Composition operators on the minimal space invariant under Möbius transformations

Oscar Blasco

ABSTRACT. It is shown that if $\Phi : \mathbb{D} \to \mathbb{D}$ is an analytic function such that $M_p(\Phi'', r) \in L^{p'}(dr)$ for some 1 and <math>1/p + 1/p' = 1 then $C_{\Phi}(f) = f \circ \Phi$ defines a bounded composition operator on the space B_1 , the minimal space invariant under Möbius transformations. This was conjectured by J. Arazy, S. Fisher and J. Peetre in **[AFP]**.

1. Introduction

Let us denote by G the group of holomorphic automorphisms on the unit disk \mathbb{D} , i.e. the set of functions $\phi \in \mathcal{H}(\mathbb{D})$ such that $\phi = \lambda \varphi_a$ for $|\lambda| = 1$, |a| < 1 and

$$\varphi_a(z) = \frac{z-a}{1-\bar{a}z} = -a + (1-|a|^2) \sum_{k=1}^{\infty} \bar{a}^{k-1} z^k.$$

The fact $|\phi'(z)| = \frac{1-|\phi(z)|^2}{1-|z|^2}$ for $\phi \in G$ guarantees that the measure $d\lambda(z) = \frac{dA(z)}{(1-|z|^2)^2}$ is invariant under Möbius transformations, where dA(z) stands for the normalized area measure $dA(z) = \frac{dxdy}{\pi}$.

The paper where a systematic study of spaces of invariant under Möbius transformations was started is [AFP], and we also refer the reader to [AF, F, RT, T1, T2] for further considerations.

Although the precise definition may vary from author to author we shall say that a complete space $X \subset \mathcal{H}(\mathbb{D})$ with a semi-norm ρ is *G*-invariant (or invariant under Möbius transformations) if for all $f \in X$ and $\phi \in G$ one has that $f \circ \phi \in X$ and there exists C > 0 such that

(1.1)
$$\sup_{\phi \in G} \rho(f \circ \phi) \le C \rho(f).$$

The basic examples of G-invariant spaces are the following:

• The space H^{∞} : The space of bounded analytic functions.

¹⁹⁹¹ Mathematics Subject Classification. Primary 47B33; Secondary 46E15, 30H05. Key words and phrases. composition operators, Moebius invariant spaces, Besov spaces. Partially supported by Proyecto MTM2005-08350-C03-03.

Note that for $1 \leq p < \infty$ the spaces

$$H^{p} = \{ f \in \mathcal{H}(\mathbb{D}) : \sup_{0 < r < 1} \left(\int_{0}^{2\pi} |f(re^{it})|^{p} \frac{dt}{2\pi} \right)^{1/p} < \infty \}$$

are not G-invariant in our sense.

The reader should be aware that they however become G-invariant under the action $f \to (f \circ \phi)(\phi')^{1/p}$.

• The space *BMOA*:

$$BMOA = \{ f \in \mathcal{H}(\mathbb{D}) : \|f\|_* = \sup_{|a| < 1} \|f \circ \varphi_a - f(a)\|_{H^2} < \infty \}.$$

• The Dirichlet space:

$$\mathcal{D}_2 = \{ f \in \mathcal{H}(\mathbb{D}) : (\sum_{n=1}^{\infty} n |a_n|^2)^{1/2} < \infty \}$$
$$= \{ f \in \mathcal{H}(\mathbb{D}) : f' \in L^2(\mathbb{D}, dA) \}.$$

• The Besov spaces for 1 :

$$B_p = \{ f \in \mathcal{H}(\mathbb{D}) : \left(\int_{\mathbb{D}} |f'(z)|^p (1 - |z|^2)^{p-2} dA(z) \right)^{1/p} < \infty \}.$$

In particular $B_2 = \mathcal{D}_2$. • The Bloch space: $\mathcal{B} = \{f \in \mathcal{H}(\mathbb{D}) : \sup_{|z|<1}(1-|z|^2)|f'(z)| < \infty\}.$ We write $||f||_{\mathcal{B}} = \max\{|f(0)|, \sup_{|z|<1}(1-|z|^2)|f'(z)|\}.$

Let us also consider the invariant pairing on \mathbb{D} given by

$$\langle f,g \rangle = \lim_{r \to 1} \int_{|z| < r} f'(z) \overline{g'(z)} dA(z).$$

Under such a pairing one has, for each $\phi \in G$,

$$\langle f \circ \phi, g \circ \phi \rangle = \langle f, g \rangle.$$

Using the Bergman projection one sees that

(1.2)
$$\langle f, \varphi_a \rangle = (1 - |a|^2) f'(a).$$

It is not difficult to see that the previously mentioned examples are G-invariant. Note, for instance, that (1.2) implies that $f \in B_p$ if and only if

$$\int_{\mathbb{D}} |\langle f, \varphi_z \rangle|^p d\lambda(z) < \infty$$

and $f \in \mathcal{B}$ if and only if $\sup_{|z|<1} |\langle f, \varphi_z \rangle| < \infty$.

By the work by Rubel and Timoney (see $[\mathbf{RT}]$) one has that \mathcal{B} becomes a maximal space among the decent G-invariant ones. We say that a G-invariant space X is "decent" if

There exists $0 \neq x^* \in X^*$ which is also continuous in $\mathcal{H}(\mathbb{D})$. (1.3)

For decent *G*-invariant spaces (see [**RT**, **F**]) one has that $X \subset \mathcal{B}$ continuously. To find out which is the corresponding limiting case of the Besov spaces B_p for p = 1 just recall the following well-known facts (see [**Z**]): Let 1 anddenote $M_p(f,r) = \left(\int_0^{2\pi} |f(re^{it})|^p \frac{dt}{2\pi}\right)^{1/p}$. The following are equivalent:

- (i) $f \in B_p$. (ii) $\int_0^1 M_p^p(f', r)(1-r)^{p-2} dr < \infty$.

(iii) $\int_0^1 M_p^p(f'',r)(1-r)^{p-1}dr < \infty$. In the case p = 1 (iii) becomes $\int_0^1 M_1(f'',r)dr < \infty$. Thus one defines

$$B_1 = \{ f \in \mathcal{H}(\mathbb{D}) : \rho_1(f) = \int_{\mathbb{D}} |f''(z)| dA(z) < \infty \}.$$

We can define a norm by considering

$$||f||_{B_1} = \max\{|f(0)|, |f'(0)|, \rho_1(f)\}.$$

This space is known to be minimal among *G*-invariant spaces with some extra properties (see [**AFP**, **T2**]). We shall see here that this is also the case when assuming certain measurability condition on the map $\phi \to f \circ \phi$ from *G* to *X*.

The reader should be aware that the space B_1 was denoted by \mathcal{M} in [**AFP**] and coincides with the space consisting in those functions $f \in \mathcal{H}(\mathbb{D})$ such that $f = \sum_{z=1}^{\infty} \lambda_k \varphi_{a_k}$ where $|a_k| < 1$ and $\sum_k |\lambda_k| < \infty$.

It was shown in [AFP, Theorems 18 and 19] respectively that

(1.4)
$$\Phi'' \in H^1 \Longrightarrow C_{\Phi} : B_1 \to B_1 \text{ is bounded}$$

and

(1.5)
$$\sup_{\theta} |\Phi''(re^{i\theta})| \in L^1(dr) \Longrightarrow C_{\Phi} : B_1 \to B_1 \text{ is bounded }.$$

Observe that (1.4) and (1.5) means $M_1(\Phi'',r) \in L^{\infty}(dr)$ and $M_{\infty}(\Phi'',r) \in L^1(dr)$ respectively. It was conjectured in the Arazy-Fisher-Peetre paper that $M_p(\Phi'',r) \in L^{p'}(dr)$ for some 1 and <math>1/p + 1/p' should be sufficient for C_{Φ} to be bounded on B_1 .

In this direction it was even shown in [**AFP**, Theorem 20] that C_{Φ} was bounded on B_1 whenever $M_p(\Phi'', r) \in L^s(dr)$ for $s = \frac{2p}{p-1}$ (note that in this case $L^s(dr) \subset L^{p'}(dr)$).

Our main result is Theorem 3.7 where we show that the conjecture is true.

The paper is organized as follows: Section 1 contains some basic facts on B_1 , in particular that $B_1 \subset X$ for a relatively wide class of *G*-invariant spaces. In Section 2 we apply a general theorem on the characterization of the boundedness of operators from B_1 into a Banach space to the particular case of composition operators from B_1 into B_1 and give a proof of the conjecture mentioned above.

As usual p' stands for the conjugate exponent of p, 1/p + 1/p' = 1 and C denotes a constant that may vary from line to line.

2. The minimal space invariant under Möbius transformations

We may consider $G \subset \mathbb{T} \times \mathbb{D}$ by the mapping $(\lambda, a) \to \phi = \lambda \varphi_a$ or as a subspace of $H^{\infty}(\mathbb{D})$ or simply $G \subset \mathcal{H}(\mathbb{D})$ with the locally convex topology of the convergence over compact sets. Let us mention that all these topologies on G are actually equivalent.

PROPOSITION 2.1. Let $\phi_n = \lambda_n \varphi_{a_n}$ and $\phi = \lambda \varphi_a$ for some $|\lambda_n| = |\lambda| = 1$ and $a, a_n \in \mathbb{D}$. The following are equivalent:

- (1) $\phi_n(z)$ converges to $\phi(z)$ for all $z \in \mathbb{D}$.
- (2) λ_n converges to λ and a_n converges to a.
- (3) ϕ_n converges to ϕ in H^{∞} .
- (4) ϕ_n converges to ϕ in $\mathcal{H}(\mathbb{D})$, i.e. uniformly on compact subsets of \mathbb{D} .

PROOF. (1) \Longrightarrow (2) Assume that $\phi_n(z)$ converges to $\phi(z)$ for all $z \in \mathbb{D}$. Note that $\lambda_n \varphi_{a_n}(z) \to \lambda \varphi_a(z)$ is equivalent to $\bar{\lambda} \lambda_n \varphi_{a_n}((\varphi_a)^{-1}(w)) \to w$ for all $w \in \mathbb{D}$. For w = 0 one gets $\varphi_{a_n}(a) \to 0$ and then $a_n \to a$. In particular now $\varphi_{a_n}(z) \to \varphi_a(z)$ for all $z \in \mathbb{D}$ which together with $\phi_n(z) \to \phi(z)$ implies that $\lambda_n \to \lambda$. (2) \Longrightarrow (3)

$$\begin{aligned} |\phi_n(z) - \phi(z)| &= |(\lambda_n - \lambda)\varphi_{a_n} + \lambda(\varphi_{a_n} - \varphi_a)| \\ &\leq |\lambda_n - \lambda| + |\varphi_{a_n} - \varphi_a)| \\ &\leq |\lambda_n - \lambda| + \frac{2|a_n - a| + |\bar{a}_n a - a_n \bar{a}|}{(1 - |a_n|)(1 - |a|)} \end{aligned}$$

Hence $\|\phi_n - \phi\|_{\infty} \to 0$.

 $\begin{array}{l} (3) \Longrightarrow (4) \text{ Immediate.} \\ (4) \Longrightarrow (1) \text{ Immediate.} \end{array}$

Let us now give one characterization of the space B_1 (see [**AFP**]). Let us point out the following easy fact that we shall need for such a purpose.

PROPOSITION 2.2. If $f \in B_1$ and f'(0) = 0 then $F(z) = zf(z) \in B_1$ and $\rho_1(F) \leq 3\rho_1(f)$.

PROOF. F'(z) = f(z) + zf'(z) and F''(z) = 2f'(z) + zf''(z).

Therefore it suffices to see that $\int_{\mathbb{D}} |f'(z)| dA(z) \leq \int_{\mathbb{D}} |f''(z)| dA(z)$.

Since $f'(re^{it}) = \int_0^1 f''(rse^{it})ds$, we can conclude that $M_1(f',r) \leq \int_0^1 M_1(f'',rs)ds$ and

$$\int_{\mathbb{D}} |f'(z)| dA(z) = \int_{0}^{1} M_{1}(f', r) r dr \le \int_{0}^{1} \int_{0}^{1} M_{1}(f'', rs) r dr ds \le \int_{\mathbb{D}} |f''(z)| dA(z).$$

THEOREM 2.3. Let $f \in \mathcal{H}(\mathbb{D})$ with f(0) = f'(0) = 0. $f \in B_1$ if and only if there exists a complex Borel measure ν of bounded variation on \mathbb{D} such that

$$f(z) = \int_{\mathbb{D}} \varphi_a(z) d\nu(a).$$

Moreover,

$$\rho_1(f) \approx \inf\{\|\nu\|_1 : f = \int_{\mathbb{D}} \varphi_a d\nu(a).\}$$

PROOF. Assume ν is a measure of bounded variation with

$$f(z) = \int_{\mathbb{D}} \varphi_a(z) d\nu(a)$$

Then

$$f''(z) = \int_{\mathbb{D}} \varphi_a''(z) d\nu(a).$$

It suffices to use the standard estimate (see $[\mathbf{Z}, Page 53]$)

(2.1)
$$\|\varphi_a''\|_{L^1} = \int_{\mathbb{D}} \frac{2|a|(1-|a|^2)}{|1-\bar{a}z|^3} dA(z) \le C$$

and Fubini's theorem to conclude that $\int_D |f''(z)| dA(z) \leq C \|\nu\|_1$. This shows that $\rho_1(f) \leq C \inf\{\|\nu\|_1\}$.

Conversely, observe that if $F(z) = \sum_{n=0}^{\infty} a_n z^n$ belong to $L^1(\mathbb{D})$ then

$$\int_{\mathbb{D}} \frac{F(a)}{1 - \bar{a}z} dA(a) = \sum_{n=0}^{\infty} \frac{a_n}{n+1} z^n.$$

This shows that

$$\int_D F(a)\varphi_a(z)dA(a) = \sum_{n=1}^\infty \frac{a_{n-1}}{n(n+1)}z^n.$$

Now if $f(z) = \sum_{n=2}^{\infty} b_n z^n \in B_1$ we define $G(z) = zf(z) = \sum_{n=1}^{\infty} b_{n+1} z^{n+2}$. Hence, applying the formula above to

$$F(z) = G''(z) = \sum_{n=1}^{\infty} (n+2)(n+1)b_{n+1}z^n$$

we obtain

$$f(z) = \int_{\mathbb{D}} \varphi_a(z) G''(a) dA(a).$$

Using Proposition 2.2 one has that $G \in B_1$ and $\rho_1(G) \leq 3\rho_1(f)$. Taking $d\nu(a) = G''(a)dA(a)$ one gets $\|\nu\|_1 = \rho_1(G) \leq 3\rho_1(f)$. \Box

PROPOSITION 2.4. B_1 is *G*-invariant and $a \to \varphi_a$ is continuous from \mathbb{D} to B_1 .

PROOF. Let $f \in B_1$ with f(0) = f'(0) = 0 and $\phi = \lambda \varphi_b \in G$. Using Theorem 2.3 one can write $f = \int_{\mathbb{D}} \varphi_a(z) d\nu(a)$ for some ν with $\|\nu\|_1 \leq C\rho_1(f)$. Hence

$$f \circ \phi(z) = \int_{\mathbb{D}} \varphi_a(\phi(z)) d\nu(a) = \int_{\mathbb{D}} \lambda \varphi_{\bar{\lambda}a}(\varphi_b(z)) d\nu(a) = \int_{\mathbb{D}} \lambda \varphi_{\varphi_{\bar{\lambda}a}^{-1}(b)}(z) d\nu(a).$$

Now take the second derivative and use (2.1) to get that $\sup_{|c|<1} \|(\varphi_c)''\|_{L^1(\mathbb{D})} < \infty$ and $\rho_1(f \circ \phi) \leq C\rho_1(f)$.

Note also that if $a_n \to a$ then $\varphi_{a_n}''(z) \to \varphi_a''(z)$ for all $z \in \mathbb{D}$. Now applying the dominated convergence theorem one concludes $\rho_1(\varphi_{a_n} - \varphi_a) \to 0$.

It was shown in $[\mathbf{AFP}]$ that $(B_1)^* = \mathcal{B}$. Let us now show the minimal character of B_1 . The reader should note that we did not assume the map $\phi \to f \circ \phi$ to be continuous from G to X in the definition of G-invariant. This allowed to have more examples, as \mathcal{B} or H^{∞} , in this category.

PROPOSITION 2.5. Let $(X, \|.\|)$ be a non-trivial (i.e there exists $f \in X$ non constant) *G*-invariant Banach space.

(1) If the map $\Gamma_f : G \to X$ defined by $\phi \to f \circ \phi$ is Borel measurable and bounded for all $f \in X$ then X contains the space of polynomials, $B_1 \subset X$ and there exists C > 0 such that $||f||_X \leq C||f||_{B_1}$ for all $f \in B_1$.

(2) If the map $\Gamma_f : G \to X$ defined by $\phi \to f \circ \phi$ is continuous for all $f \in X$ then the space of polynomials is dense in X.

PROOF. (1) Let $f(z) = \sum_{n=0}^{\infty} a_n z^n \in X$ be non constant, that is $a_k \neq 0$ for some $k \geq 1$. Consider the bounded measurable map $\mathbb{T} \to X$ defined by $e^{it} \to f_t(z) = f(e^{it}z)$. Now one can use the Bochner integral to obtain that, for $n \geq 0$,

$$\int_0^{2\pi} f_t e^{-int} \frac{dt}{2\pi} = a_n u_n \in X$$

where $u_n(z) = z^n$. Therefore $u_k \in X$.

Now we can conclude that $(\varphi_a(z))^k \in X$ for all |a| < 1. We can repeat the previous argument for $f(z) = (\frac{2z-1}{2-z})^k$ whose Taylor coefficients are all different from zero to get $u_n \in X$ for all $n \ge 0$.

Note that if f is a polynomial with f(0) = f'(0) = 0 and ν a measure of bounded variation such that $f = \int_{\mathbb{D}} \varphi_a d\nu(a)$. Using that $a \to \varphi_a$ is bounded and measurable with values in X one obtains

$$||f||_X \le \int_{\mathbb{D}} ||\varphi_a||_X d|\nu|(a) \le \sup_{|a|<1} ||\varphi_a||_X ||\nu||_1.$$

This shows that $||f||_X \leq C\rho_1(f)$ for all polynomial f with f(0) = f'(0) = 0. Hence, for a general polynomial f, writting f = (f - f(0) - f'(0)z) + f(0) + f'(0)z one gets

$$||f||_X \le ||f - f(0) - f'(0)z||_X + |f(0)|||u_0||_X + |f'(0)|||u_1||_X \le C||f||_{B_1}.$$

Now extend the result for functions in B_1 using the density of polynomials in B_1 . (2) Assume $\phi \to f \circ \phi$ is continuous from $G \to X$. Denote $f_r(z) = f(rz)$ for 0 < r < 1 and observe that

$$f_r(z) - f(z) = \int_0^{2\pi} \left(f(e^{it}z) - f(z) \right) P_r(e^{-it}) \frac{dt}{2\pi}$$

where, as usual, $P_r(e^{it})$ stands for the Poisson kernel. This shows that

$$||f_r - f||_X \le \int_0^{2\pi} ||f_t - f||_X P_r(e^{-it}) \frac{dt}{2\pi}.$$

Using that $e^{it} \to f_t$ is continuous standard arguments imply that f_r converges to f in X. Using that polynomials are dense in B_1 and $f_r \in B_1$ for each 0 < r < 1one shows the density of polynomials in X.

3. Operators on B_1

DEFINITION 3.1. Let Y be a complex Banach space and $F: \mathbb{D} \to Y$ be analytic function. F is said to be a vector-valued Bloch function, say $F \in \mathcal{B}(Y)$, if

$$\sup_{|a|<1} (1-|a|^2) \|F'(a)\|_Y < \infty.$$

Write the norm $||F||_{\mathcal{B}(Y)} = ||F(0)|| + \sup_{|a|<1} (1-|a|^2) ||F'(a)||_Y.$

THEOREM 3.2. Let Y be a complex Banach space and let $T : B_1 \to Y$ be a linear operator. Denote $x_n = T(u_n)$ for $u_n(z) = z^n$, $n \ge 0$, and assume that $\limsup \sqrt[n]{\|x_n\|} \leq 1$. The following are equivalent:

- (1) T is bounded.
- (2) $g_T(a) = T(\varphi_a)$ is bounded and continuous from \mathbb{D} to Y. (3) $F_T(a) = \sum_{n=0}^{\infty} \frac{x_n}{n+1} z^{n+1} \in \mathcal{B}(Y).$

Moreover

$$||T|| \approx \sup_{|a|<1} ||g_T(a)||_Y \approx ||F_T||_{\mathcal{B}(Y)}.$$

PROOF. (1) \Longrightarrow (2) Since $g_T(a) = T(\varphi_a)$ the result follows by composing $T \circ J$ where $J : \mathbb{D} \to B_1$ is the the continuous map given by $a \to \varphi_a$ according to Proposition 2.4.

 $(2) \Longrightarrow (1)$ Let f be a polynomial. Hence one has $f - f(0) - f'(0)z = \int_{\mathbb{D}} \varphi_a d\nu(a)$ for some measure ν . Now, using linearity,

$$T(f) = f(0)x_0 + f'(0)x_1 + \int_{\mathbb{D}} g_T(a)d\nu(a).$$

Now from the assumption one obtains

$$||T(f)|| \le |f(0)|||x_0|| + |f'(0)|||x_1|| + \sup_{|a|<1} ||g_T(a)||||\nu||_1.$$

This gives $||T(f)|| \leq C ||f||_{B_1}$ for any polynomial. Now use the density of polynomials in B_1 to extend to a bounded operator from B_1 into Y.

 $(1) \Longrightarrow (3)$ From the assumption on (x_n) the map F_T is holomorphic (at least) on the unit disc and takes values in Y. Note that

$$F'_T(a) = \sum_{k=0}^{\infty} T(u_k)a^k = T(u_0) + T(\sum_{k=1}^{\infty} u_k a^k).$$

Since $\varphi_a = -a + (1 - |a|^2) \sum_{k=1}^{\infty} \bar{a}^k u_k$. This shows that

$$(1 - |a|^2)F'_T(a) = T(\varphi_{\bar{a}}) + (\bar{a} + (1 - |a|^2))T(u_0).$$

Now use that T is bounded and (2.1). (3) \implies (2) Use the formula

$$g_T(a) = (1 - |a|^2) F'_T(\bar{a}) - (a + (1 - |a|^2)) F(0).$$

COROLLARY 3.3. Let X be a G-invariant space and let $\Phi : \mathbb{D} \to \mathbb{D}$ be a non constant analytic function. Then $C_{\Phi} : B_1 \to X$ defined by $C_{\Phi}(f) = f \circ \Phi$ is a bounded operator if and only if

$$\sup_{|a|<1} \|\varphi_a \circ \Phi\|_X < \infty.$$

Let us now apply this result to several cases.

COROLLARY 3.4. Let $\Phi : \mathbb{D} \to \mathbb{D}$ a non constant analytic function. Then $C_{\Phi} : B_1 \to \mathcal{D}_2$ is bounded if and only if

$$\sup_{|a|<1} \int_{\mathbb{D}} \frac{(1-|a|^2)^2 n_{\Phi}(z)}{|1-a\bar{z}|^4} dA(z) < \infty,$$

where

$$n_{\Phi}(z) = \#\{w \in \mathbb{D} : \Phi(w) = z\}.$$

In particular C_{Φ} is bounded from B_1 to \mathcal{D}_2 for univalent functions Φ .

PROOF. From Corollary 3.3 the boundedness is characterized by

$$\int_{\mathbb{D}} |\varphi_a'(\Phi(z))|^2 |\Phi'(z)|^2 dA(z) < \infty.$$

Now using that Φ is locally univalent and the usual change of variables formula one has

$$\int_{\mathbb{D}} \frac{(1-|a|^2)^2}{|1-a\bar{z}|^4} n_{\Phi}(z) dA(z) < \infty.$$

Next result was shown in [AFP, Proposition 17]:

THEOREM 3.5. Let $\Phi : \mathbb{D} \to \mathbb{D}$ be a non constant analytic function. Then $C_{\Phi} : B_1 \to B_1$ is bounded operator if and only if

(3.1)
$$\sup_{|a|<1} \int_{\mathbb{D}} \frac{(1-|a|^2)}{|1-a\bar{z}|^3} n_{\Phi}(z) dA(z) < \infty,$$

(3.2)
$$\sup_{|a|<1} \int_{\mathbb{D}} \frac{(1-|a|^2)|\Phi''(z)|}{|1-\bar{a}\Phi(z)|^2} dA(z) < \infty.$$

Let us now prove the Arazy-Fisher-Peetre conjecture.

PROPOSITION 3.6. Let $1 and <math>F \in \mathcal{H}(\mathbb{D})$ with $M_p(F', r) \in L^{p'}(dr)$. Then $F \in BMOA$ and $||F||_* \leq C \left(\int_0^1 M_p^{p'}(F', r)dr\right)^{1/p'}$.

PROOF. First notice that, since the map $s \mapsto M_p^{p'}(F',s)$ is continuous and non-decreasing, one has

$$M_p^{p'}(F',r)(1-r) \le \int_r^1 M_p^{p'}(F',s)ds.$$

Hence $M_p(F',r) \in L^{p'}(dr)$ implies $M_p(F',r) = o(\frac{1}{(1-r)^{1/p'}})$ as $r \to 1$. Now use the fact that $M_p(F',r) = O(\frac{1}{(1-r)^{1/p'}})$ can be described in terms of Lipschitz functions (see $[\mathbf{D}]$) and then use the result in $[\mathbf{BSS}]$ to obtain that $F \in BMOA$.

THEOREM 3.7. Let $1 and <math>\Phi : \mathbb{D} \to \mathbb{D}$ a non constant analytic function. If $M_p(\Phi'', r) \in L^{p'}(dr)$ then $C_{\Phi} : B_1 \to B_1$ is bounded.

PROOF. Let us show that condition (3.1) holds. Recall that

$$\int_{\mathbb{D}} \frac{n_{\Phi}(z)}{|1 - \bar{a}z|^3} dA(z) = \int_{\mathbb{D}} \frac{|\Phi'(z)|^2}{|1 - \bar{a}\Phi(z)|^3} dA(z).$$

Given a polynomial h we write

$$\int_{\mathbb{D}} \frac{\Phi'(z)}{(1-a\overline{\Phi(z)})^{3/2}} \overline{h(z)} dA(z) = \int_0^1 \int_0^{2\pi} \frac{\Phi'(re^{it})}{(1-a\overline{\Phi(re^{it})})^{3/2}} \overline{h(re^{it})} r dr \frac{dt}{\pi}.$$

From Proposition 3.6 and the duality $(H^1)^* = BMOA$ (see [**Z**]), we have

$$\left|\int_{\mathbb{D}} \frac{\Phi'(z)}{(1-a\overline{\Phi(z)})^{3/2}} \overline{h(z)} dA(z)\right| \le \int_{0}^{1} \|\Phi'\|_{*} M_{1}(\frac{h}{(1-\bar{a}\Phi)^{3/2}}, r) dr$$

We now recall that Littlewood subordination principle (see [**Z**, Theorem 10.1.3]) implies that for $1 \le q < \infty$ and $\alpha > 0$ we have

(3.3)
$$M_q(\frac{1}{(1-\bar{a}\Phi(z))^{\alpha}}, r) \le M_q(\frac{1}{(1-\bar{a}z)^{\alpha}}, r).$$

Also it is well known that if $0<\alpha,q<\infty$ and $\alpha q>1$ then there exists a constant C>0 such that

(3.4)
$$M_q(\frac{1}{(1-\bar{a}z)^{\alpha}},r) \le C \frac{1}{(1-|a|^2r^2)^{\alpha-1/q}}$$

Therefore Cauchy-Schwartz, (3.3) and (3.4) give

$$\begin{aligned} M_1(\frac{h}{(1-\bar{a}\Phi)^{3/2}},r) &\leq & M_2(h,r)M_2(\frac{1}{(1-\bar{a}\Phi(z))^{3/2}},r) \\ &\leq & M_2(h,r)M_2(\frac{1}{(1-\bar{a}z)^{3/2}},r) \\ &\leq & C\frac{M_2(h,r)}{1-|a|^2r^2}. \end{aligned}$$

Integrating over [0,1] the previous estimates and, using the Cauchy-Schwartz inequality, one has

$$\left|\int_{\mathbb{D}} \frac{\Phi'(z)}{(1-\bar{a}\Phi(z))^{3/2}} \overline{h(z)} dA(z)\right| \le C \|\Phi'\|_* \|h\|_{L^2(\mathbb{D})} \frac{1}{(1-|a|^2)^{1/2}}.$$

(3.1) now follows taking supremum over polynomials with $||h||_{L^2(\mathbb{D})} \leq 1$. Let us now show (3.2). Hence, using again (3.3) and (3.4), we obtain

$$\begin{split} \int_{\mathbb{D}} \frac{(1-|a|^2)|\Phi''(z)|}{|1-a\bar{\Phi}(z)|^2} dA(z) &\leq (1-|a|^2) \int_0^1 M_{p'} (\frac{1}{(1-\bar{a}\Phi(z))^2}, r) M_p(\Phi'', r) dr \\ &\leq \left(\int_0^1 M_{p'}^p (\frac{(1-|a|^2)}{(1-\bar{a}\Phi(z))^2}, r) dr \right)^{1/p} \left(\int_0^1 M_p^{p'} (\Phi'', r) dr \right)^{1/p} \\ &\leq C \Big(\int_0^1 M_{p'}^p (\frac{1-|a|^2}{(1-\bar{a}z)^2}, r) dr \Big)^{1/p} \\ &\leq C \Big(\int_0^1 \frac{(1-|a|^2)^p}{(1-|a|^2r^2)^{2p-p/p'}} dr \Big)^{1/p} \\ &\leq C(1-|a|^2) \frac{1}{(1-|a|^2)^{2-1/p'-1/p}} \leq C. \end{split}$$

References

- [AF] Arazy, J. and Fisher, S. The uniqueness of the Dirichlet space among the Möbius invariant Hilbert spaces, Ill. J. Math., 29 (1985), 449–462.
- [AFP] Arazy, J., Fisher, S. and Peetre, J., Möbius invariant function spaces, J. reigne angew. Math., 363 (1985), 110–145.
- [BSS] Bourdon, B., Shapiro, J. and Sledd, W., Fourier series, mean Lipschitz spaces and bounded mean oscillation, Analysis at Urbana I, London Math. Soc. Lecture note series., 137 Cambridge Univ. Press (1989), 81–110.
- [CM] Cowen, C.C. and MacCluer, B.D. Composition Operators on Spaces of Analytic Functions, CRC Press, New York 1995.
- [D] Duren, P., Theory of H^p-spaces, Academic Press, New York 1970.
- [F] Fisher, S., The Möbius group and invariant spaces of analytic functions, Amer. Math. Monthly, 95 (1988), 514-527.
- [RT] Rubel, L.A. and Timoney, R.M., An extremal property of the Bloch space, Proc. Amer. Math. Soc., 75 (1979), 45-50.
- [T1] Timoney, R.M., Natural function spaces, J. London Math. Soc., (2) 41 (1990), 78-88.
- [T2] Timoney, R.M., Maximal invariant spaces of analytic functions, Indiana Univ. Math. J., 31 (1982), 651-663.
- [Z] K. Zhu, Operator Theory in Function spaces, Marcel Dekker, Inc., New York and Basel, 1990.

Departmento de Análisis Matemático, Universidad de Valencia, Burjassot (Valencia), Spain46100

E-mail address: oblasco@uv.es