Composition operators on the minimal space invariant under Möbius transformations

Oscar Blasco

Abstract

It is shown that if $\Phi: \mathbb{D} \rightarrow \mathbb{D}$ is an analytic function such that $M_{p}\left(\Phi^{\prime \prime}, r\right) \in L^{p^{\prime}}(d r)$ for some $1<p<\infty$ and $1 / p+1 / p^{\prime}=1$ then $C_{\Phi}(f)=$ $f \circ \Phi$ defines a bounded composition operator on the space B_{1}, the minimal space invariant under Möbius transformations. This was conjectured by J. Arazy, S. Fisher and J. Peetre in [AFP].

1. Introduction

Let us denote by G the group of holomorphic automorphisms on the unit disk \mathbb{D}, i.e. the set of functions $\phi \in \mathcal{H}(\mathbb{D})$ such that $\phi=\lambda \varphi_{a}$ for $|\lambda|=1,|a|<1$ and

$$
\varphi_{a}(z)=\frac{z-a}{1-\bar{a} z}=-a+\left(1-|a|^{2}\right) \sum_{k=1}^{\infty} \bar{a}^{k-1} z^{k}
$$

The fact $\left|\phi^{\prime}(z)\right|=\frac{1-|\phi(z)|^{2}}{1-|z|^{2}}$ for $\phi \in G$ guarantees that the measure $d \lambda(z)=$ $\frac{d A(z)}{\left(1-|z|^{2}\right)^{2}}$ is invariant under Möbius transformations, where $d A(z)$ stands for the normalized area measure $d A(z)=\frac{d x d y}{\pi}$.

The paper where a systematic study of spaces of invariant under Möbius transformations was started is [AFP], and we also refer the reader to $[\mathbf{A F}, \mathbf{F}, \mathbf{R T}, \mathbf{T 1}$, T2] for further considerations.

Although the precise definition may vary from author to author we shall say that a complete space $X \subset \mathcal{H}(\mathbb{D})$ with a semi-norm ρ is G-invariant (or invariant under Möbius transformations) if for all $f \in X$ and $\phi \in G$ one has that $f \circ \phi \in X$ and there exists $C>0$ such that

$$
\begin{equation*}
\sup _{\phi \in G} \rho(f \circ \phi) \leq C \rho(f) . \tag{1.1}
\end{equation*}
$$

The basic examples of G-invariant spaces are the following:

- The space H^{∞} : The space of bounded analytic functions.

[^0]Note that for $1 \leq p<\infty$ the spaces

$$
H^{p}=\left\{f \in \mathcal{H}(\mathbb{D}): \sup _{0<r<1}\left(\int_{0}^{2 \pi}\left|f\left(r e^{i t}\right)\right|^{p} \frac{d t}{2 \pi}\right)^{1 / p}<\infty\right\}
$$

are not G-invariant in our sense.
The reader should be aware that they however become G-invariant under the action $f \rightarrow(f \circ \phi)\left(\phi^{\prime}\right)^{1 / p}$.

- The space $B M O A$:

$$
B M O A=\left\{f \in \mathcal{H}(\mathbb{D}):\|f\|_{*}=\sup _{|a|<1}\left\|f \circ \varphi_{a}-f(a)\right\|_{H^{2}}<\infty\right\}
$$

- The Dirichlet space:

$$
\begin{aligned}
\mathcal{D}_{2} & =\left\{f \in \mathcal{H}(\mathbb{D}):\left(\sum_{n=1}^{\infty} n\left|a_{n}\right|^{2}\right)^{1 / 2}<\infty\right\} \\
& =\left\{f \in \mathcal{H}(\mathbb{D}): f^{\prime} \in L^{2}(\mathbb{D}, d A)\right\}
\end{aligned}
$$

- The Besov spaces for $1<p<\infty$:

$$
B_{p}=\left\{f \in \mathcal{H}(\mathbb{D}):\left(\int_{\mathbb{D}}\left|f^{\prime}(z)\right|^{p}\left(1-|z|^{2}\right)^{p-2} d A(z)\right)^{1 / p}<\infty\right\}
$$

In particular $B_{2}=\mathcal{D}_{2}$.

- The Bloch space: $\mathcal{B}=\left\{f \in \mathcal{H}(\mathbb{D})\right.$: $\left.\sup _{|z|<1}\left(1-|z|^{2}\right)\left|f^{\prime}(z)\right|<\infty\right\}$.

We write $\|f\|_{\mathcal{B}}=\max \left\{|f(0)|, \sup _{|z|<1}\left(1-|z|^{2}\right)\left|f^{\prime}(z)\right|\right\}$.
Let us also consider the invariant pairing on \mathbb{D} given by

$$
\langle f, g\rangle=\lim _{r \rightarrow 1} \int_{|z|<r} f^{\prime}(z) \overline{g^{\prime}(z)} d A(z)
$$

Under such a pairing one has, for each $\phi \in G$,

$$
\langle f \circ \phi, g \circ \phi\rangle=\langle f, g\rangle .
$$

Using the Bergman projection one sees that

$$
\begin{equation*}
\left\langle f, \varphi_{a}\right\rangle=\left(1-|a|^{2}\right) f^{\prime}(a) \tag{1.2}
\end{equation*}
$$

It is not difficult to see that the previously mentioned examples are G-invariant. Note, for instance, that (1.2) implies that $f \in B_{p}$ if and only if

$$
\int_{\mathbb{D}}\left|\left\langle f, \varphi_{z}\right\rangle\right|^{p} d \lambda(z)<\infty
$$

and $f \in \mathcal{B}$ if and only if $\sup _{|z|<1}\left|\left\langle f, \varphi_{z}\right\rangle\right|<\infty$.
By the work by Rubel and Timoney (see $[\mathbf{R T}]$) one has that \mathcal{B} becomes a maximal space among the decent G-invariant ones. We say that a G-invariant space X is "decent" if
(1.3) There exists $0 \neq x^{*} \in X^{*}$ which is also continuous in $\mathcal{H}(\mathbb{D})$.

For decent G-invariant spaces (see $[\mathbf{R T}, \mathbf{F}]$) one has that $X \subset \mathcal{B}$ continuously.
To find out which is the corresponding limiting case of the Besov spaces B_{p} for $p=1$ just recall the following well-known facts (see [Z]): Let $1<p<\infty$ and denote $M_{p}(f, r)=\left(\int_{0}^{2 \pi}\left|f\left(r e^{i t}\right)\right|^{p} \frac{d t}{2 \pi}\right)^{1 / p}$. The following are equivalent:
(i) $f \in B_{p}$.
(ii) $\int_{0}^{1} M_{p}^{p}\left(f^{\prime}, r\right)(1-r)^{p-2} d r<\infty$.
(iii) $\int_{0}^{1} M_{p}^{p}\left(f^{\prime \prime}, r\right)(1-r)^{p-1} d r<\infty$.

In the case $p=1$ (iii) becomes $\int_{0}^{1} M_{1}\left(f^{\prime \prime}, r\right) d r<\infty$. Thus one defines

$$
B_{1}=\left\{f \in \mathcal{H}(\mathbb{D}): \rho_{1}(f)=\int_{\mathbb{D}}\left|f^{\prime \prime}(z)\right| d A(z)<\infty\right\}
$$

We can define a norm by considering

$$
\|f\|_{B_{1}}=\max \left\{|f(0)|,\left|f^{\prime}(0)\right|, \rho_{1}(f)\right\} .
$$

This space is known to be minimal among G-invariant spaces with some extra properties (see [AFP, T2]). We shall see here that this is also the case when assuming certain measurability condition on the map $\phi \rightarrow f \circ \phi$ from G to X.

The reader should be aware that the space B_{1} was denoted by \mathcal{M} in [AFP] and coincides with the space consisting in those functions $f \in \mathcal{H}(\mathbb{D})$ such that $f=\sum_{z=1}^{\infty} \lambda_{k} \varphi_{a_{k}}$ where $\left|a_{k}\right|<1$ and $\sum_{k}\left|\lambda_{k}\right|<\infty$.

It was shown in [AFP, Theorems 18 and 19] respectively that

$$
\begin{equation*}
\Phi^{\prime \prime} \in H^{1} \Longrightarrow C_{\Phi}: B_{1} \rightarrow B_{1} \text { is bounded } \tag{1.4}
\end{equation*}
$$

and

$$
\begin{equation*}
\sup _{\theta}\left|\Phi^{\prime \prime}\left(r e^{i \theta}\right)\right| \in L^{1}(d r) \Longrightarrow C_{\Phi}: B_{1} \rightarrow B_{1} \text { is bounded } . \tag{1.5}
\end{equation*}
$$

Observe that (1.4) and (1.5) means $M_{1}\left(\Phi^{\prime \prime}, r\right) \in L^{\infty}(d r)$ and $M_{\infty}\left(\Phi^{\prime \prime}, r\right) \in$ $L^{1}(d r)$ respectively. It was conjectured in the Arazy-Fisher-Peetre paper that $M_{p}\left(\Phi^{\prime \prime}, r\right) \in L^{p^{\prime}}(d r)$ for some $1<p<\infty$ and $1 / p+1 / p^{\prime}$ should be sufficient for C_{Φ} to be bounded on B_{1}.

In this direction it was even shown in [AFP, Theorem 20] that C_{Φ} was bounded on B_{1} whenever $M_{p}\left(\Phi^{\prime \prime}, r\right) \in L^{s}(d r)$ for $s=\frac{2 p}{p-1}$ (note that in this case $L^{s}(d r) \subset$ $\left.L^{p^{\prime}}(d r)\right)$.

Our main result is Theorem 3.7 where we show that the conjecture is true.
The paper is organized as follows: Section 1 contains some basic facts on B_{1}, in particular that $B_{1} \subset X$ for a relatively wide class of G-invariant spaces. In Section 2 we apply a general theorem on the characterization of the boundedness of operators from B_{1} into a Banach space to the particular case of composition operators from B_{1} into B_{1} and give a proof of the conjecture mentioned above.

As usual p^{\prime} stands for the conjugate exponent of $p, 1 / p+1 / p^{\prime}=1$ and C denotes a constant that may vary from line to line.

2. The minimal space invariant under Möbius transformations

We may consider $G \subset \mathbb{T} \times \mathbb{D}$ by the mapping $(\lambda, a) \rightarrow \phi=\lambda \varphi_{a}$ or as a subspace of $H^{\infty}(\mathbb{D})$ or simply $G \subset \mathcal{H}(\mathbb{D})$ with the locally convex topology of the convergence over compact sets. Let us mention that all these topologies on G are actually equivalent.

Proposition 2.1. Let $\phi_{n}=\lambda_{n} \varphi_{a_{n}}$ and $\phi=\lambda \varphi_{a}$ for some $\left|\lambda_{n}\right|=|\lambda|=1$ and $a, a_{n} \in \mathbb{D}$. The following are equivalent:
(1) $\phi_{n}(z)$ converges to $\phi(z)$ for all $z \in \mathbb{D}$.
(2) λ_{n} converges to λ and a_{n} converges to a.
(3) ϕ_{n} converges to ϕ in H^{∞}.
(4) ϕ_{n} converges to ϕ in $\mathcal{H}(\mathbb{D})$, i.e. uniformly on compact subsets of \mathbb{D}.

Proof. (1) $\Longrightarrow(2)$ Assume that $\phi_{n}(z)$ converges to $\phi(z)$ for all $z \in \mathbb{D}$.
Note that $\lambda_{n} \varphi_{a_{n}}(z) \rightarrow \lambda \varphi_{a}(z)$ is equivalent to $\bar{\lambda} \lambda_{n} \varphi_{a_{n}}\left(\left(\varphi_{a}\right)^{-1}(w)\right) \rightarrow w$ for all $w \in \mathbb{D}$. For $w=0$ one gets $\varphi_{a_{n}}(a) \rightarrow 0$ and then $a_{n} \rightarrow a$. In particular now $\varphi_{a_{n}}(z) \rightarrow \varphi_{a}(z)$ for all $z \in \mathbb{D}$ which together with $\phi_{n}(z) \rightarrow \phi(z)$ implies that $\lambda_{n} \rightarrow \lambda$.
$(2) \Longrightarrow(3)$

$$
\begin{aligned}
\left|\phi_{n}(z)-\phi(z)\right| & =\left|\left(\lambda_{n}-\lambda\right) \varphi_{a_{n}}+\lambda\left(\varphi_{a_{n}}-\varphi_{a}\right)\right| \\
& \left.\leq\left|\lambda_{n}-\lambda\right|+\mid \varphi_{a_{n}}-\varphi_{a}\right) \mid \\
& \leq\left|\lambda_{n}-\lambda\right|+\frac{2\left|a_{n}-a\right|+\left|\bar{a}_{n} a-a_{n} \bar{a}\right|}{\left(1-\left|a_{n}\right|\right)(1-|a|)}
\end{aligned}
$$

Hence $\left\|\phi_{n}-\phi\right\|_{\infty} \rightarrow 0$.
$(3) \Longrightarrow(4)$ Immediate.
$(4) \Longrightarrow(1)$ Immediate.
Let us now give one characterization of the space B_{1} (see [AFP]). Let us point out the following easy fact that we shall need for such a purpose.

Proposition 2.2. If $f \in B_{1}$ and $f^{\prime}(0)=0$ then $F(z)=z f(z) \in B_{1}$ and $\rho_{1}(F) \leq 3 \rho_{1}(f)$.

Proof. $F^{\prime}(z)=f(z)+z f^{\prime}(z)$ and $F^{\prime \prime}(z)=2 f^{\prime}(z)+z f^{\prime \prime}(z)$.
Therefore it suffices to see that $\int_{\mathbb{D}}\left|f^{\prime}(z)\right| d A(z) \leq \int_{\mathbb{D}}\left|f^{\prime \prime}(z)\right| d A(z)$.
Since $f^{\prime}\left(r e^{i t}\right)=\int_{0}^{1} f^{\prime \prime}\left(r s e^{i t}\right) d s$, we can conclude that $M_{1}\left(f^{\prime}, r\right) \leq \int_{0}^{1} M_{1}\left(f^{\prime \prime}, r s\right) d s$ and

$$
\int_{\mathbb{D}}\left|f^{\prime}(z)\right| d A(z)=\int_{0}^{1} M_{1}\left(f^{\prime}, r\right) r d r \leq \int_{0}^{1} \int_{0}^{1} M_{1}\left(f^{\prime \prime}, r s\right) r d r d s \leq \int_{\mathbb{D}}\left|f^{\prime \prime}(z)\right| d A(z)
$$

Theorem 2.3. Let $f \in \mathcal{H}(\mathbb{D})$ with $f(0)=f^{\prime}(0)=0$. $f \in B_{1}$ if and only if there exists a complex Borel measure ν of bounded variation on \mathbb{D} such that

$$
f(z)=\int_{\mathbb{D}} \varphi_{a}(z) d \nu(a)
$$

Moreover,

$$
\rho_{1}(f) \approx \inf \left\{\|\nu\|_{1}: f=\int_{\mathbb{D}} \varphi_{a} d \nu(a) .\right\}
$$

Proof. Assume ν is a measure of bounded variation with

$$
f(z)=\int_{\mathbb{D}} \varphi_{a}(z) d \nu(a)
$$

Then

$$
f^{\prime \prime}(z)=\int_{\mathbb{D}} \varphi_{a}^{\prime \prime}(z) d \nu(a)
$$

It suffices to use the standard estimate (see [Z, Page 53])

$$
\begin{equation*}
\left\|\varphi_{a}^{\prime \prime}\right\|_{L^{1}}=\int_{\mathbb{D}} \frac{2|a|\left(1-|a|^{2}\right)}{|1-\bar{a} z|^{3}} d A(z) \leq C \tag{2.1}
\end{equation*}
$$

and Fubini's theorem to conclude that $\int_{D}\left|f^{\prime \prime}(z)\right| d A(z) \leq C\|\nu\|_{1}$. This shows that $\rho_{1}(f) \leq C \inf \left\{\|\nu\|_{1}\right\}$.

Conversely, observe that if $F(z)=\sum_{n=0}^{\infty} a_{n} z^{n}$ belong to $L^{1}(\mathbb{D})$ then

$$
\int_{\mathbb{D}} \frac{F(a)}{1-\bar{a} z} d A(a)=\sum_{n=0}^{\infty} \frac{a_{n}}{n+1} z^{n} .
$$

This shows that

$$
\int_{D} F(a) \varphi_{a}(z) d A(a)=\sum_{n=1}^{\infty} \frac{a_{n-1}}{n(n+1)} z^{n} .
$$

Now if $f(z)=\sum_{n=2}^{\infty} b_{n} z^{n} \in B_{1}$ we define $G(z)=z f(z)=\sum_{n=1}^{\infty} b_{n+1} z^{n+2}$. Hence, applying the formula above to

$$
F(z)=G^{\prime \prime}(z)=\sum_{n=1}^{\infty}(n+2)(n+1) b_{n+1} z^{n}
$$

we obtain

$$
f(z)=\int_{\mathbb{D}} \varphi_{a}(z) G^{\prime \prime}(a) d A(a) .
$$

Using Proposition 2.2 one has that $G \in B_{1}$ and $\rho_{1}(G) \leq 3 \rho_{1}(f)$. Taking $d \nu(a)=G^{\prime \prime}(a) d A(a)$ one gets $\|\nu\|_{1}=\rho_{1}(G) \leq 3 \rho_{1}(f)$.

Proposition 2.4. B_{1} is G-invariant and $a \rightarrow \varphi_{a}$ is continuous from \mathbb{D} to B_{1}.
Proof. Let $f \in B_{1}$ with $f(0)=f^{\prime}(0)=0$ and $\phi=\lambda \varphi_{b} \in G$. Using Theorem 2.3 one can write $f=\int_{\mathbb{D}} \varphi_{a}(z) d \nu(a)$ for some ν with $\|\nu\|_{1} \leq C \rho_{1}(f)$. Hence

$$
f \circ \phi(z)=\int_{\mathbb{D}} \varphi_{a}(\phi(z)) d \nu(a)=\int_{\mathbb{D}} \lambda \varphi_{\bar{\lambda} a}\left(\varphi_{b}(z)\right) d \nu(a)=\int_{\mathbb{D}} \lambda \varphi_{\varphi_{\bar{\lambda} a}^{-1}(b)}(z) d \nu(a) .
$$

Now take the second derivative and use (2.1) to get that $\sup _{|c|<1}\left\|\left(\varphi_{c}\right)^{\prime \prime}\right\|_{L^{1}(\mathbb{D})}<\infty$ and $\rho_{1}(f \circ \phi) \leq C \rho_{1}(f)$.

Note also that if $a_{n} \rightarrow a$ then $\varphi_{a_{n}}^{\prime \prime}(z) \rightarrow \varphi_{a}^{\prime \prime}(z)$ for all $z \in \mathbb{D}$. Now applying the dominated convergence theorem one concludes $\rho_{1}\left(\varphi_{a_{n}}-\varphi_{a}\right) \rightarrow 0$.

It was shown in [AFP] that $\left(B_{1}\right)^{*}=\mathcal{B}$. Let us now show the minimal character of B_{1}. The reader should note that we did not assume the map $\phi \rightarrow f \circ \phi$ to be continuous from G to X in the definition of G-invariant. This allowed to have more examples, as \mathcal{B} or H^{∞}, in this category.

Proposition 2.5. Let $(X,\|\cdot\|)$ be a non-trivial (i.e there exists $f \in X$ non constant) G-invariant Banach space.
(1) If the map $\Gamma_{f}: G \rightarrow X$ defined by $\phi \rightarrow f \circ \phi$ is Borel measurable and bounded for all $f \in X$ then X contains the space of polynomials, $B_{1} \subset X$ and there exists $C>0$ such that $\|f\|_{X} \leq C\|f\|_{B_{1}}$ for all $f \in B_{1}$.
(2) If the map $\Gamma_{f}: G \rightarrow X$ defined by $\phi \rightarrow f \circ \phi$ is continuous for all $f \in X$ then the space of polynomials is dense in X.

Proof. (1) Let $f(z)=\sum_{n=0}^{\infty} a_{n} z^{n} \in X$ be non constant, that is $a_{k} \neq 0$ for some $k \geq 1$. Consider the bounded measurable map $\mathbb{T} \rightarrow X$ defined by $e^{i t} \rightarrow$ $f_{t}(z)=f\left(e^{i t} z\right)$. Now one can use the Bochner integral to obtain that, for $n \geq 0$,

$$
\int_{0}^{2 \pi} f_{t} e^{-i n t} \frac{d t}{2 \pi}=a_{n} u_{n} \in X
$$

where $u_{n}(z)=z^{n}$. Therefore $u_{k} \in X$.

Now we can conclude that $\left(\varphi_{a}(z)\right)^{k} \in X$ for all $|a|<1$. We can repeat the previous argument for $\left.f(z)=\left(\frac{2 z-1}{2-z}\right)\right)^{k}$ whose Taylor coefficients are all different from zero to get $u_{n} \in X$ for all $n \geq 0$.

Note that if f is a polynomial with $f(0)=f^{\prime}(0)=0$ and ν a measure of bounded variation such that $f=\int_{\mathbb{D}} \varphi_{a} d \nu(a)$. Using that $a \rightarrow \varphi_{a}$ is bounded and measurable with values in X one obtains

$$
\|f\|_{X} \leq \int_{\mathbb{D}}\left\|\varphi_{a}\right\|_{X} d|\nu|(a) \leq \sup _{|a|<1}\left\|\varphi_{a}\right\|_{X}\|\nu\|_{1}
$$

This shows that $\|f\|_{X} \leq C \rho_{1}(f)$ for all polynomial f with $f(0)=f^{\prime}(0)=0$. Hence, for a general polynomial f, writting $f=\left(f-f(0)-f^{\prime}(0) z\right)+f(0)+f^{\prime}(0) z$ one gets

$$
\|f\|_{X} \leq\left\|f-f(0)-f^{\prime}(0) z\right\|_{X}+|f(0)|\left\|u_{0}\right\|_{X}+\left|f^{\prime}(0)\right|\left\|u_{1}\right\|_{X} \leq C\|f\|_{B_{1}}
$$

Now extend the result for functions in B_{1} using the density of polynomials in B_{1}.
(2) Assume $\phi \rightarrow f \circ \phi$ is continuous from $G \rightarrow X$. Denote $f_{r}(z)=f(r z)$ for $0<r<1$ and observe that

$$
f_{r}(z)-f(z)=\int_{0}^{2 \pi}\left(f\left(e^{i t} z\right)-f(z)\right) P_{r}\left(e^{-i t}\right) \frac{d t}{2 \pi}
$$

where, as usual, $P_{r}\left(e^{i t}\right)$ stands for the Poisson kernel. This shows that

$$
\left\|f_{r}-f\right\|_{X} \leq \int_{0}^{2 \pi}\left\|f_{t}-f\right\|_{X} P_{r}\left(e^{-i t}\right) \frac{d t}{2 \pi}
$$

Using that $e^{i t} \rightarrow f_{t}$ is continuous standard arguments imply that f_{r} converges to f in X. Using that polynomials are dense in B_{1} and $f_{r} \in B_{1}$ for each $0<r<1$ one shows the density of polynomials in X.

3. Operators on B_{1}

Definition 3.1. Let Y be a complex Banach space and $F: \mathbb{D} \rightarrow Y$ be analytic function. F is said to be a vector-valued Bloch function, say $F \in \mathcal{B}(Y)$, if

$$
\sup _{|a|<1}\left(1-|a|^{2}\right)\left\|F^{\prime}(a)\right\|_{Y}<\infty
$$

Write the norm $\|F\|_{\mathcal{B}(Y)}=\|F(0)\|+\sup _{|a|<1}\left(1-|a|^{2}\right)\left\|F^{\prime}(a)\right\|_{Y}$.
Theorem 3.2. Let Y be a complex Banach space and let $T: B_{1} \rightarrow Y$ be a linear operator. Denote $x_{n}=T\left(u_{n}\right)$ for $u_{n}(z)=z^{n}, n \geq 0$, and assume that $\limsup \sqrt[n]{\left\|x_{n}\right\|} \leq 1$. The following are equivalent:
(1) T is bounded.
(2) $g_{T}(a)=T\left(\varphi_{a}\right)$ is bounded and continuous from \mathbb{D} to Y.
(3) $F_{T}(a)=\sum_{n=0}^{\infty} \frac{x_{n}}{n+1} z^{n+1} \in \mathcal{B}(Y)$.

Moreover

$$
\|T\| \approx \sup _{|a|<1}\left\|g_{T}(a)\right\|_{Y} \approx\left\|F_{T}\right\|_{\mathcal{B}(Y)}
$$

Proof. (1) $\Longrightarrow(2)$ Since $g_{T}(a)=T\left(\varphi_{a}\right)$ the result follows by composing $T \circ J$ where $J: \mathbb{D} \rightarrow B_{1}$ is the the continuous map given by $a \rightarrow \varphi_{a}$ according to Proposition 2.4.
$(2) \Longrightarrow(1)$ Let f be a polynomial. Hence one has $f-f(0)-f^{\prime}(0) z=\int_{\mathbb{D}} \varphi_{a} d \nu(a)$ for some measure ν. Now, using linearity,

$$
T(f)=f(0) x_{0}+f^{\prime}(0) x_{1}+\int_{\mathbb{D}} g_{T}(a) d \nu(a)
$$

Now from the assumption one obtains

$$
\|T(f)\| \leq|f(0)|\left\|x_{0}\right\|+\left|f^{\prime}(0)\right|\left\|x_{1}\right\|+\sup _{|a|<1}\left\|g_{T}(a)\right\|\|\nu\|_{1} .
$$

This gives $\|T(f)\| \leq C\|f\|_{B_{1}}$ for any polynomial. Now use the density of polynomials in B_{1} to extend to a bounded operator from B_{1} into Y.
$(1) \Longrightarrow(3)$ From the assumption on $\left(x_{n}\right)$ the map F_{T} is holomorphic (at least) on the unit disc and takes values in Y. Note that

$$
F_{T}^{\prime}(a)=\sum_{k=0}^{\infty} T\left(u_{k}\right) a^{k}=T\left(u_{0}\right)+T\left(\sum_{k=1}^{\infty} u_{k} a^{k}\right) .
$$

Since $\varphi_{a}=-a+\left(1-|a|^{2}\right) \sum_{k=1}^{\infty} \bar{a}^{k} u_{k}$. This shows that

$$
\left(1-|a|^{2}\right) F_{T}^{\prime}(a)=T\left(\varphi_{\bar{a}}\right)+\left(\bar{a}+\left(1-|a|^{2}\right)\right) T\left(u_{0}\right)
$$

Now use that T is bounded and (2.1).

$(3) \Longrightarrow(2)$ Use the formula

$$
g_{T}(a)=\left(1-|a|^{2}\right) F_{T}^{\prime}(\bar{a})-\left(a+\left(1-|a|^{2}\right)\right) F(0) .
$$

Corollary 3.3. Let X be a G-invariant space and let $\Phi: \mathbb{D} \rightarrow \mathbb{D}$ be a non constant analytic function. Then $C_{\Phi}: B_{1} \rightarrow X$ defined by $C_{\Phi}(f)=f \circ \Phi$ is a bounded operator if and only if

$$
\sup _{|a|<1}\left\|\varphi_{a} \circ \Phi\right\|_{X}<\infty
$$

Let us now apply this result to several cases.
Corollary 3.4. Let $\Phi: \mathbb{D} \rightarrow \mathbb{D}$ a non constant analytic function. Then $C_{\Phi}: B_{1} \rightarrow \mathcal{D}_{2}$ is bounded if and only if

$$
\sup _{|a|<1} \int_{\mathbb{D}} \frac{\left(1-|a|^{2}\right)^{2} n_{\Phi}(z)}{|1-a \bar{z}|^{4}} d A(z)<\infty
$$

where

$$
n_{\Phi}(z)=\#\{w \in \mathbb{D}: \Phi(w)=z\}
$$

In particular C_{Φ} is bounded from B_{1} to \mathcal{D}_{2} for univalent functions Φ.
Proof. From Corollary 3.3 the boundedness is characterized by

$$
\int_{\mathbb{D}}\left|\varphi_{a}^{\prime}(\Phi(z))\right|^{2}\left|\Phi^{\prime}(z)\right|^{2} d A(z)<\infty
$$

Now using that Φ is locally univalent and the usual change of variables formula one has

$$
\int_{\mathbb{D}} \frac{\left(1-|a|^{2}\right)^{2}}{|1-a \bar{z}|^{4}} n_{\Phi}(z) d A(z)<\infty .
$$

Next result was shown in [AFP, Proposition 17]:

Theorem 3.5. Let $\Phi: \mathbb{D} \rightarrow \mathbb{D}$ be a non constant analytic function.
Then $C_{\Phi}: B_{1} \rightarrow B_{1}$ is bounded operator if and only if

$$
\begin{align*}
& \sup _{|a|<1} \int_{\mathbb{D}} \frac{\left(1-|a|^{2}\right)}{|1-a \bar{z}|^{3}} n_{\Phi}(z) d A(z)<\infty, \tag{3.1}\\
& \sup _{|a|<1} \int_{\mathbb{D}} \frac{\left(1-|a|^{2}\right)\left|\Phi^{\prime \prime}(z)\right|}{|1-\bar{a} \Phi(z)|^{2}} d A(z)<\infty . \tag{3.2}
\end{align*}
$$

Let us now prove the Arazy-Fisher-Peetre conjecture.
Proposition 3.6. Let $1<p<\infty$ and $F \in \mathcal{H}(\mathbb{D})$ with $M_{p}\left(F^{\prime}, r\right) \in L^{p^{\prime}}(d r)$. Then $F \in B M O A$ and $\|F\|_{*} \leq C\left(\int_{0}^{1} M_{p}^{p^{\prime}}\left(F^{\prime}, r\right) d r\right)^{1 / p^{\prime}}$.

Proof. First notice that, since the map $s \mapsto M_{p}^{p^{\prime}}\left(F^{\prime}, s\right)$ is continuous and non-decreasing, one has

$$
M_{p}^{p^{\prime}}\left(F^{\prime}, r\right)(1-r) \leq \int_{r}^{1} M_{p}^{p^{\prime}}\left(F^{\prime}, s\right) d s
$$

Hence $M_{p}\left(F^{\prime}, r\right) \in L^{p^{\prime}}(d r)$ implies $M_{p}\left(F^{\prime}, r\right)=o\left(\frac{1}{(1-r)^{1 / p^{\prime}}}\right)$ as $r \rightarrow 1$. Now use the fact that $M_{p}\left(F^{\prime}, r\right)=O\left(\frac{1}{(1-r)^{1 / p^{\prime}}}\right)$ can be described in terms of Lipschitz functions (see $[\mathbf{D}]$) and then use the result in $[\mathbf{B S S}]$ to obtain that $F \in B M O A$.

Theorem 3.7. Let $1<p<\infty$ and $\Phi: \mathbb{D} \rightarrow \mathbb{D}$ a non constant analytic function. If $M_{p}\left(\Phi^{\prime \prime}, r\right) \in L^{p^{\prime}}(d r)$ then $C_{\Phi}: B_{1} \rightarrow B_{1}$ is bounded.

Proof. Let us show that condition (3.1) holds. Recall that

$$
\int_{\mathbb{D}} \frac{n_{\Phi}(z)}{|1-\bar{a} z|^{3}} d A(z)=\int_{\mathbb{D}} \frac{\left|\Phi^{\prime}(z)\right|^{2}}{|1-\bar{a} \Phi(z)|^{3}} d A(z) .
$$

Given a polynomial h we write

$$
\int_{\mathbb{D}} \frac{\Phi^{\prime}(z)}{(1-a \overline{\Phi(z)})^{3 / 2}} \overline{h(z)} d A(z)=\int_{0}^{1} \int_{0}^{2 \pi} \frac{\Phi^{\prime}\left(r e^{i t}\right)}{\left(1-a \overline{\left.\Phi\left(r e^{i t}\right)\right)^{3 / 2}}\right.} \overline{h\left(r e^{i t}\right)} r d r \frac{d t}{\pi}
$$

From Proposition 3.6 and the duality $\left(H^{1}\right)^{*}=B M O A$ (see $[\mathbf{Z}]$), we have

$$
\left|\int_{\mathbb{D}} \frac{\Phi^{\prime}(z)}{(1-a \overline{\Phi(z)})^{3 / 2}} \overline{h(z)} d A(z)\right| \leq \int_{0}^{1}\left\|\Phi^{\prime}\right\|_{*} M_{1}\left(\frac{h}{(1-\bar{a} \Phi)^{3 / 2}}, r\right) d r
$$

We now recall that Littlewood subordination principle (see [Z, Theorem 10.1.3]) implies that for $1 \leq q<\infty$ and $\alpha>0$ we have

$$
\begin{equation*}
M_{q}\left(\frac{1}{(1-\bar{a} \Phi(z))^{\alpha}}, r\right) \leq M_{q}\left(\frac{1}{(1-\bar{a} z)^{\alpha}}, r\right) \tag{3.3}
\end{equation*}
$$

Also it is well known that if $0<\alpha, q<\infty$ and $\alpha q>1$ then there exists a constant $C>0$ such that

$$
\begin{equation*}
M_{q}\left(\frac{1}{(1-\bar{a} z)^{\alpha}}, r\right) \leq C \frac{1}{\left(1-|a|^{2} r^{2}\right)^{\alpha-1 / q}} \tag{3.4}
\end{equation*}
$$

Therefore Cauchy-Schwartz, (3.3) and (3.4) give

$$
\begin{aligned}
M_{1}\left(\frac{h}{(1-\bar{a} \Phi)^{3 / 2}}, r\right) & \leq M_{2}(h, r) M_{2}\left(\frac{1}{(1-\bar{a} \Phi(z))^{3 / 2}}, r\right) \\
& \leq M_{2}(h, r) M_{2}\left(\frac{1}{(1-\bar{a} z)^{3 / 2}}, r\right) \\
& \leq C \frac{M_{2}(h, r)}{1-|a|^{2} r^{2}}
\end{aligned}
$$

Integrating over $[0,1]$ the previous estimates and, using the Cauchy-Schwartz inequality, one has

$$
\left|\int_{\mathbb{D}} \frac{\Phi^{\prime}(z)}{(1-\bar{a} \Phi(z))^{3 / 2}} \overline{h(z)} d A(z)\right| \leq C\left\|\Phi^{\prime}\right\|_{*}\|h\|_{L^{2}(\mathbb{D})} \frac{1}{\left(1-|a|^{2}\right)^{1 / 2}} .
$$

(3.1) now follows taking supremum over polynomials with $\|h\|_{L^{2}(\mathbb{D})} \leq 1$.

Let us now show (3.2). Hence, using again (3.3) and (3.4), we obtain

$$
\begin{aligned}
\int_{\mathbb{D}} \frac{\left(1-|a|^{2}\right)\left|\Phi^{\prime \prime}(z)\right|}{|1-a \bar{\Phi}(z)|^{2}} d A(z) & \leq\left(1-|a|^{2}\right) \int_{0}^{1} M_{p^{\prime}}\left(\frac{1}{(1-\bar{a} \Phi(z))^{2}}, r\right) M_{p}\left(\Phi^{\prime \prime}, r\right) d r \\
& \leq\left(\int_{0}^{1} M_{p^{\prime}}^{p}\left(\frac{\left(1-|a|^{2}\right)}{(1-\bar{a} \Phi(z))^{2}}, r\right) d r\right)^{1 / p}\left(\int_{0}^{1} M_{p}^{p^{\prime}}\left(\Phi^{\prime \prime}, r\right) d r\right)^{1 / p^{\prime}} \\
& \leq C\left(\int_{0}^{1} M_{p^{\prime}}^{p}\left(\frac{1-|a|^{2}}{(1-\bar{a} z)^{2}}, r\right) d r\right)^{1 / p} \\
& \leq C\left(\int_{0}^{1} \frac{\left(1-|a|^{2}\right)^{p}}{\left(1-|a|^{2} r^{2}\right)^{2 p-p / p^{\prime}}} d r\right)^{1 / p} \\
& \leq C\left(1-|a|^{2}\right) \frac{1}{\left(1-|a|^{2}\right)^{2-1 / p^{\prime}-1 / p}} \leq C
\end{aligned}
$$

References

[AF] Arazy, J. and Fisher,S. The uniqueness of the Dirichlet space among the Möbius invariant Hilbert spaces, Ill. J. Math., 29 (1985), 449-462.
[AFP] Arazy, J., Fisher, S. and Peetre, J., Möbius invariant function spaces, J. reigne angew. Math., 363 (1985), 110-145.
[BSS] Bourdon, B., Shapiro, J. and Sledd, W., Fourier series, mean Lipschitz spaces and bounded mean oscillation, Analysis at Urbana I, London Math. Soc. Lecture note series., 137 Cambridge Univ. Press (1989), 81-110.
[CM] Cowen, C.C. and MacCluer, B.D. Composition Operators on Spaces of Analytic Functions, CRC Press, New York 1995.
[D] Duren, P., Theory of H^{p}-spaces, Academic Press, New York 1970.
[F] Fisher, S., The Möbius group and invariant spaces of analytic functions, Amer. Math. Monthly, 95 (1988), 514-527.
[RT] Rubel, L.A. and Timoney, R.M., An extremal property of the Bloch space, Proc. Amer. Math. Soc., 75 (1979), 45-50.
[T1] Timoney, R.M., Natural function spaces, J. London Math. Soc., (2) 41 (1990), 78-88.
[T2] Timoney, R.M., Maximal invariant spaces of analytic functions, Indiana Univ. Math. J., 31 (1982), 651-663.
[Z] K. Zhu, Operator Theory in Function spaces, Marcel Dekker, Inc., New York and Basel, 1990.
Departmento de Análisis Matemático, Universidad de Valencia, Burjassot (Valen-
CiA), Spain 46100
E-mail address: oblasco@uv.es

[^0]: 1991 Mathematics Subject Classification. Primary 47B33; Secondary 46E15, 30H05.
 Key words and phrases. composition operators, Moebius invariant spaces, Besov spaces.
 Partially supported by Proyecto MTM2005-08350-C03-03.

