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Composition operators on the minimal space invariant under
Möbius transformations

Oscar Blasco

Abstract. It is shown that if Φ : D → D is an analytic function such that

Mp(Φ′′, r) ∈ Lp′ (dr) for some 1 < p < ∞ and 1/p + 1/p′ = 1 then CΦ(f) =

f ◦ Φ defines a bounded composition operator on the space B1, the minimal
space invariant under Möbius transformations. This was conjectured by J.

Arazy, S. Fisher and J. Peetre in [AFP].

1. Introduction

Let us denote by G the group of holomorphic automorphisms on the unit disk
D, i.e. the set of functions φ ∈ H(D) such that φ = λϕa for |λ| = 1, |a| < 1 and

ϕa(z) =
z − a

1− āz
= −a + (1− |a|2)

∞∑
k=1

āk−1zk.

The fact |φ′(z)| = 1−|φ(z)|2
1−|z|2 for φ ∈ G guarantees that the measure dλ(z) =

dA(z)
(1−|z|2)2 is invariant under Möbius transformations, where dA(z) stands for the

normalized area measure dA(z) = dxdy
π .

The paper where a systematic study of spaces of invariant under Möbius trans-
formations was started is [AFP], and we also refer the reader to [AF, F, RT, T1,
T2] for further considerations.

Although the precise definition may vary from author to author we shall say
that a complete space X ⊂ H(D) with a semi-norm ρ is G-invariant (or invariant
under Möbius transformations) if for all f ∈ X and φ ∈ G one has that f ◦ φ ∈ X
and there exists C > 0 such that

(1.1) sup
φ∈G

ρ(f ◦ φ) ≤ Cρ(f).

The basic examples of G-invariant spaces are the following:
• The space H∞: The space of bounded analytic functions.
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Note that for 1 ≤ p < ∞ the spaces

Hp = {f ∈ H(D) : sup
0<r<1

( ∫ 2π

0

|f(reit)|p dt

2π

)1/p

< ∞}

are not G-invariant in our sense.
The reader should be aware that they however become G-invariant

under the action f → (f ◦ φ)(φ′)1/p.
• The space BMOA:

BMOA = {f ∈ H(D) : ‖f‖∗ = sup
|a|<1

‖f ◦ ϕa − f(a)‖H2 < ∞}.

• The Dirichlet space:

D2 = {f ∈ H(D) : (
∞∑

n=1

n|an|2)1/2 < ∞}

= {f ∈ H(D) : f ′ ∈ L2(D, dA)}.
• The Besov spaces for 1 < p < ∞:

Bp = {f ∈ H(D) :
( ∫

D
|f ′(z)|p(1− |z|2)p−2dA(z)

)1/p

< ∞}.

In particular B2 = D2.
• The Bloch space: B = {f ∈ H(D) : sup|z|<1(1− |z|2)|f ′(z)| < ∞}.

We write ‖f‖B = max{|f(0)|, sup|z|<1(1− |z|2)|f ′(z)|}.
Let us also consider the invariant pairing on D given by

〈f, g〉 = lim
r→1

∫
|z|<r

f ′(z)g′(z)dA(z).

Under such a pairing one has, for each φ ∈ G,

〈f ◦ φ, g ◦ φ〉 = 〈f, g〉.
Using the Bergman projection one sees that

(1.2) 〈f, ϕa〉 = (1− |a|2)f ′(a).

It is not difficult to see that the previously mentioned examples are G-invariant.
Note, for instance, that (1.2) implies that f ∈ Bp if and only if∫

D
|〈f, ϕz〉|pdλ(z) < ∞

and f ∈ B if and only if sup|z|<1 |〈f, ϕz〉| < ∞.

By the work by Rubel and Timoney (see [RT]) one has that B becomes a
maximal space among the decent G-invariant ones. We say that a G-invariant
space X is ”decent” if

(1.3) There exists 0 6= x∗ ∈ X∗ which is also continuous in H(D).

For decent G-invariant spaces (see [RT, F]) one has that X ⊂ B continuously.
To find out which is the corresponding limiting case of the Besov spaces Bp

for p = 1 just recall the following well-known facts (see [Z]): Let 1 < p < ∞ and

denote Mp(f, r) =
( ∫ 2π

0
|f(reit)|p dt

2π

)1/p

. The following are equivalent:
(i) f ∈ Bp.
(ii)

∫ 1

0
Mp

p (f ′, r)(1− r)p−2dr < ∞.
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(iii)
∫ 1

0
Mp

p (f ′′, r)(1− r)p−1dr < ∞.

In the case p = 1 (iii) becomes
∫ 1

0
M1(f ′′, r)dr < ∞. Thus one defines

B1 = {f ∈ H(D) : ρ1(f) =
∫

D
|f ′′(z)|dA(z) < ∞}.

We can define a norm by considering

‖f‖B1 = max{|f(0)|, |f ′(0)|, ρ1(f)}.
This space is known to be minimal among G-invariant spaces with some extra

properties (see [AFP, T2]). We shall see here that this is also the case when
assuming certain measurability condition on the map φ → f ◦ φ from G to X.

The reader should be aware that the space B1 was denoted by M in [AFP]
and coincides with the space consisting in those functions f ∈ H(D) such that
f =

∑∞
z=1 λkϕak

where |ak| < 1 and
∑

k |λk| < ∞.
It was shown in [AFP, Theorems 18 and 19] respectively that

(1.4) Φ′′ ∈ H1 =⇒ CΦ : B1 → B1 is bounded

and

(1.5) sup
θ
|Φ′′(reiθ)| ∈ L1(dr) =⇒ CΦ : B1 → B1 is bounded .

Observe that (1.4) and (1.5) means M1(Φ′′, r) ∈ L∞(dr) and M∞(Φ′′, r) ∈
L1(dr) respectively. It was conjectured in the Arazy-Fisher-Peetre paper that
Mp(Φ′′, r) ∈ Lp′(dr) for some 1 < p < ∞ and 1/p + 1/p′ should be sufficient
for CΦ to be bounded on B1.

In this direction it was even shown in [AFP, Theorem 20] that CΦ was bounded
on B1 whenever Mp(Φ′′, r) ∈ Ls(dr) for s = 2p

p−1 (note that in this case Ls(dr) ⊂
Lp′(dr)).

Our main result is Theorem 3.7 where we show that the conjecture is true.
The paper is organized as follows: Section 1 contains some basic facts on B1,

in particular that B1 ⊂ X for a relatively wide class of G-invariant spaces. In
Section 2 we apply a general theorem on the characterization of the boundedness
of operators from B1 into a Banach space to the particular case of composition
operators from B1 into B1 and give a proof of the conjecture mentioned above.

As usual p′ stands for the conjugate exponent of p, 1/p + 1/p′ = 1 and C
denotes a constant that may vary from line to line.

2. The minimal space invariant under Möbius transformations

We may consider G ⊂ T×D by the mapping (λ, a) → φ = λϕa or as a subspace
of H∞(D) or simply G ⊂ H(D) with the locally convex topology of the convergence
over compact sets. Let us mention that all these topologies on G are actually
equivalent.

Proposition 2.1. Let φn = λnϕan and φ = λϕa for some |λn| = |λ| = 1 and
a, an ∈ D. The following are equivalent:

(1) φn(z) converges to φ(z) for all z ∈ D.
(2) λn converges to λ and an converges to a.
(3) φn converges to φ in H∞.
(4) φn converges to φ in H(D), i.e. uniformly on compact subsets of D.
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Proof. (1) =⇒ (2) Assume that φn(z) converges to φ(z) for all z ∈ D.
Note that λnϕan

(z) → λϕa(z) is equivalent to λ̄λnϕan
((ϕa)−1(w)) → w for

all w ∈ D. For w = 0 one gets ϕan
(a) → 0 and then an → a. In particular

now ϕan
(z) → ϕa(z) for all z ∈ D which together with φn(z) → φ(z) implies that

λn → λ.
(2) =⇒ (3)

|φn(z)− φ(z)| = |(λn − λ)ϕan
+ λ(ϕan

− ϕa)|
≤ |λn − λ|+ |ϕan

− ϕa)|

≤ |λn − λ|+ 2|an − a|+ |āna− anā|
(1− |an|)(1− |a|)

Hence ‖φn − φ‖∞ → 0.
(3) =⇒ (4) Immediate.
(4) =⇒ (1) Immediate. �

Let us now give one characterization of the space B1 (see [AFP]). Let us point
out the following easy fact that we shall need for such a purpose.

Proposition 2.2. If f ∈ B1 and f ′(0) = 0 then F (z) = zf(z) ∈ B1 and
ρ1(F ) ≤ 3ρ1(f).

Proof. F ′(z) = f(z) + zf ′(z) and F ′′(z) = 2f ′(z) + zf ′′(z).
Therefore it suffices to see that

∫
D |f

′(z)|dA(z) ≤
∫

D |f
′′(z)|dA(z).

Since f ′(reit) =
∫ 1

0
f ′′(rseit)ds, we can conclude that M1(f ′, r) ≤

∫ 1

0
M1(f ′′, rs)ds

and∫
D
|f ′(z)|dA(z) =

∫ 1

0

M1(f ′, r)rdr ≤
∫ 1

0

∫ 1

0

M1(f ′′, rs)rdrds ≤
∫

D
|f ′′(z)|dA(z).

�

Theorem 2.3. Let f ∈ H(D) with f(0) = f ′(0) = 0. f ∈ B1 if and only if
there exists a complex Borel measure ν of bounded variation on D such that

f(z) =
∫

D
ϕa(z)dν(a).

Moreover,

ρ1(f) ≈ inf{‖ν‖1 : f =
∫

D
ϕadν(a).}

Proof. Assume ν is a measure of bounded variation with

f(z) =
∫

D
ϕa(z)dν(a).

Then

f ′′(z) =
∫

D
ϕ′′a(z)dν(a).

It suffices to use the standard estimate (see [Z, Page 53])

(2.1) ‖ϕ′′a‖L1 =
∫

D

2|a|(1− |a|2)
|1− āz|3

dA(z) ≤ C

and Fubini’s theorem to conclude that
∫

D
|f ′′(z)|dA(z) ≤ C‖ν‖1. This shows that

ρ1(f) ≤ C inf{‖ν‖1}.
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Conversely, observe that if F (z) =
∑∞

n=0 anzn belong to L1(D) then∫
D

F (a)
1− āz

dA(a) =
∞∑

n=0

an

n + 1
zn.

This shows that ∫
D

F (a)ϕa(z)dA(a) =
∞∑

n=1

an−1

n(n + 1)
zn.

Now if f(z) =
∑∞

n=2 bnzn ∈ B1 we define G(z) = zf(z) =
∑∞

n=1 bn+1z
n+2. Hence,

applying the formula above to

F (z) = G′′(z) =
∞∑

n=1

(n + 2)(n + 1)bn+1z
n

we obtain

f(z) =
∫

D
ϕa(z)G′′(a)dA(a).

Using Proposition 2.2 one has that G ∈ B1 and ρ1(G) ≤ 3ρ1(f). Taking
dν(a) = G′′(a)dA(a) one gets ‖ν‖1 = ρ1(G) ≤ 3ρ1(f). �

Proposition 2.4. B1 is G-invariant and a → ϕa is continuous from D to B1.

Proof. Let f ∈ B1 with f(0) = f ′(0) = 0 and φ = λϕb ∈ G. Using Theorem
2.3 one can write f =

∫
D ϕa(z)dν(a) for some ν with ‖ν‖1 ≤ Cρ1(f). Hence

f ◦ φ(z) =
∫

D
ϕa(φ(z))dν(a) =

∫
D

λϕλ̄a(ϕb(z))dν(a) =
∫

D
λϕϕ−1

λ̄a
(b)(z)dν(a).

Now take the second derivative and use (2.1) to get that sup|c|<1 ‖(ϕc)′′‖L1(D) < ∞
and ρ1(f ◦ φ) ≤ Cρ1(f).

Note also that if an → a then ϕ′′an
(z) → ϕ′′a(z) for all z ∈ D. Now applying the

dominated convergence theorem one concludes ρ1(ϕan
− ϕa) → 0. �

It was shown in [AFP] that (B1)∗ = B. Let us now show the minimal character
of B1 . The reader should note that we did not assume the map φ → f ◦ φ to be
continuous from G to X in the definition of G-invariant. This allowed to have more
examples, as B or H∞, in this category.

Proposition 2.5. Let (X, ‖.‖) be a non-trivial (i.e there exists f ∈ X non
constant) G-invariant Banach space.

(1) If the map Γf : G → X defined by φ → f ◦ φ is Borel measurable and
bounded for all f ∈ X then X contains the space of polynomials, B1 ⊂ X and
there exists C > 0 such that ‖f‖X ≤ C‖f‖B1 for all f ∈ B1.

(2) If the map Γf : G → X defined by φ → f ◦ φ is continuous for all f ∈ X
then the space of polynomials is dense in X.

Proof. (1) Let f(z) =
∑∞

n=0 anzn ∈ X be non constant, that is ak 6= 0 for
some k ≥ 1. Consider the bounded measurable map T → X defined by eit →
ft(z) = f(eitz). Now one can use the Bochner integral to obtain that, for n ≥ 0,∫ 2π

0

fte
−int dt

2π
= anun ∈ X

where un(z) = zn. Therefore uk ∈ X.
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Now we can conclude that (ϕa(z))k ∈ X for all |a| < 1. We can repeat the
previous argument for f(z) = ( 2z−1

2−z ))k whose Taylor coefficients are all different
from zero to get un ∈ X for all n ≥ 0.

Note that if f is a polynomial with f(0) = f ′(0) = 0 and ν a measure of
bounded variation such that f =

∫
D ϕadν(a). Using that a → ϕa is bounded and

measurable with values in X one obtains

‖f‖X ≤
∫

D
‖ϕa‖Xd|ν|(a) ≤ sup

|a|<1

‖ϕa‖X‖ν‖1.

This shows that ‖f‖X ≤ Cρ1(f) for all polynomial f with f(0) = f ′(0) = 0. Hence,
for a general polynomial f , writting f = (f − f(0) − f ′(0)z) + f(0) + f ′(0)z one
gets

‖f‖X ≤ ‖f − f(0)− f ′(0)z‖X + |f(0)|‖u0‖X + |f ′(0)|‖u1‖X ≤ C‖f‖B1 .

Now extend the result for functions in B1 using the density of polynomials in B1.
(2) Assume φ → f ◦ φ is continuous from G → X. Denote fr(z) = f(rz) for

0 < r < 1 and observe that

fr(z)− f(z) =
∫ 2π

0

(
f(eitz)− f(z)

)
Pr(e−it)

dt

2π

where, as usual, Pr(eit) stands for the Poisson kernel. This shows that

‖fr − f‖X ≤
∫ 2π

0

‖ft − f‖XPr(e−it)
dt

2π
.

Using that eit → ft is continuous standard arguments imply that fr converges to
f in X. Using that polynomials are dense in B1 and fr ∈ B1 for each 0 < r < 1
one shows the density of polynomials in X.

�

3. Operators on B1

Definition 3.1. Let Y be a complex Banach space and F : D → Y be analytic
function. F is said to be a vector-valued Bloch function, say F ∈ B(Y ), if

sup
|a|<1

(1− |a|2)‖F ′(a)‖Y < ∞.

Write the norm ‖F‖B(Y ) = ‖F (0)‖+ sup|a|<1(1− |a|2)‖F ′(a)‖Y .

Theorem 3.2. Let Y be a complex Banach space and let T : B1 → Y be a
linear operator. Denote xn = T (un) for un(z) = zn, n ≥ 0, and assume that
lim sup n

√
‖xn‖ ≤ 1. The following are equivalent:

(1) T is bounded.
(2) gT (a) = T (ϕa) is bounded and continuous from D to Y .
(3) FT (a) =

∑∞
n=0

xn

n+1zn+1 ∈ B(Y ).
Moreover

‖T‖ ≈ sup
|a|<1

‖gT (a)‖Y ≈ ‖FT ‖B(Y ).

Proof. (1) =⇒ (2) Since gT (a) = T (ϕa) the result follows by composing T ◦J
where J : D → B1 is the the continuous map given by a → ϕa according to
Proposition 2.4.
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(2) =⇒ (1) Let f be a polynomial. Hence one has f−f(0)−f ′(0)z =
∫

D ϕadν(a)
for some measure ν. Now, using linearity,

T (f) = f(0)x0 + f ′(0)x1 +
∫

D
gT (a)dν(a).

Now from the assumption one obtains

‖T (f)‖ ≤ |f(0)|‖x0‖+ |f ′(0)|‖x1‖+ sup
|a|<1

‖gT (a)‖‖ν‖1.

This gives ‖T (f)‖ ≤ C‖f‖B1 for any polynomial. Now use the density of polyno-
mials in B1 to extend to a bounded operator from B1 into Y .

(1) =⇒ (3) From the assumption on (xn) the map FT is holomorphic (at least)
on the unit disc and takes values in Y . Note that

F ′
T (a) =

∞∑
k=0

T (uk)ak = T (u0) + T (
∞∑

k=1

ukak).

Since ϕa = −a + (1− |a|2)
∑∞

k=1 ākuk. This shows that

(1− |a|2)F ′
T (a) = T (ϕā) + (ā + (1− |a|2))T (u0).

Now use that T is bounded and (2.1).
(3) =⇒ (2) Use the formula

gT (a) = (1− |a|2)F ′
T (ā)− (a + (1− |a|2))F (0).

�

Corollary 3.3. Let X be a G-invariant space and let Φ : D → D be a non
constant analytic function. Then CΦ : B1 → X defined by CΦ(f) = f ◦ Φ is a
bounded operator if and only if

sup
|a|<1

‖ϕa ◦ Φ‖X < ∞.

Let us now apply this result to several cases.

Corollary 3.4. Let Φ : D → D a non constant analytic function. Then
CΦ : B1 → D2 is bounded if and only if

sup
|a|<1

∫
D

(1− |a|2)2nΦ(z)
|1− az̄|4

dA(z) < ∞,

where
nΦ(z) = #{w ∈ D : Φ(w) = z}.

In particular CΦ is bounded from B1 to D2 for univalent functions Φ.

Proof. From Corollary 3.3 the boundedness is characterized by∫
D
|ϕ′a(Φ(z))|2|Φ′(z)|2dA(z) < ∞.

Now using that Φ is locally univalent and the usual change of variables formula one
has ∫

D

(1− |a|2)2

|1− az̄|4
nΦ(z)dA(z) < ∞.

�

Next result was shown in [AFP, Proposition 17]:



8 OSCAR BLASCO

Theorem 3.5. Let Φ : D → D be a non constant analytic function.
Then CΦ : B1 → B1 is bounded operator if and only if

(3.1) sup
|a|<1

∫
D

(1− |a|2)
|1− az̄|3

nΦ(z)dA(z) < ∞,

(3.2) sup
|a|<1

∫
D

(1− |a|2)|Φ′′(z)|
|1− āΦ(z)|2

dA(z) < ∞.

Let us now prove the Arazy-Fisher-Peetre conjecture.

Proposition 3.6. Let 1 < p < ∞ and F ∈ H(D) with Mp(F ′, r) ∈ Lp′(dr).

Then F ∈ BMOA and ‖F‖∗ ≤ C
( ∫ 1

0
Mp′

p (F ′, r)dr
)1/p′

.

Proof. First notice that, since the map s 7→ Mp′

p (F ′, s) is continuous and
non-decreasing, one has

Mp′

p (F ′, r)(1− r) ≤
∫ 1

r

Mp′

p (F ′, s)ds.

Hence Mp(F ′, r) ∈ Lp′(dr) implies Mp(F ′, r) = o( 1
(1−r)1/p′ ) as r → 1. Now use the

fact that Mp(F ′, r) = O( 1
(1−r)1/p′ ) can be described in terms of Lipschitz functions

(see [D]) and then use the result in [BSS] to obtain that F ∈ BMOA.
�

Theorem 3.7. Let 1 < p < ∞ and Φ : D → D a non constant analytic function.
If Mp(Φ′′, r) ∈ Lp′(dr) then CΦ : B1 → B1 is bounded.

Proof. Let us show that condition (3.1) holds. Recall that∫
D

nΦ(z)
|1− āz|3

dA(z) =
∫

D

|Φ′(z)|2

|1− āΦ(z)|3
dA(z).

Given a polynomial h we write∫
D

Φ′(z)
(1− aΦ(z))3/2

h(z)dA(z) =
∫ 1

0

∫ 2π

0

Φ′(reit)
(1− aΦ(reit))3/2

h(reit)rdr
dt

π
.

From Proposition 3.6 and the duality (H1)∗ = BMOA (see [Z]), we have

|
∫

D

Φ′(z)
(1− aΦ(z))3/2

h(z)dA(z)| ≤
∫ 1

0

‖Φ′‖∗M1(
h

(1− āΦ)3/2
, r)dr

We now recall that Littlewood subordination principle (see [Z, Theorem 10.1.3])
implies that for 1 ≤ q < ∞ and α > 0 we have

(3.3) Mq(
1

(1− āΦ(z))α
, r) ≤ Mq(

1
(1− āz)α

, r).

Also it is well known that if 0 < α, q < ∞ and αq > 1 then there exists a
constant C > 0 such that

(3.4) Mq(
1

(1− āz)α
, r) ≤ C

1
(1− |a|2r2)α−1/q
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Therefore Cauchy-Schwartz, (3.3) and (3.4) give

M1(
h

(1− āΦ)3/2
, r) ≤ M2(h, r)M2(

1
(1− āΦ(z))3/2

, r)

≤ M2(h, r)M2(
1

(1− āz)3/2
, r)

≤ C
M2(h, r)
1− |a|2r2

.

Integrating over [0, 1] the previous estimates and, using the Cauchy-Schwartz in-
equality, one has

|
∫

D

Φ′(z)
(1− āΦ(z))3/2

h(z)dA(z)| ≤ C‖Φ′‖∗‖h‖L2(D)
1

(1− |a|2)1/2
.

(3.1) now follows taking supremum over polynomials with ‖h‖L2(D) ≤ 1.
Let us now show (3.2). Hence, using again (3.3) and (3.4), we obtain∫

D

(1− |a|2)|Φ′′(z)|
|1− aΦ̄(z)|2

dA(z) ≤ (1− |a|2)
∫ 1

0

Mp′(
1

(1− āΦ(z))2
, r)Mp(Φ′′, r)dr

≤
( ∫ 1

0

Mp
p′(

(1− |a|2)
(1− āΦ(z))2

, r)dr
)1/p( ∫ 1

0

Mp′

p (Φ′′, r)dr
)1/p′

≤ C
( ∫ 1

0

Mp
p′(

1− |a|2

(1− āz)2
, r)dr

)1/p

≤ C
( ∫ 1

0

(1− |a|2)p

(1− |a|2r2)2p−p/p′
dr

)1/p

≤ C(1− |a|2) 1
(1− |a|2)2−1/p′−1/p

≤ C.

�
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[AFP] Arazy, J., Fisher, S. and Peetre, J., Möbius invariant function spaces, J. reigne angew.

Math., 363 (1985), 110–145.

[BSS] Bourdon, B., Shapiro, J. and Sledd, W., Fourier series, mean Lipschitz spaces and bounded
mean oscillation, Analysis at Urbana I, London Math. Soc. Lecture note series., 137 Cam-

bridge Univ. Press (1989), 81–110.

[CM] Cowen, C.C. and MacCluer, B.D. Composition Operators on Spaces of Analytic Functions,
CRC Press, New York 1995.

[D] Duren, P., Theory of Hp-spaces, Academic Press, New York 1970.
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