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Abstract. In this paper we deal with the maximal subspace in BMOA where a general semi-
group of analytic functions on the unit disk generates a strongly continuous semigroup of compo-
sition operators. Particular cases of this question are related to a well-known theorem of Sarason
about VMOA. Our results describe analytically that maximal subspace and provide a condition
which is sufficient for the maximal subspace to be exactly VMOA. A related necessary condition
is also proved in the case when the semigroup has an inner Denjoy-Wolff point. As byproduct
we provide a generalization of the theorem of Sarason.

1. Introduction

Let H(D) be the Fréchet space of all analytic functions in the unit disk endowed with the
topology of uniform convergence on compact subsets of D.
A (one-parameter) semigroup of analytic functions is any continuous homomorphism Φ : t 7→

Φ(t) = ϕt from the additive semigroup of nonnegative real numbers into the composition semigroup
of all analytic functions which map D into D. In other words, Φ = (ϕt) consists of analytic functions
on D with ϕt(D) ⊂ D and for which the following three conditions hold:

(1) ϕ0 is the identity in D,
(2) ϕt+s = ϕt ◦ ϕs, for all t, s ≥ 0,
(3) ϕt → ϕ0, as t→ 0, uniformly on compact subsets of D.

It is well known that condition (3) above can be replaced by
(30) For each z ∈ D, ϕt(z)→ z, as t→ 0.
Each such semigroup gives rise to a semigroup (Ct) consisting of composition operators onH(D),

Ct(f) := f ◦ ϕt, f ∈ H(D).
We are going to be interested in the restriction of (Ct) to certain linear subspaces H(D). Given

a Banach space X consisting of functions of H(D) and a semigroup (ϕt), we say that (ϕt) generates
a semigroup of operators on X if (Ct) is a well-defined strongly continuous semigroup of bounded
operators in X. This exactly means that for every f ∈ X, we have Ct(f) ∈ X for all t ≥ 0 and

lim
t→0+

kCt(f)− fkX = 0.
Thus the crucial step to show that (ϕt) generates a semigroup of operators in X is to pass from
the pointwise convergence limt→0+ f ◦ ϕt(z) = f(z) on D to the convergence in the norm of X.
This connection between composition operators and semigroups opens the possibility of studying

spectral properties, operator ideal properties or dynamical properties of the semigroup of operators
(Ct) in terms of the theory of functions. Papers [1] and [10] can be considered as the starting points
in this direction.
Classical choices of X treated in the literature are the Hardy spaces Hp, the disk algebra A(D),

the Bergman spaces Ap, the Dirichlet space D and the chain of spaces Qp and Qp,0 which have

Date : July 28, 2006.
2000 Mathematics Subject Classification. Primary 30H05, 32A37, 47B33, 47D06; Secondary 46E15.
Key words and phrases. Semigroups, composition operators, BMOA, VMOA.
This research has been partially supported by the Ministerio de Ciencia y Tecnología projects n. BFM2003-

07294-C02-02 and MTM2005-08350-C03-03 and by La Consejería de Educación y Ciencia de la Junta de Andalucía.
1



2 O. BLASCO, M.D. CONTRERAS, S. DÍAZ-MADRIGAL, J. MARTÍNEZ, AND A.G. SISKAKIS

been introduced recently and which include the spaces BMOA, Bloch as well as their “little oh”
analogues. See [19] and [20]for definitions and basic facts of the spaces and [15], [16], and [18] for
composition semigroups on these spaces.
Very briefly, the state of the art is the following: (i) Every semigroup of analytic functions

generates a semigroup of operators on the Hardy spaces Hp (1 ≤ p <∞), the Bergman spaces Ap

(1 ≤ p < ∞), the Dirichlet space, and on the spaces VMOA and little Bloch. (ii) No non-trivial
semigroup generates a semigroup of operators in the space H∞ of bounded analytic functions. (iii)
There are plenty of semigroups (but not all) which generate semigroups of operators in the disk
algebra. Indeed, they can be well characterized in several analytical terms [4].
In this paper we concentrate on the space BMOA. As we will see, the strong continuity behavior

differs notably from other known cases, since it depends heavily on the particular semigroup.
This has led us to introduce the following notation: Given a semigroup (ϕt) we denote by

[ϕt, BMOA] the maximal closed linear subspace of BMOA such that (ϕt) generates a semigroups
of operators on it. The existence of such a maximal subspace, as well as analytical descriptions of
it will be discussed in section two. In that section, we also present an alternative self-contained
proof of the fact that every semigroup generates a semigroup of operators on VMOA. This in
particular means that in our notation

VMOA ⊆ [ϕt, BMOA]

for every semigroup (ϕt). It is important to underline that, in general, VMOA Ã [ϕt, BMOA].
The chain of inclusions VMOA ⊆ [ϕt, BMOA] ⊆ BMOA leads us to wonder about those

semigroups with an extreme character, that is, those giving equality

VMOA = [ϕt, BMOA] or [ϕt, BMOA] = BMOA.

In section three we deal with the left hand equality VMOA = [ϕt, BMOA], and present a sufficient
condition on the semigroup for this equality to hold. A different but closely related condition is
shown to be necessary for semigroups with inner Denjoy-Wolff point. The conditions are in terms
of the growth of the infinitesimal generator of (ϕt) near the boundary of D.
There is an important connection of the above results with a well-known theorem of D. Sarason

which characterizes the space VMOA. Namely, Sarason [12], [13] proved

Theorem A. (Sarason [12]) Suppose f ∈ BMOA, then the following are equivalent:

(1) f ∈ VMOA.
(2) limt→0+ kf(eitz)− fkBMOA = 0.
(3) limt→0+ kf(e−tz)− fkBMOA = 0.

In our notation this theorem can be written as

VMOA = [eitz,BMOA] = [e−tz,BMOA].

In other words, the semigroups ϕt(z) = eitz of rotations and ϕt(z) = e−tz of dilatations with
respect to the origin are left-extreme in the above sense. Our results provide many more nontrivial
examples of semigroups of this type.
We end this introduction by presenting a quick review of basic facts about a general semigroup

of analytic functions (see [16]). The basic material about operator semigroups on Banach spaces
can be found in [7, Chapter VIII].
If (ϕt) is a semigroup, then each map ϕt is univalent. The infinitesimal generator of (ϕt) is the

function

G(z) := lim
t→0+

ϕt(z)− z

t
, z ∈ D.

This convergence holds uniformly on compact subsets of D so G ∈ H(D). Moreover G satisfies

(1.1) G(ϕt(z)) =
∂ϕt(z)

∂t
= G(z)

∂ϕt(z)

∂z
, z ∈ D, t ≥ 0.
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Further G has a unique representation

G(z) = (bz − 1)(z − b)P (z), z ∈ D
where b ∈ D and P ∈ H(D) with ReP (z) ≥ 0 for all z ∈ D. If G is not identically null, the couple
(b, P ) is uniquely determined from (ϕt) and the point b is called the Denjoy-Wolff point of the
semigroup. We want to mention that this point plays a crucial role in the dynamical behavior of
the semigroup (see [16], [5]).
Note that for r sufficiently near to one, it is clear from the above representation of G that G

has no zeros in the annulus r < |z| < 1, so 1/G is analytic on that annulus. This remark will be
implicitly used throughout the paper.

2. Semigroups in BMOA

For the sake of completeness and to fix notations, we begin with a quick review of basic properties
of VMOA and BMOA.

BMOA is the Banach space of all analytic functions in the Hardy space H2 whose boundary
values have bounded mean oscillation. There are many characterizations of this space but we will
use the one in terms of Carleson measures (see [20, 9]). Namely, a function f ∈ H2 belongs to
BMOA if and only if there exists a constant C > 0 such thatZ

R(I)

|f 0(z)|2(1− |z|2)dA(z) ≤ C|I|,

for any arc I ⊂ ∂D, where R(I) is the Carleson rectangle determined by I, that is,

R(I) :=

½
reiθ ∈ D : 1− |I|

2π
< r < 1 and eiθ ∈ I

¾
.

As usual, |I| denotes the length of I and dA(z) the normalized Lebesgue measure on ∂D. The
corresponding BMOA norm is

kfkBMOA := |f(0)|+ sup
I⊂∂D

Ã
1

|I|
Z
R(I)

|f 0(z)|2(1− |z|2)dA(z)
!1/2

.

Trivially, each polynomial belongs to BMOA. The closure of all polynomials in BMOA is denoted
by VMOA. Alternatively, VMOA is the subspace of BMOA formed by those f ∈ BMOA such
that

lim
|I|→0

1

|I|
Z
R(I)

|f 0(z)|2(1− |z|2)dA(z) = 0.

Particular and quite interesting examples of members of VMOA are provided by any function in
the Dirichlet space D, which is the space of those functions f ∈ H(D) such that f 0 ∈ L2(D, dA).
In fact, for every f ∈ D,

(2.1)
1

|I|
Z
R(I)

|f 0(z)|2(1− |z|2)dA(z) ≤ 2
Z
R(I)

|f 0(z)|2dA(z)→ 0 as |I|→ 0.

For more information on these Banach spaces, we refer the reader to the excellent monographs or
[9] or [20].
In our first result, we confirm the existence of a maximal closed linear subspace of BMOA on

which a semigroup (ϕt) generates a semigroup of operators. In this context, we recall that any
analytic self map ϕ of the disk induces a bounded composition operator Cϕ(f) = f ◦ϕ on BMOA
and there is a constant C > 0, not depending on ϕ, such that

(2.2) kCϕkBMOA ≤ C

µ
1 + log

1

1− |ϕ(0)|
¶
.

Moreover Cϕ is bounded on VMOA if and only if ϕ ∈ VMOA, see [3] for details.
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Proposition 2.1. Let (ϕt) be a semigroup of analytic functions. Then there exists a closed sub-
space Y of BMOA such that (ϕt) generates a semigroup of operators on Y and such that any other
subspace of BMOA with this property is contained in Y .

Proof. Consider the linear subspace of BMOA defined by

Y :=

½
f ∈ BMOA : lim

t→0+
kf ◦ ϕt − fkBMOA = 0

¾
.

Notice that supt∈[0,1] |ϕt(0)| =M < 1. Hence from (2.2),

sup
t∈[0,1]

kCtkBMOA ≤ C (1− log(1−M)) < +∞.

This and the triangle inequality for norms shows that Y is a closed subspace of BMOA. Thus in
order to prove that (ϕt) generates a semigroup of operators in Y , it remains to check that if f ∈ Y
then Cs(f) ∈ Y for all s ≥ 0. To see this let s, t ≥ 0, then

kCs(f) ◦ ϕt − Cs(f)kBMOA ≤ C

µ
1 + log

1

1− |ϕs(0)|
¶
kf ◦ ϕt − fkBMOA → 0 as t→ 0+.

Finally, if W is a subspace of BMOA such that (ϕt) generates a semigroup of operators on W ,
then for any f ∈ W we have in particular limt→0+ kf ◦ ϕt − fkBMOA = 0, thus f ∈ Y and we
conclude W ⊂ Y . ¤

In what follows, this maximal subspace Y will be denoted as [ϕt, BMOA]. It is easy to see that
if Z is any closed subspace of [ϕt, BMOA] which is invariant under (Ct) (i.e. Ct(Z) ⊂ Z for every
t ≥ 0) then (ϕt) generates a semigroups of operators on Z.
This maximal subspace can be also described directly in terms of the infinitesimal generator.

Theorem 2.2. Let G be the infinitesimal generator of (ϕt). Then,

[ϕt, BMOA] = {f ∈ BMOA : Gf 0 ∈ BMOA}.
Proof. We may assume that (ϕt) is not trivial. Denote by Γ the infinitesimal generator of the
operator semigroup (Ct) acting on the Banach space [ϕt, BMOA], and by D (Γ) its domain. We
will show that if f ∈ D (Γ) then Gf 0 ∈ BMOA. Indeed if f ∈ D (Γ) then Γ(f) ∈ BMOA and

lim
t→0+

°°°°1t (Ct(f)− f)− Γ(f)
°°°°
BMOA

= 0.

Since convergence in the BMOA norm implies uniform convergence on compact subsets of D and
therefore in particular pointwise convergence, for each z ∈ D we have

Γ(f)(z) = lim
t→0+

f(ϕt(z))− f(z)

t
= lim

t→0+
f(ϕt(z))− f(ϕ0(z))

t

=
∂f ◦ ϕt(z)

∂t

¯̄̄̄
t=0

= f 0(ϕ0(z))
∂ϕt(z)

∂t

¯̄̄̄
t=0

= f 0(z)G(z),

that is, Gf 0 = Γ(f) ∈ BMOA, and thus D (Γ) ⊂ {f ∈ BMOA : Gf 0 ∈ BMOA}. Taking closures
and bearing in mind the fact from the general theory of operator semigroups that D (Γ) is dense
in [ϕt, BMOA] we conclude

[ϕt, BMOA] ⊆ {f ∈ BMOA : Gf 0 ∈ BMOA}.
Conversely, let f ∈ BMOA such that m := Gf 0 ∈ BMOA. First of all, we assert that

(f ◦ ϕt)0(z)− f 0(z) =
Z t

0

(m ◦ ϕs)0(z)ds; for t ≥ 0, z ∈ D.
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Indeed,

G(z) ((f ◦ ϕt)0(z)− f 0(z)) = f 0(ϕt(z))G(z)ϕ0t(z)−m(z)

= f 0(ϕt(z))
∂ϕt(z)

∂t
−m(z)

= m(ϕt(z))−m(z) =

Z t

0

∂(m ◦ ϕs)(z)
∂s

ds

=

Z t

0

G(z)m0(ϕs(z))ϕ0s(z)ds

= G(z)

Z t

0

(m ◦ ϕs)0(z)ds.

Since G is not identically null this verifies our assertion. Next let I be an interval in ∂D and R(I)
the corresponding Carleson rectangle. For 0 ≤ t ≤ 1 we haveZ

R(I)

|(f ◦ ϕt)0(z)− f 0(z)|2 (1− |z|2)dA(z) =
Z
R(I)

¯̄̄̄Z t

0

(m ◦ ϕs)0(z)ds
¯̄̄̄2
(1− |z|2)dA(z)

≤
Z
R(I)

t

µZ 1

0

|(m ◦ ϕs)0(z)|2 ds
¶
(1− |z|2)dA(z)

where we have applied Cauchy-Schwarz in the inside integral. Dividing by |I|, taking sup and
interchanging the integrals we have

sup
I⊆∂D

Ã
1

|I|
Z
R(I)

|(f ◦ ϕt)0(z)− f 0(z)|2 (1− |z|2)dA(z)
! 1

2

≤ sup
I⊆∂D

Ã
1

|I|
Z
R(I)

t

µZ 1

0

|(m ◦ ϕs)0(z)|2 ds
¶
(1− |z|2)dA(z)

! 1
2

≤ sup
I⊆∂D

Ã
t

Z 1

0

Ã
1

|I|
Z
R(I)

|(m ◦ ϕs)0(z)|2 (1− |z|2)dA(z)
!
ds

! 1
2

≤
µ
t

Z 1

0

km ◦ ϕsk2BMOA ds

¶ 1
2

≤ √t sup
s∈[0,1]

km ◦ ϕskBMOA

≤ √tCkmkBMOA sup
s∈[0,1]

(1− log(1− ϕs(0))

≤ C 0
√
t,

where C0 > 0 is a certain constant not depending on t. Hence,

kCtf − fkBMOA ≤ |f(ϕt(0))− f(0)|+ C0
√
t.

Since limt→0+ ϕt(0) = 0 we find that limt→0+ kCtf − fkBMOA = 0, hence f ∈ [ϕt, BMOA]. We
have shown {f ∈ BMOA : Gf 0 ∈ BMOA} ⊂ [ϕt, BMOA], and the desired inclusion follows by
taking closures. ¤

If (ϕt) is a semigroup of analytic functions then every composition operator Ct(f) = f ◦ ϕt is
bounded on VMOA. This is because each ϕt belongs to the Dirichlet space D (recall that ϕt is
univalent) and therefore also in VMOA. Thus the composition semigroup (Ct) consists of bounded
operators on VMOA.
Moreover (Ct) is strongly continuous on VMOA for every semigroup (ϕt). This was stated in

[16] without proof, and is contained as a special case among the Qp,0 spaces in [18, Theorem 4.1].
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A short proof goes as follows. Strong continuity requires that limt→0 kf ◦ ϕt − fkBMOA = 0 for
each f ∈ VMOA. For a polynomial P we can write

kf ◦ ϕt − fkBMOA ≤ kf ◦ ϕt − P ◦ ϕtkBMOA + kP ◦ ϕt − PkBMOA + kP − fkBMOA

≤ (kCtkVMOA + 1)kP − fkBMOA + kP ◦ ϕt − PkBMOA.

Since VMOA contains the polynomials as a dense set and since sup0≤t<1 kCtkVMOA < ∞, it
suffices to show limt→0 kP ◦ ϕt − PkBMOA = 0 for each polynomial. This now follows from the
inequality kgkBMOA ≤ kgkD between the VMOA-norm and the Dirichlet space norm which is
valid for all g ∈ D, see (2.1), along with the fact that every semigroup generates a semigroup of
operators on the Dirichlet space [15, Theorem 1].
We proceed however to provide an alternative direct proof of this result which does not use [15,

Theorem 1] and which is based on the VMOA −H1 duality. Recall that this duality is realized
by the pairing,

hf, gi := lim
r→1

Z 2π

0

f(reiθ)g(reiθ)
dθ

2π
, f ∈ VMOA, g ∈ H1.

If we restrict the choice of f and g, for example if both are chosen to lie in H2, then the pairing
can be expressed by the Littlewood-Paley identity (see [20, 8.1.9]):

(2.3) hf, gi = f(0)g(0) + 2

Z
D
f 0(z)g0(z) log

1

|z|dA(z).

Now, we present another formulation of this dual pair involving functions in some other different
spaces which will be more convenient for our purposes.

Lemma 2.3. If f ∈ D and g ∈ H1, then

hf, gi = f(0)g(0) + 2

Z
D
f 0(z)g0(z) log

1

|z|dA(z).

Proof. Select a sequence (gn) in H2 converging to g in H1. Using the Littewood-Paley identity,
we have

hf, gni = f(0)gn(0) + 2

Z
D
f 0(z)g0n(z) log

1

|z|dA(z)
and hf, gi = limn→∞hf, gni.
Now, Z

D
|f 0(z)(g0n(z)− g0(z))| log 1|z|dA(z) ≤

Z
|z|>1/2

|f 0(z)(g0n(z)− g0(z))| log 1|z|dA(z)

+

Z
|z|≤1/2

|f 0(z)(g0n(z)− g0(z))| log 1|z|dA(z)

≤ C1

µZ
D
|f 0(z)|2 dA(z)

¶ 1
2
µZ

D
|g0n(z)− g0(z)|2 (1− |z|)2dA(z)

¶ 1
2

+

Z
|z|≤1/2

|f 0(z)(g0n(z)− g0(z))| log 1|z|dA(z)

For any function h =
P∞

n=0 anz
n ∈ H1, we obtain from Hardy’s inequality (see [8, Theorem

6.2]) that

(2.4)
Z
D
|h0(z)|2(1− |z|)2dA(z) ≤ C2

∞X
n=0

|an|2
n
≤ C2khk2H1 .

Hence, Z
D
|g0n(z)− g0(z)|2 (1− |z|)2dA(z) ≤ C2kgn − gk2H1 .
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Finally, applying that f 0(z) log 1
|z| ∈ L1(dA) and the Lebesgue’s dominated convergence theorem,

one also has

lim
n→∞

Z
|z|≤1/2

|f 0(z)(g0n(z)− g0(z))| log 1|z|dA(z) = 0.

¤

Theorem 2.4. Every semigroup (ϕt) generates a semigroup of operators on VMOA.

Proof. From the general theory of operator semigroups, a semigroup which is weakly continuous
on a Banach space is in fact strongly continuous [17, p. 233]). Thus it suffices to prove that for
each f ∈ VMOA we have

w − lim
t→0+

Ct(f) = f,

where w− denotes the weak limit. In other words for each fixed f ∈ VMOA we want to prove

lim
t→0+

hCt(f), gi = hf, gi

for every g ∈ H1. Arguing as before about the density of polynomials in VMOA and the fact that
sup0≤t<1 kCtkVMOA <∞ we see that it suffices to prove this for f = P a polynomial.
Now, using again the Area Theorem (ϕt is univalent), we findZ

D
|P 0(ϕt(z))ϕ0t(z)|2 dA(z) ≤

Z
D
kP 0k2∞ |ϕ0t(z)|2dA(z) ≤ kP 0k2∞,

so we can apply Lemma 2.3. Therefore, if P a polynomial and g ∈ H1 we deduce

hP ◦ ϕt − P, gi = (P (ϕt(0))− P (0))g(0) + 2

Z
D
(P ◦ ϕt − P )0(z)g0(z) log

1

|z| |dA(z).

For each δ > 0, we split the integralZ
D
|(P ◦ ϕt − P )0(z)| |g0(z) | log 1|z|dA(z) ≤

≤
Z
|z|>δ

|(P ◦ ϕt)− P )0(z)||g0(z) | log 1|z|dA(z)

+

Z
|z|≤δ

|(P ◦ ϕt − P )0(z)||g0(z) | log 1|z|dA(z) = (1) + (2).

To estimate the first integral, we use that log 1
|z| ≈ 1− |z| and apply Cauchy-Schwarz’s to obtain

(1) ≤ CkP 0k∞
Z
|z|>δ

(|ϕ0t(z)|+ 1)|g0(z)|(1− |z|)dA(z)

≤ CkP 0k∞((
Z
D
|ϕ0t(z)|2 dA(z))

1
2 + 1)(

Z
|z|>δ

|g0(z)|2(1− |z|)2dA(z)) 12

≤ 2CkP 0k∞(
Z
|z|>δ

|g0(z)|2(1− |z|)2dA(z)) 12 .

Now using (2.4) one has that g0(z)(1− |z|) ∈ L2(dA), which shows that given ε > 0 and, for all
t > 0, there exists 0 < δ0 < 1 such that

(2.5)
Z
|z|>δ0

|(P ◦ ϕt)− P )0(z)| |g0(z) | log 1|z| |dA(z) < ε .

At the same time, for every z ∈ D,
lim
t→0
(P ◦ ϕt − P )0(z) = 0.
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Therefore, using that g0(z) log 1
|z| ∈ L1(dA) and the Lebesgue dominated convergence theorem, one

concludes that

(2.6) lim
t→0

Z
|z|≤δ0

|(P (ϕt)− P )0(z)||g0(z) | log 1|z|dA(z) = 0.

¤

3. VMOA and Maximal Subspaces

This section is devoted to analyze those semigroups (ϕt) such that VMOA = [ϕt, BMOA].
Since VMOA is always contained in [ϕt, BMOA] we see that VMOA = [ϕt, BMOA] is equivalent
to the following statement: if f ∈ BMOA, then

f ∈ VMOA if and only if lim
t→0+

kf ◦ ϕt − fkBMOA = 0.

It is easy to see that, in general, VMOA Ã [ϕt, BMOA]. The easiest example of this type is
the semigroup

ϕt(z) = e−tz + 1− e−t, t ≥ 0, z ∈ D.
For this semigroup the function f(z) = log(1− z) ∈ BMOA \ VMOA satisfies

kf ◦ ϕt − fkBMOA =
°°log(e−t(1− z))− log(1− z)

°°
BMOA

= 2 log e−t −→ 0,

thus f ∈ [ϕt, BMOA]. In fact it is easy to construct general examples of semigroups with this
behavior. For instance take any starlike univalent function h : D → C with h(0) = 0 and h ∈
BMOA \ VMOA and define ϕt(z) = h−1(e−th(z)). Then

kh ◦ ϕt − hkBMOA = |e−t − 1|khkBMOA −→ 0,

so that h ∈ [ϕt, BMOA] while h 6∈ VMOA.
The following theorem gives a sufficient condition on the infinitesimal generator which assures

that VMOA = [ϕt, BMOA].

Theorem 3.1. Let (ϕt) be a semigroup with infinitesimal generator G. Assume that for some
0 < α < 1,

(3.1)
(1− |z|)α
G(z)

= O (1) as |z|→ 1.

Then VMOA = [ϕt, BMOA].

Proof. Since [ϕt, BMOA] = {f ∈ BMOA : Gf 0 ∈ BMOA}, it suffices to show
{f ∈ BMOA : Gf 0 ∈ BMOA} ⊂ VMOA.

Let g ∈ BMOA with Gg0 ∈ BMOA. First we choose indices p, p0 such that 1/p + 1/p0 = 1,
2 < p <∞, and such hat α < 1

p0 < α+ 1
2 . Hence α =

1
p0 − ε with 0 < ε < 1/2. We use the usual

notation

Mp(f, r) =

µZ 2π

0

|f(reiθ)|p dθ

2π

¶1/p
and we have, taking into account that BMOA ⊂ Hp, for 0 < δ ≤ r < 1,

Mp(g
0, r) =Mp(Gg

0 1
G
, r) ≤Mp(Gg

0, r)M∞(
1

G
, r) ≤ Cp

(1− r)1/p0−ε
.

In order to show that g ∈ VMOA we will use the characterization of VMOA in terms of
Carleson measures (see [20, 8.2.5 and 8.4.2]) and it suffices prove

lim
|z|→1

Z
D
|g0(w)|2 (1− |w|

2)(1− |z|2)
|1− zw|2 dA(w) = 0.
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Now let q = p/2 > 1 and apply Hölder’s inequality for the pair of indices q, q0 that is, 2p +
1
q0 = 1

to obtainZ
D
|g0(w)|2 (1− |w|

2)(1− |z|2)
|1− zw|2 dA(w) =

Z 1

0

Z 2π

0

|g0(reiθ)|2 (1− r2)(1− |z|2)
|1− zre−iθ|2 dθrdr

≤
Z 1

0

M2
p (g

0, r)

ÃZ 2π

0

(1− r2)q
0
(1− |z|2)q0

|1− zre−iθ|2q0 dθ

! 1
q0

dr

≤ C(1− |z|)
Z 1

0

M2
p (g

0, r)
(1− r)

(1− |z|r)2− 1
q0
dr = C(1− |z|)Q(|z|),

where the last inequality follows from standard estimates on the Poisson kernel, see [8, p. 65], and
Q(|z|) denotes the last integral. We now have

Q(|z|) =
Z δ

0

M2
p (g

0, r)
(1− r)

(1− |z|r)2− 1
q0
dr +

Z 1

δ

M2
p (g

0, r)
(1− r)

(1− |z|r)2− 1
q0
dr

≤M2
p (g

0, δ)
Z δ

0

1

(1− |z|r) 1q
dr + C2p

Z 1

δ

(1− r)1−2/p
0+2ε

(1− |z|r)2− 1
q0

dr

≤ C1

Z 1

0

1

(1− r)
1
q

dr + C2

Z 1

0

(1− r)1−2/p
0+2ε

(1− |z|r)2− 1
q0

dr

= C 01 + C2

Z 1

0

(1− r)1−2/p
0+2ε

(1− |z|r)2− 1
q0

dr

≤ C 01 + C02(1− |z|)−1+2ε
where the last integral was calculated by integration by parts as in [14, Lemma 6]. Putting all
these together we findZ

D
|g0(w)|2 (1− |w|

2)(1− |z|2)
|1− zw|2 dA(w) ≤ C(1− |z|)Q(|z|)

≤ C(1− |z|)(C 01 + C 02(1− |z|)−1+2ε)
≤ C 00max{(1− |z|), (1− |z|)2ε},

and the proof is complete. ¤
As an immediate corollary we have

Corollary 3.2. Suppose (ϕt) is a semigroup whose infinitesimal generator G satisfies condition
(3.1) of Theorem 3.1. Then for a function f ∈ BMOA the following are equivalent

(1) f ∈ VMOA.
(2) limt→0+ kf ◦ ϕt − fkBMOA = 0.

Clearly the semigroups ϕt(z) = e−tz and ϕt(z) = eitz satisfy the condition (3.1) since, in both
cases, the infinitesimal generator is G(z) = cz for a certain nonzero constant c. Thus Theorem 3.1
gives an alternative proof (with entirely different techniques, see also [20]) of Sarason’s result.
But there is a plethora of different semigroups (ϕt) for which VMOA = [ϕt, BMOA]. A specific

class of examples of this type are given by the semigroups associated with the generators

G(z) = −z(1− z)α, 0 < α < 1.

To appreciate the breadth of the theorem recall that infinitesimal generators of semigroups with
Denjoy-Wolff point b = 0 have the form G(z) = −zP (z) where ReP (z) ≥ 0. By Schwarz’s lemma
applied to 1/P which also has nonnegative real part, P (z) satisfies the growth condition¯̄̄̄

1

P (z)

¯̄̄̄
≤ C2

1 + |z|
1− |z| as |z|→ 1.
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Thus the most general infinitesimal generator of semigroups with inner Denjoy-Wolff point, fulfils
the condition 1−|z|

G(z) = O(1).

Remark. Clearly, our O(1) condition is intimately related to the number and location of the
zeros (in the angular sense) of the infinitesimal generator on the boundary of the unit disk. This
topic has been partly analyzed in [6]. Another sufficient condition of the same nature which implies
the conclusion of the theorem is Z

|z|≥δ

dA(z)

|G(z)|p <∞,

for some 0 < δ < 1 and p > 2. Indeed for δ < r < 1 we have

(1− r)Mp
p (1/G, r) ≤

Z 1

r

Mp
p (1/G, s)ds,

so by the finiteness of the integral we have

Mp(1/G, r) = o

Ã
1

(1− r)
1
p

!
.

Now, using the Hardy-Littlewood estimates (see [8, 5.9]) one has

M∞(1/G, r) ≤ CMp(1/G, r)

(1− r)
1
p

= o

Ã
1

(1− r)
2
p

!
,

and this little-oh condition is stronger than our big-Oh condition.

We now present a necessary condition for semigroups with inner Denjoy-Wolff for which VMOA =
[ϕt, BMOA] holds. Observe that this necessary condition is quite close to the sufficient condition
of Theorem 3.1.

Theorem 3.3. Let (ϕt) be a semigroup with infinitesimal generator G and Denjoy-Wolff point
b ∈ D. If VMOA = [ϕt, BMOA] then

lim
|z|→1

1− |z|
G(z)

= 0.

Proof. Without loss of generality, we may assume that b = 0. The infinitesimal generator then is

G(z) = −zP (z),
where P is analytic with ReP ≥ 0. If P is constant, the result is clear. Otherwise consider the
function

m(z) =

Z z

0

u

G(u)
du = −

Z z

0

1

P (u)
du.

Since Re(1/P ) ≥ 0 we deduce that m ∈ BMOA.
Now observe that

(m ◦ ϕt)0(z)−m0(z) =
ϕt(z)ϕ

0
t(z)

G(ϕt(z))
− z

G(z)
=

z − ϕt(z)

G(z)

=
1

G(z)

Z t

0

∂ϕs(z)

∂s
ds =

Z t

0

ϕ0s(z) ds,

where we have used (1.1) twice. Hence

|(m ◦ ϕt)0(z)−m0(z)|2 =
¯̄̄̄Z t

0

ϕ0s(z) ds
¯̄̄̄2
≤ t

Z t

0

|ϕ0s(z)|2 ds.
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Now let I ⊂ ∂D be an interval and R(I) the corresponding Carleson rectangle. We have

1

|I|
Z
R(I)

|(m ◦ ϕt)0(z)−m0(z)|2(1− |z|2) dA(z)

≤ 1

|I|
Z
R(I)

µ
t

Z t

0

|ϕ0s(z)|2 ds
¶
(1− |z|2) dA(z)

= t

Z t

0

1

|I|
Z
R(I)

|ϕ0s(z)|2(1− |z|2) dA(z)ds

≤ Ct

Z t

0

Z
R(I)

|ϕ0s(z)|2 dA(z) ds

≤ Ct

Z t

0

Z
D
|ϕ0s(z)|2 dA(z) ds

= Ct

Z t

0

[Area(ϕs(D))]2 ds

≤ C1t
2.

Now the norm km ◦ ϕt −mkBMOA equals

|m(ϕt(0))−m(0)|+ sup
I⊂∂D

Ã
1

|I|
Z
R(I)

|(m ◦ ϕt)0(z)−m0(z)|2(1− |z|2) dA(z)
!1/2

≤ |m(ϕt(0))−m(0)|+ C2t,

so limt→0 km ◦ ϕt −mkBMOA = 0. Thus m ∈ [ϕt, BMOA] and by the hypothesis m ∈ VMOA.
The following standard argument for functions in VMOA completes the proof. For a ∈ D write
φa(z) =

a−z
1−āz then

(1− |a|2)2|m0(a)|2 = |(m ◦ φa)0(0)|2 ≤ km ◦ φak2H2

≤ C

Z
D
|(m ◦ φa(z))0|2(1− |z|2) dA(z)

(by the change of variables w = φa(z))

= C

Z
D
|m0(w)|2(1− |φa(w)|2) dA(w)

= C

Z
D
|m0(w)|2 (1− |a|

2)(1− |w|2)
|1− āw|2 dA(w)

and this last integral tends to 0 as |a|→ 1 because m ∈ VMOA. It follows that

lim
|a|→1

1− |a|
G(a)

= lim
|a|→1

(1− |a|)m0(a)
a

= 0.

¤

We end this paper by characterizing those semigroups (ϕt) of linear fractional maps such that
VMOA = [ϕt, BMOA]. Roughly speaking, we show that, when dealing with semigroups of linear
fractional maps, those found by Sarason are the unique where his theorem is true. For a detail
analysis of these type of semigroups in one and several variables we refer the reader to [2].

Proposition 3.4. Let (ϕt) be a semigroup such that each iterate is a linear fractional map. Then,
VMOA = [ϕt, BMOA] if and only if (ϕt) has a fixed point in the unit disk but without fixed points
in the boundary of the unit disk.
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Proof. We freely used some results from [2]. In particular, we use that the infinitesimal generator
of a semigroup of linear fractional map is a polynomial of degree two.
Assume that VMOA = [ϕt, BMOA]. First of all, we are going to prove that the Denjoy-Wolff

point of the semigroup (ϕt) must be in the unit disk. Take σ the Koenigs or univalent map of the
semigroup (see [15]). It is known that σ satisfies

σ ◦ ϕt = σ + t, for all t ≥ 0.
If the semigroup is hyperbolic, using [5, Theorem 2.1], [9, page 283] and [11, page 78], we

conclude that σ ∈ BMOA \ VMOA. Moreover, we observe that

kσ ◦ ϕt − σkBMOA = t
t→0−→ 0,

and, therefore, σ ∈ [ϕt, BMOA]. Hence, the equality we are dealing with is impossible for this
type of semigroups (we want to mention that this argument is indeed completely general, not only
valid in the framework of semigroups of linear fractional maps).
If the semigroup is parabolic, then σ is the Riemann map of a half-plane. In this case, taking

c ∈ C \ σ(D), we see that f(z) = Log(σ(z) − c) ∈ BMOA \ VMOA and, arguing as in the
hyperbolic case, we obtain f ∈ [ϕt, BMOA]. Therefore, for this type of semigroups the equality is
also impossible and we conclude that semigroup is necessarily elliptic (it has a fixed point in D).
Therefore, we may assume in our proof that the semigroup has Denjoy-Wolff point point in D.

Now, since VMOA = [ϕt, BMOA], using Theorem 3.3, we have

lim
|z|→1

1− |z|
G(z)

= 0.

If the other fixed point is in the boundary, we have that the infinitesimal generator has the form

G(z) = λ(z − a)(z − b), with a ∈ ∂D, b ∈ D and λ 6= 0.
Taking limits, we obtain a contradiction.
Likewise, assume now that (ϕt) has no fixed point in the boundary of D. In this case, the

infinitesimal generator fits the following scheme:

G(z) = λ(z − a)(z − b), with a ∈ C \ D, b ∈ D and λ 6= 0
or G(z) = λ(z − b), with b ∈ D and λ 6= 0.

Finally, apply Theorem 3.1 ¤
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