell q^{\prime}}=1}\left\|\left(\left\langle\lambda, x_{n}\right\rangle\right)_{n}\right\|_{\ell\left(p_{2}, 2\right)} \\
& =\sup _{\left\|\left(\lambda_{k}\right)\right\|_{\ell \ell^{\prime}}=1,\left\|\left(\beta_{n}\right)\right\|_{\ell\left(p_{2}^{\prime}, 2\right)}} \sum_{n=0}^{\infty}\left|\beta_{n} \sum_{k=1}^{\infty} \lambda_{k} t_{k n}\right| \\
& \geq \sup _{\left\|\left(\lambda_{k}\right)\right\|_{\ell q^{\prime}}=1,\left\|\left(\beta_{n}\right)\right\|_{\ell\left(p_{2}^{\prime}, 2\right)}=1}\left|\sum_{n=0}^{\infty}\left\langle\beta_{n} x_{n}, \lambda\right\rangle\right|
\end{aligned}
$$

Therefore $\left(\beta_{n} x_{n}\right) \in \ell_{\text {weak }}^{1}\left(\ell^{q}\right)$ for any $\left(\beta_{n}\right) \in \ell\left(p_{2}^{\prime}, 2\right)$ and

$$
\sup _{\left\|\left(\beta_{n}\right)\right\|_{\ell\left(p_{2}^{\prime}, 2\right)}=1}\left\|\left(\beta_{n} x_{n}\right)\right\|_{\ell_{\text {weak }}^{1}(\ell q)} \leq\left\|F_{T}\right\|_{H_{\text {weak }}^{p^{\prime}}\left(\ell^{q}\right)}=\|T\| .
$$

We now use the fact (due to B. Carl in [12] and G. Bennett in [3] independently) that the inclusion map $\ell^{q} \rightarrow \ell^{u}$ is ($a, 1$)-summing for $1 / a=$ $1 / q-(1 / u-1 / 2)^{+}\left(\right.$see $[14$, pg. 209] $)$ to conclude that $\left(\beta_{n} x_{n}\right) \in \ell^{a}\left(\ell^{u}\right)$ for any $\left(\beta_{n}\right) \in \ell\left(p_{2}^{\prime}, 2\right)$. Now (18) implies $\left(x_{n}\right) \in \ell\left(s, 2, \ell^{u}\right)$ for $1 / s=\left(1 / a-1 / p_{2}^{\prime}\right)^{+}$. The proof is then complete.

5 Improvements for $1 \leq p<2$

We first recall some known facts about $B M O A$-functions. It was shown in [10] that $M_{2}\left(f^{\prime}, r\right)=O\left(\frac{1}{(1-r)^{1 / 2}}\right)$ implies $f \in B M O A$. Moreover

$$
\|f\|_{B M O A} \leq C\left(|f(0)|+\sup _{0<r<1}(1-r)^{1 / 2} M_{2}\left(f^{\prime}, r\right)\right)
$$

Using this estimate and (19) we conclude that

$$
\begin{equation*}
\|g\|_{B M O A} \leq C\left\|\left((n+1)^{1 / 2} \alpha_{n}\right)\right\|_{\ell(2, \infty)} \tag{28}
\end{equation*}
$$

Also, using duality together with Paley's inequality for functions in H^{1} (see [16]) we obtain

$$
\begin{equation*}
\|g\|_{B M O A} \leq C\left\|\left(\alpha_{n}\right)\right\|_{\ell(1,2)} \tag{29}
\end{equation*}
$$

The reader should notice that these two sufficient conditions on the Taylor coefficients to define $B M O A$-function are of independent nature. It suffices to take $\alpha_{n}=\frac{1}{n+1}$ to have an example satisfying $\left((n+1)^{1 / 2} \alpha_{n}\right) \in \ell(2, \infty)$ but $\left(\alpha_{n}\right) \notin \ell(1,2)$ and to take $\alpha_{2^{k}}=\frac{1}{k}$ and zero otherwise to have $\left(\alpha_{n}\right) \in \ell(1,2)$ but $(n+1)^{1 / 2} \alpha_{n} \notin \ell(2, \infty)$.

Proof of Theorem 8

Using (28) and (29) together with (24) we have the estimate

$$
\|T\| \leq\left\|\left(g_{k}\right)\right\|_{\ell^{q}(B M O A)} \leq C \min \left\{\left\|\left(T_{k}\right)\right\|_{\ell^{q}(\ell(1,2))},\left\|\left(A_{k}\right)\right\|_{\ell^{q}(\ell(2, \infty))}\right\} .
$$

On the other hand

$$
\|T\|=\left\|F_{T}\right\|_{{B M O A_{\text {weak }}(\ell q)}}
$$

$$
\begin{aligned}
& =\sup _{\left\|\left(\lambda_{k}\right)\right\|_{\ell^{\prime}=1}}\left\|\left\langle\lambda, F_{T}\right\rangle\right\|_{\text {BMO }} \\
& \leq \sup _{\left\|\left(\lambda_{k}\right)\right\|_{\ell^{\prime}}=1} \min \left\{\left\|\left(\left\langle\lambda, x_{n}\right\rangle\right)\right\|_{\ell(1,2)},\left\|\left(\left\langle\lambda,(n+1)^{1 / 2} x_{n}\right\rangle\right)\right\|_{\ell(2, \infty)}\right\} \\
& \leq \min \left\{\left\|\left(x_{n}\right)\right\|_{\ell\left(1,2, \ell^{q}\right)},\left\|\left((n+1)^{1 / 2} x_{n}\right)\right\|_{\left.\ell\left(2, \infty, \ell^{q}\right)\right)}\right\} .
\end{aligned}
$$

Invoking Lemma 13 we obtain the following estimates

$$
\begin{gathered}
\left\|\left(x_{n}\right)\right\|_{\left(1,2, \ell^{1}\right)} \leq\left\|\left(T_{k}\right)\right\|_{\ell^{1}(\ell(1,2))}, \\
\left.\left\|\left((n+1)^{1 / 2} x_{n}\right)\right\|_{\ell\left(2, \infty, \ell^{1}\right)} \leq\left\|\left(A_{k}\right)\right\|_{\ell^{1}(\ell(2, \infty)}\right), \\
\left\|\left((n+1)^{1 / 2} x_{n}\right)\right\|_{\ell(2, \infty,(q)} \leq\left\|\left(A_{k}\right)\right\|_{\ell(\ell(2, \infty)))}, \quad q \leq 2, \\
\left\|\left(T_{k}\right)\right\|_{\ell q(\ell(1,2))} \leq\left\|\left(x_{n}\right)\right\|_{\ell_{\left(1,2, \ell^{q}\right)}, \quad} \quad q \geq 2 .
\end{gathered}
$$

Hence (i), (ii) and (iii) follow from these estimates.

Proof of Theorem 9

Take $t \geq 2$ such that $1 / t+1 / 2=1 / p$ and $\phi(z)=\sum_{n=0}^{\infty} \alpha_{n} z^{n} \in H^{t}$ with $\|\phi\|_{H^{t}}=1$. Define $T_{\phi}: H^{2} \rightarrow \ell^{q}$ given by

$$
T_{\phi}(f)=T(\phi f) .
$$

Due to the factorization result (see [16]) $H^{p}=H^{2} H^{t}$ we can write

$$
\|T\|=\sup \left\{\left\|T_{\phi}\right\|:\|\phi\|_{H^{t}}=1\right\} .
$$

Observe that

$$
x_{n}\left(T_{\phi}\right)=T\left(u_{n} \phi\right)=\sum_{l=0}^{\infty} \alpha_{l} T\left(u_{n+l}\right)=\sum_{l=0}^{\infty} \alpha_{l} x_{n+l} .
$$

Therefore the matrix associated to T_{ϕ} is given by $a_{k n}\left(T_{\phi}\right)=\left(t_{k n}^{\prime}\right)$ where

$$
t_{k n}^{\prime}=\sum_{l \geq n} \alpha_{l-n} t_{k l}=\sum_{l=0}^{\infty} \alpha_{l} t_{k, l+n}
$$

Now using (5) one can write, for $1 / r=1 / q-1 / 2$,

$$
\begin{aligned}
\max \left\{\left\|\left(\left(T_{\phi}\right)_{k}\right)\right\|_{\ell^{r}\left(\ell^{2}\right)},\left\|\left(x_{n}\left(T_{\phi}\right)\right)\right\|_{\ell^{r}\left(\ell^{2}\right)}\right\} & \leq C\left\|T_{\phi}\right\| \\
& \leq C\|T\|\|\phi\|_{H^{t}} \\
& \leq C\|T\|\left\|\left(\alpha_{l}\right)\right\|_{\ell\left(t^{\prime}, 2\right)} .
\end{aligned}
$$

This shows the result.

$$
\text { Proof of Theorem } 10
$$

Assume $1 \leq p<2$ and let $T: H^{p} \rightarrow \ell^{1}$ be bounded. The estimate

$$
\left.\sup _{\left\|\left(\alpha_{\alpha}\right)\right\|_{\ell_{\left(t_{1}^{\prime}, 2\right)}=1}} \|\left(\sum_{l=0}^{\infty} \alpha_{l} t_{k, n+l}\right)\right)_{k}\left\|_{\ell^{2}\left(l^{2}\right)} \leq C\right\| T \|
$$

was obtained in Theorem 9 in the case $q=1$.
Let us show

$$
\begin{equation*}
\sup _{\left\|\sum_{l} \alpha_{l} z^{l}\right\|_{H^{t}}=1}\left\|\left(\sum_{l=0}^{\infty} \alpha_{l} t_{k, n+l}\right)_{n}\right\|_{\ell^{2}\left(\ell^{2}\right)} \leq C\|T\| . \tag{30}
\end{equation*}
$$

In the case $1<p<2$, we can use (17) to conclude that $F_{T} \in H_{w e a k}^{p^{\prime}}\left(\ell^{1}\right)$ and, due to Lemma 16, $F_{T} \in H^{p^{\prime}}\left(\ell^{2}\right)$.

In the case $p=1$, we can use (25) to obtain $F_{T} \in B M O A_{\text {weak }}\left(\ell^{1}\right)$ and Lemma 17 to conclude that $\left.F_{T} \in B M O A_{\mathcal{C}}\left(\ell^{2}\right)\right)$.

Using the dualities $\left(H^{p}\left(\ell^{2}\right)\right)^{*}=H^{p^{\prime}}\left(\ell^{2}\right)$ for $1<p<2$ and $\left(H^{1}\left(\ell^{2}\right)\right)^{*}=$ $\left.B M O A_{\mathcal{C}}\left(\ell^{2}\right)\right)$ for $p=1$, we can write, for $1 \leq p<2$, that

$$
\sup \left\{\left|\sum_{n=0}^{\infty}\left\langle x_{n}, x_{n}^{\prime}\right\rangle\right|: G(z)=\sum_{j=0}^{\infty} x_{n}^{\prime} z^{n},\|G\|_{H^{p}\left(\ell^{2}\right)}=1\right\} \leq C\|T\| .
$$

In particular, for each $g(z)=\sum_{n=0}^{\infty} y_{n} z^{n} \in H^{2}\left(\ell^{2}\right)$ and $\phi(z)=\sum_{n=0}^{\infty} \alpha_{n} z^{n} \in H^{t}$ where $1 / t+1 / 2=1 / p$, the function $G(z)=g(z) \phi(z)=\sum_{n} x_{n}^{\prime} z^{n} \in H^{p}\left(\ell^{2}\right)$ satisfies $x_{n}^{\prime}=\sum_{l=0}^{n} y_{l} \alpha_{n-l}$ and $\|G\|_{H^{p}\left(\ell^{2}\right)} \leq\|g\|_{H^{2}\left(\ell^{2}\right)}\|\phi\|_{H^{t}}$. Therefore, in such a case, we obtain

$$
\sum_{n=0}^{\infty}\left\langle x_{n}, x_{n}^{\prime}\right\rangle=\sum_{l=0}^{\infty} \sum_{n=l}^{\infty}\left\langle x_{n}, y_{l} \alpha_{n-l}\right\rangle=\sum_{l=0}^{\infty}\left\langle\sum_{n=0}^{\infty} \alpha_{l} x_{n+l}, y_{l}\right\rangle .
$$

Finally, taking the supremum over $\left\|\left(y_{j}\right)\right\|_{\ell^{2}\left(\ell^{2}\right)}=1$ and $\|\phi\|_{H^{t}}=1$ we get (30).

References

[1] J.L. Arregui, O. Blasco Convolution of three functions by means of bilinear maps and applications, Illinois J. Math. 43, (1999), 264-280.
[2] G. Bennett Schur multipliers, Duke Math. J. 44 (1977), 603-640.
[3] G. Bennett Inclusion mappings between ℓ^{p} spaces, J. Funct. Anal. 12, (1973), 420-427.
[4] O. Blasco Multipliers on spaces of analytic functions, Canad. J. Math. 47, (1995), 44-64.
[5] O. Blasco Vector-valued analytic functions of bounded mean oscillation and geometry of Banach spaces, Illinois J. Math. 41, (1997), 532-558.
[6] O. Blasco Remarks on vector-valued BMOA and Vector-valued multipliers, Positivity 4, (2000), 339-356.
[7] O. Blasco Operators on weighted Bergman spaces, Contemporary Math. 404, (2006), 53-66 .
[8] O. Blasco Operators from H^{p} to ℓ^{q} for $0<p<1 \leq q<\infty$, Contemporary Math. 435, (2007), 81-88.
[9] A.V. Bukhvalov, A.A. Danilevich Boundary properties of analytic and harmonic functions with values in Banach spaces, Mat. Zametki, 31 (1982), 203-214; English Transl., Math. Notes 31 (1982), 104-110.
[10] J.A. Cima, K.E. Petersen Some analytic functions whose boundary values have bounded mean oscillation, Math. Z. 147 (1976), 237-247.
[11] D.M. Campbell, R.J. Leach A survey of H^{p} multipliers as related to classical function theory, Complex Variables 3 (1984), 85-111.
[12] B. Carl About (p,1)-summierende identische Operatoren von ℓ_{u} nach ℓ_{v}, Math. Nachr. 63, (1974), 353-360.
[13] J. Caveny, Absolute convergence factors for H^{p} series, Canadian J. Math. 21 (1969), 187-195.
[14] J. Diestel, H. Jarchow, A. Tonge Absolutely summing operators, Cambrigde Univ. Press, Cambrigde, 1995.
[15] J. Diestel, J. Uhl Vector measures, American Mathematical Society, Mathematical Surveys, Number 15, R.I. (1977).
[16] P. Duren Theory of H^{p}-spaces, Academic Press (1970).
[17] J.B. Garnett Bounded analytic functions, Pure and Applied Mathematics Vol. 96 Academic Press, New York (1981).
[18] J.H. Hedlund Multipliers on H^{1} and Hankel matrices, Proc. Amer. Math. Soc. 22 (1969), 20-23.
[19] C.N. Kellogg An extension of the Hausdorff-Young theorem, Michigan Math. J. 18 (1971), 121-127.
[20] S. Kawpien Some remarks on (p, q)-summing operators in ℓ_{p}-spaces, Studia Math. 29, (1968), 327-337.
[21] M. Mateljevic, M. Pavlovic L^{p}-behaviour of the integral means of analytic functions, Studia Math. 84, (1976), 45-90.
[22] B. Osikiewicz, A. Tonge An interpolation approach to Hardy-Littlewood inequalities for norms of operators on sequence spaces, Linear Alg. and Appl. 331 (2001), 1-9.
[23] B. Osikiewicz Norm estimates for operators $T ; H_{p} \rightarrow l_{q}$ involving the $L_{r}\left(l_{s}\right)$ norms, Quaestiones Math. 28 (2005), 263-270.
[24] B. Osikiewicz Multipliers of Hardy spaces, Quaestiones Math. 27 (2004), 5773.
[25] J. Peetre Sur la transformation de Fourier des fonctions a valeurs vectorielles, Rend. Sem. Mat. Univ. Padova 42 (1969), 15-46.
[26] W.T. Sledd, D.A. Stegenga An H^{1} multiplier theorem, Ark. Mat., 19 (1981),no,2, 265-270.
[27] P. Wojtaszczyk Banach spaces for analysts, Cambrigde Univ. Press, Cambrigde, 1991.

[^0]: Email address: oscar.blasco@uv.es (Oscar Blasco).
 12000 Mathematical Subjects Classifications. Primary 47A30, 47B38 Secondary 42B30. The author gratefully acknowledges support by Proyecto MTN2005-08350-C03-03.

