
REMARKS ON OPERATOR BMO SPACES

OSCAR BLASCO

Abstract. Several spaces defined according to different formulations for
operator-valued functions in BMO are defined and studied.

1. Introduction and notation

Recall that a function f is said to belong to BMO(T) if

sup
I⊆T interval

(
1
|I|

∫
I

|f(t) −mIf |2dt)1/2 <∞,(1)

where I is an interval in T and mI(f) stands for the averarage mIf = 1
|I|

∫
I
f(t)dt.

It is well known that there are many other equivalent characterizations of BMO
functions:

First we can replace averaging over intervals by averaging respect to the Poisson
kernel (see [Ga]) , that is f ∈ BMO(T) if and only if

sup
|z|<1

(
∫

T

|f(t) − P (f)(z)|2Pz(t)dt)1/2 <∞(2)

where Pz(t) = 1−|z|
1−z̄t , t ∈ T and P (f) stands for the Poisson integral of f .

Actually this is also equivalent to

sup
|z|<1

P (|f |2)(z) − |P (f)(z)|2 <∞(3)

Recall also that, due to John-Nirenberg’s lemma, one can replace in (1) and (2)
the L2-norm by the Lp-norm for 0 < p <∞.

Another possibility is to describe functions in BMO by the Carleson condition:
f ∈ BMO(T) if and only if |∇(f)(z)|2(1− |z|2) is a Carleson measure on D, equiv-
alently

sup
|z|<1

∫
D

(1 − |w|2)|∇f(w)|2Pz(w)dA(w) <∞(4)

where ∇(f) stands for the gradient of f and dA for the Lebesgue measure in the
disc D (see [Ga, Z]).

Of course, one of the first and main descriptions of BMO is as the dual space
of ReH1(T), where ReH1(T) stands for the space of functions f in L1(T) such
that the Hilbert transform Hf belong to L1(T), endowed with the norm ‖f‖H1 =
‖f‖1 + ‖Hf‖1.

There are other descriptions of functions in ReH1(T) either in terms of maximal
functions, as those functions f ∈ L1(T) such that P ∗f ∈ L1(T), where P ∗f(t) =
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sup0<r<1 Pr ∗ f(t) is the radial Poisson maximal function, or in terms of atomic
decompositions, as those functions f in L1(T) that can be decomposed as f =∑

k∈N λkak, λk ∈ C, where ak are atoms, and
∑

k∈N |λk| <∞.
Different proofs of the duality result (see [FS]) BMO(T) = (ReH1(T))∗, can be

done using those formulations of BMO and ReH1. The reader is referred to [GR]
for the general theory on Hardy spaces using real-variable techniques.

There is a counterpart of Hardy spaces defined in terms of martingales (see [G])
and a particular and simpler case concerning dyadic martingales (see [Per]) which
we will discuss here.

Let D denote the collection of dyadic subintervals of the unit circle T, and let
(hI)I∈D, where hI = 1

|I|1/2 (χI+ − χI−), be the Haar basis of L2(T). If f ∈ L1(T)
and I ∈ D then fI denote the formal Haar coefficients

∫
I
f(t)hIdt, and, as above,

mIf = 1
|I|

∫
I
f(t)dt denotes the average of f over I.

We say that f ∈ BMOd(T), if

‖f‖BMOd = sup
I∈D

(
1
|I|

∫
I

|f(t) −mIf |2dt)1/2 <∞.(5)

Denote PI(f) =
∑

J⊆I hJfJ and, using that (f − mIf)χI = PI(f) one has
f ∈ BMOd(T) if and only if there exists a constant C > 0 such that, for all I ∈ D,

‖PI(f)‖2 ≤ C|I|1/2.(6)

On the other hand, since ‖PI(f)‖L2 = (
∑

J∈D,J⊆I |fJ |2)1/2 for f ∈ L2(T). Hence
f ∈ BMOd(T) if and only if

sup
I∈D

1
|I|

∑
J∈D,J⊆I

|fJ |2 <∞.(7)

We shall use later on the following characterization of BMOd in terms the bound-
edness of the paraproducts. It is well known that f ∈ BMOd(T) if and only if

‖πg(f)‖2 ≤ C‖f‖2(8)

and ‖πg‖ = ‖g‖BMOd
norm(T), where πg(f) =

∑
I∈D gI(mIf)hI (see [Per] for a survey

on dyadic Harmonic Analysis and paraproducts).
Throughout the paper we shall review some of the results on the vector-valued

versions of the previously defined characterizations of BMO and prove some new
ones on operator dyadic BMO.

The paper is divided into three sections. The first one contains a survey of some
results proved by the author about several vector valued versions of BMO.

The second section is devoted to operator-valued dyadic BMO spaces. We con-
centrate on the connections with operator-valued Carleson measures and paraprod-
ucts. Several spaces associated to different formulations of the previous notions are
introduced and studied. Inclusions between them are analyzed.

The third section contains new material. Some natural generalizations for
functions taking values in L(H) where one replaces the action (T, h) → Th in
L(H) × H → H for a more general one L(H) × A → A where A is a subspace
of linear operators in L(H) are introduced. This leads to definitons of new spaces
whose properties and relations are studied.
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2. Vector-valued BMO

Let X be a Banach space and let f : T → X be a Bochner integrable function.
We say that f belongs to BMO(T, X) (respect. BMOweak(T, X)) if

sup
I⊆T interval

(
1
|I|

∫
I

‖f(t) −mIf‖2dt)1/2 <∞,(9)

(respect.

sup
‖x∗‖=1,I interval

(
1
|I|

∫
I

|〈f(t) −mIf, x
∗〉|2dt)1/2 <∞, )(10)

where x∗ ∈ X∗ and mI(f) stands for the averarage mIf = 1
|I|

∫
I
f(t)dt.

Same proof as in the scalar-valued case allows to get f ∈ BMO(T, X) if and
only if

sup
|z|<1

(
∫

T

‖f(t) − P (f)(z)‖2Pz(t)dt)1/2 <∞(11)

where Pz(t) = 1−|z|
1−z̄t , t ∈ T and P (f) stands for the Poisson integral of f . Making

use of the John-Nirenberg’s lemma, which holds true in the vector-valued case, one
can also replace the L2-norm by the Lp-norm in (9), (10) and (11).

We say that f ∈ BMOP(T, X) (see [BPa]) if

sup
|z|<1

P (‖f‖2)(z) − ‖P (f)(z)‖2 <∞.

We say that f ∈ BMOC(T, X) (see [B4]) if

sup
|z|<1

∫
D

(1 − |w|2)‖∇f(w)‖2Pz(w)dA(w) <∞

where ∇(f) stands for the gradient of f and dA for the Lebesgue measure in the
disc D.

It is known that embeddings between the just defined spaces depend upon
some geometrical properties of the underlying Banach space. For instance,
BMO(T, X) ⊂ BMOC(T, X) implies X has cotype 2 and BMOC(T, X) ⊂
BMO(T, X) implies X has type 2 (see [B5], Theorem 1.2 ).

On the other hand, ifX is a 2-uniformly PL-convex space then BMOAP(T, X) ⊂
BMOAC(T, X), where BMOAP(T, X) and BMOAC(T, X) stand for the analytic
version of the spaces (see [BPa], Theorem 3.2 ).

The reader is referred to [W] for the notions on Geometry of Banach spaces and
related questions to be used throughout the paper.

The duality in the vector-valued setting is also very well understood. One can
define certain vector-valued Hardy spaces (see [B1, B2] and [Bou]) which will give
the preduals of different versions of vector-valued BMO spaces.

Given a Banach space X we write H1
at(T, X) for the space of functions F ∈

L1(T, X) such that F =
∑

k∈N λkak, λk ∈ C, where
∑

k∈N |λk| < ∞ and ak are
X-valued atoms, that is to say ak ∈ L∞(T, X), supp(ak) ⊂ Ik for some interval Ik,
‖ak‖∞ ≤ 1

|Ik| and
∫
Ik
ak(t)dt = 0. We endow the space with the norm given by the

infimum of
∑

k∈N |λk| over all possible decompositions.
We write H1

con(T, X) for the space of functions f ∈ L1(T, X) such that Hf ∈
L1(T, X), with the norm given by ‖f‖con = ‖f‖L1(T,X) + ‖Hf‖L1(T,X).
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Proposition 2.1. (see [B3]) If X is a real Banach space then BMOweak(T, X)
isometrically embedds into L(ReH1(T), X).

Remark 2.2. The reader is also referred to [B3] for the definition of the
space of vector-valued measures of bounded mean oscillation which characterizes
L(ReH1(T), X).

Proposition 2.3. (see [RRT] or [B1], Th.3.1 and Prop. 3.3) If X is a real Banach
space then BMOnorm(T, X∗) isometrically embedds into (H1

at(T, X))∗.
Moreover BMOnorm(T, X∗) = (H1

at(T, X))∗ if and only if X∗ has the RNP.

Remark 2.4. The reader is referred to [B1, B4] for the definition of the space of
vector-valued measures of bounded mean oscillation which leads to the duality result
without conditions on the Banach space X.

Let Σ = {−1, 1}D, equipped with the natural product measure which assigns
measure 2−n to cylinder sets of length n. For each σ ∈ {−1, 1}D, define the dyadic
martingale transform Tσ : L2(T, X) → L2(T, X), given by

f =
∑
I∈D

hIfI �→
∑
I∈D

hIσIfI .

In the case that X is a Hilbert space, ‖TσF‖L2(T,X) = ‖F‖L2(T,X) for any (σI) ∈
Σ and then ‖F̃‖L∞(Σ,L2(T,X)) = ‖F‖L2(T,X).

Given F ∈ L1(T, X) we write F̃ the function defined in Σ × T,

F̃ (σ, t) = TσF (t) =
∑
I

σIFIhI .

Recall that X is said to be UMD space if there exists C > 0 such that

sup
σ∈Σ

‖TσF‖2 ≤ C‖F‖2

for all F ∈ L2(T, X).
In particular, for UMD spaces we have that ‖TσF‖L2(T,X) ≈ ‖F‖L2(T,X) and

‖F̃‖L2(Σ,L2(T,X)) ≤ ‖F‖L2(T,X).
It is known that Lp(µ) spaces for 1 < p <∞ are UMD. Also the Schatten classes

Sp are UMD spaces for 1 < p < ∞ (see [BGM]) while L(H) or S1 are never UMD
spaces (unless H is finite dimesional). The reader is referred to [Bur] for a general
survey on the UMD property.

We simply mention here that the UMD property is equivalent to the boundedness
of the Hilbert transform on L2(T, X) and the following connection with vector-
valued BMO and duality.

Proposition 2.5. (see [B1]) BMOnorm(T, X∗) = (Hcon(T, X))∗ if and only if X
is a UMD space.

In the case X = L(H) where H is a separable Hilbert space we shall use the
notation BMOnorm(T,L(H)) for BMO(T,L(H)), that is B ∈ BMOnorm(T,L(H))
if

sup
I⊆T interval

(
1
|I|

∫
I

‖B(t) −mIB‖2dt)1/2 <∞.(12)

In this situation we can still consider two related notions. One by considering
the weak∗-topology, using L(H) = (H⊗̂H)∗. Let B : T → L(H) be such that
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〈B(t)e, h〉 ∈ L2(T) for all e, h ∈ H. We say that B ∈WBMO(T,L(H)) if and only
if

sup
‖e‖=‖h‖=1,I⊆T interval

(
1
|I|

∫
I

|〈B(t)e−mIBe, h〉|2dt)1/2 <∞.(13)

Of course BMOweak(T,L(H)) ⊆WBMO(T,L(H)).
Note that B belongs to BMOnorm(T,L(H)) or WBMO(T,L(H)) if and only B∗

does.
Another possiblity is the following (see [NTV]): Let B : T → L(H) be a function

such that B(t)e,B∗(t)e ∈ L2(T,H) for all e ∈ H. We say that B ∈ BMOso(T,L(H))
if

sup
I⊆T,I interval ,e∈H,‖e‖=1

(
1
|I|

∫
I

‖(B(t) −mIB)e‖2dt)1/2 <∞(14)

and

sup
I⊆T,I interval ,e∈H,‖e‖=1

(
1
|I|

∫
I

‖(B∗(t) −mIB
∗)e‖2dt)1/2 <∞.(15)

It is not difficult to show the following chain of strict inclusions.

BMOnorm(T,L(H)) � BMOso(T,L(H)) � WBMO(T,L(H)).

Since the trace class operators can be described as S1 = )2⊗̂)2, where X⊗̂Y
stands for the completion of the projective tensor product of the spaces X and Y
then (S1)∗ = L(H).

Hence it follows from Propositions 2.1 and 2.3 that

BMOweak(T,L(H)) ⊆ L(H1
at(T), S1)(16)

and

BMOnorm(T,L(H)) ⊆ (H1
at(T, S1))∗(17)

Proposition 2.6. BMOso(T,L(H)) ⊆
(
H⊗̂

(
H1
con(H) ⊕1 H

1
con(H)

))∗
.

Proof. Using that (X⊗̂Y )∗ = L(X,Y ∗) and Proposition 2.5, it suffices to see
that BMOso(T,L(H)) ⊆ L(H, BMO(H) ⊕∞ BMO(H)). Observe now that B ∈
BMOso(T,L(H)) implies that e→ (B(t)e,B∗(t)e) defines a bounded linear operator
from H into BMO(H) ⊕∞ BMO(H).

3. Dyadic versions of operator-valued BMO.

Let H be a separable finite or infinite-dimensional Hilbert space, and let B : T →
L(H) such that 〈B(·)e, h〉 ∈ L1(T) for any e, h ∈ H. From the closed graph theorem
H×H → L1(T) given by (e, h) → 〈B(·)e, h〉 defines a bounded bilinear map. Hence,
for I ∈ D, we can define the Haar coefficients BI =

∫
I
B(t)hI(t)dt ∈ L(H), and

the average of B over I, mIB = 1
|I|

∫
I
B(t)dt ∈ L(H) as the operators given by

〈BIe, f〉 =
∫
I
〈B(t)e, f〉hI(t)dt and 〈mIBe, f〉 = 1

|I|
∫
I
〈B(t)e, f〉dt.

We can now give similar notions to those introduced in Section 2, but only for
dyadic intervals. Thus, we write B ∈ BMOd

norm(T,L(H)) if

‖B‖BMOd
norm

= sup
I∈D

(
1
|I|

∫
I

‖B(t) −mIB‖2dt)1/2 <∞.(18)
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B ∈ WBMOd(T,L(H)) if

‖B‖WBMOd = sup
I∈D,e,f∈H,‖e‖=‖f‖=1

(
1
|I|

∫
I

|〈(B(t) −mIB)e, f〉|2dt)1/2 <∞.(19)

B ∈ BMOd
so(T,L(H)) if

γ(B) = sup
I∈D,‖e‖=

1
|I|

∫
I

‖(B(t) −mIB)e‖2dt <∞,

γ(B∗) = sup
I∈D,‖h‖=1

1
|I|

∫
I

‖(B∗(t) −mIB
∗)h‖2dt <∞.

We write

‖B‖BMOd
so

= γ(B)1/2 + γ(B∗)1/2(20)

As in the introduction we have PI(B) =
∑

J⊆I hJBJ = (B −mIB)χI . Hence
B ∈ BMOd

norm(T,L(H)) if and only if there exists a constant C > 0 such that

‖PI(B)‖L2(L(H)) ≤ C|I|1/2(21)

for all I ∈ D.
B ∈ WBMOd(T,L(H)) if and only if there exists a constant C > 0 such that

‖〈PI(B)e, h〉‖L2 ≤ C|I|1/2‖e‖‖h‖(22)

for all I ∈ D and e, h ∈ H.
B ∈ BMOd

so(T,L(H)) if and only if there exists a constant C > 0 such that

max
‖e‖=1,‖h‖=1

{‖PIB(e)‖L2(H)), ‖PIB∗(h)‖L2(H))} ≤ C|I|1/2(23)

for all I ∈ D and e ∈ H.
As before one can replace in (18), (19), (20), (21), (22) and (23) the L2-norm by

any other Lp-norm for 0 < p <∞.
As in the scalar valued case we have

‖PI(f)‖L2 = (
∑

J∈D,J⊆I
‖fJ‖2)1/2

for f ∈ L2(T, X) if X is a Hilbert space, but not in the case X = L(H). This leads
us to consider the following space in terms of Carleson measures.
B ∈ BMOd

Carl(T,L(H)) if

sup
I∈D

1
|I|

∑
J∈D,J⊆I

‖BJ‖2 <∞.(24)

In the papers [GPTV, NTV, NPiTV] the study of the boundedness of the fol-
lowing version of the operator-valued paraproducts was iniciated and developped:
The densely defined linear maps

πB : L2(T,H) → L2(T,H), f =
∑
I∈D

fIhI �→
∑
I∈D

BI(mIf)hI ,

which is called the vector paraproduct with symbol B, and

ΛB = πB + π∗
B∗ : L2(T,H) → L2(T,H), f �→

∑
I∈D

BI(mIf)hI +
∑
I∈D

BI(fI)
χI
|I| .
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Recall that a sequence ΦI ∈ L2(T,L(H)) for all I ∈ D is said to be an operator-
valued Haar multiplier (see [Per, BPo3]) if there exists C > 0 such that

‖
∑
I∈D

ΦI(fI)hI‖L2(T,H) ≤ C(
∑
I∈D

‖fI‖2)1/2

for any finite family of elements (fI) ⊂ H.
In the papers [NTV, BPo3] the spaces BMOpara(T,L(H)) and

BMOmult(T,L(H)) were introduced.
A function B is said to belong to BMOpara(T,L(H)) if πB defines bounded linear

operators on L2(T,H).
A function B is said to belong to BMOmult(T,L(H)) if the sequence (PI(B))I∈D

defines a Haar multiplier.
Due to the equality

ΛB(f) =
∑
I∈D

PI(B)(fI)hI .(25)

one has that B ∈ BMOmult(T,L(H)) if and only if ΛB is bounded on L2(T,H) .
It was shown that (see [NTV, BPo3])

BMOd
norm(T,L(H)) � BMOmult(T,L(H)) � BMOso(T,L(H)) � WBMOd(T,L(H))

and
BMOd

Carl(T,L(H)) � BMOpara(T,L(H)) � BMOd
so(T,L(H)).

The space BMOd
so(T,L(H)) can be understood as the space of functions satisfying

a natural operator Carleson condition, namely

max{sup
I∈D

‖ 1
|I|

∑
J⊆I

B∗
JBJ‖, sup

I∈D
‖ 1
|I|

∑
J⊆I

BJB
∗
J‖} <∞(26)

The result in [NTV] therefore represents a breakdown of the Carleson embedding
theorem in the operator case.

It was shown in [BPo3] that the stronger condition

sup
I∈D

‖ 1
|I|

∑
J⊆I

B∗
JBJ

χJ
|J | ‖L1(T,L(H) <∞(27)

implies that B ∈ BMOpara(T,L(H)).
The results on [BPo3] heavily depends upon the use of the notion of sweep of

a function defined by SB =
∑

J⊆D B
∗
JBJ

χJ

|J| . In particular it was discovered that
B ∈ BMOpara(T,L(H)) if and only if SB ∈ BMOmult(T,L(H))

Another important difference for operator-valued functions is the no validity of
John-Nirenberg theorems, meaning that ‖Sb‖BMO ≤ C‖b‖2

BMO, in the operator-
valued case. Several replacements of the previous inequality were obtained in
[BPo3].

Let us mention to finish this section two new lines of research related to operator-
valued paraproducts which are now in progress. One is about connections between
Hankel operators and Schatten classes that have been recently considered in [PSm]
and another one about paraproducts and Haar multipliers on the bidisc. This last
one is connected with operator-valued theory by taking H = L2(T). In this case
B ∈ L2(T, L2(T)) can be understood as a function in two variables, say b(t, s),
(BI)J = bI×J where bI×J =

∫
T2 b(t, s)hI(t)hJ(s)dtds and mJ(mIB) = mI×Jb
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where mI×Jb = 1
|I||J|

∫
I×J b(t, s)(s)dtds. The reader is referred to [BPo1, BPo2] for

results about paraproducts and Haar multipliers on the bidisc.

4. Dyadic A-valued BMO spaces

Throughout this section A denotes an operator ideal, that is A a Banach space
such that there exist two continuous embeddings maps B1 : A → L(H) and B2 :
A → L(H) in such a way that the composition maps L(H) × B1(A) → B1(A)
and B2(A) × L(H) → B2(A) are bounded, i.e. u ∈ A, v ∈ L(H) =⇒ vB1(u) ∈
B1(A), B2(u)v ∈ B2(A) and max{‖vB1(u)‖A, ‖B2(u)v‖A} ≤ C‖v‖‖u‖A, where we
write ‖ui‖A also the norm of the corresponding u ∈ A where ui = Bi(u) ∈ Bi(A)
for i = 1, 2. We shall use simply vu and uv for vB1(u) and B2(u)v in the sequel.

We use the notation e ⊗ h for the operator e ⊗ h(x) = 〈h, x〉e for x, y, e ∈ H.
Clearly one has

T (e⊗ h) = Te⊗ h, (e⊗ h)T = e⊗ T ∗h(28)

(e⊗ h)(e′ ⊗ h′) = 〈h, e′〉(e⊗ h′)(29)

(e⊗ h)∗ = h⊗ e(30)

Proposition 4.1. Let e0 ∈ H with ‖e0‖ = 1. Then H is an operator ideal by
selecting B1 : H → L(H) given by h → h ⊗ e0 and B2 : H → L(H) given by
h→ e0 ⊗ h.

Proof. Observe that ‖Bi(h)‖ = ‖h‖ for i = 1, 2 and T (h ⊗ e0) = (Th) ⊗ e0 and
(e0 ⊗ h)T = e0 ⊗ T ∗(h). This corresponds to the actions L(H) ×H → H given by
(T, h) → Th and H × L(H) → H given by (h, T ) → T ∗h. The properties are now
straighforward.

Remark 4.2. A = L(H) and the Schatten classes A = Sp , 1 ≤ p < ∞ are
operator ideals for B1 = B2 the inclusion maps.

Recall that S1 = H⊗̂H, (Sp)∗ = Sp′ , 1/p + 1/p′ = 1 and that (S1)∗ = L(H),
with the duality given by

(u, e⊗ h) = 〈u(h), e〉,
where u ∈ L(H), and e, h ∈ H.

As in the previous sections we write B ∈ BMOd
norm(T,A) if

‖B‖BMOd
norm(T,A) = sup

I∈D
(

1
|I|

∫
I

‖B(t) −mIB‖2
Adt)

1/2 <∞.(31)

and B ∈ BMOd
Carl(T,A) if

sup
I∈D

1
|I|

∑
J∈D,J⊆I

‖BJ‖2
A <∞.(32)

It was shown in [BPo3] that L∞(T,L(H)) was not contained into
BMOd

Carl(T,L(H)). Let us see that if we replace L(H) by A the situation becomes
different.

As usual rk denote the Rademacher functions. Recall that a Banach space X is
said to have type p, for some 1 < p ≤ 2, if there exists a constant C > 0 such that

‖
N∑
k=1

xkrk‖L2(T,X) ≤ C(
N∑
k=1

‖xk‖p)1/p
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for all x1, ..., xn ∈ X. Similarly, a Banach space X is said to have cotype q, for
some 2 ≤ q <∞, if there exists a constant C > 0 such that

(
N∑
k=1

‖xk‖p)1/p ≤ C‖
N∑
k=1

xkrk‖L2(T,X)

for all x1, ..., xn ∈ X.

Proposition 4.3. (i) If BMOd
Carl(T,A) ⊆ BMOd

norm(T,A) then A has type 2.
In particular, BMOd

Carl(T, Sp) � BMOd
norm(T, Sp) for p > 2.

(ii) If A has cotype 2 then BMOd
norm(T,A) ⊆ BMOd

Carl(T,A).
In particular, BMOd

norm(T, Sp) ⊆ BMOd
Carl(T, Sp) for 1 ≤ p ≤ 2.

Proof. It was shown (see [B4],Theorem 1.1) that for any Banach space X

‖
N∑
k=1

xkrk‖BMO(T,X) ≈ ‖
N∑
k=1

xkrk‖L2(T,X)(33)

for any xk be a sequence of elements in X.
Take BI = Bk|I|−1/2 for |I| = 2−k. Then

∑
I∈D BIhI =

∑∞
k=1Bkrk.

Note that

sup
I∈D

1
|I|

∑
J∈D,J⊆I

‖BJ‖2
A = sup

I∈D

∑
2−k≤|I|

‖Bk‖2
A(

∑
J⊆I,|J|=2−k

|J |
|I| ) =

∞∑
k=1

‖Bk‖2
A

Applying (33) one gets

‖
N∑
k=1

Bkrk‖2
L2(T,A) ≤ C‖

∑
I∈D

BIhI‖2
BMOd

Carl
= C

∞∑
k=1

‖Bk‖2
A

Now the assumption in (i) gives type 2. Similarly the part (ii).
We can use martingale transforms (see Section 2 for the notation) to analyze

the validity of John-Nirenberg’s lemma in our situation, that is to say to study
whether B ∈ BMOd

norm implies SB ∈ BMOd
norm. Let us rewrite the sweep SB =∑

J∈D B
∗
JBJ

χJ

|J| by the formula

SB =
∫

Σ

TσB
∗TσBdσ,(34)

Theorem 4.4. Let B ∈ L1(T,A). Then
(i) ‖SB‖BMOd

norm(A) ≤
∫
Σ
‖TσB‖2

BMOd
norm(A)dσ.

(ii) ‖SB‖BMOd
norm(Sp/2) ≤ C‖B‖2

BMOd
norm(Sp) for 2 ≤ p <∞.

Proof. It is not difficult to show that PI(SB) = PISPIB (see [BPo3]). Hence, using
(34), one gets PI(SB) =

∫
Σ
TσPIB

∗TσPIBdσ.
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Therefore

‖PI(SB)‖L1(T,A) ≤ ‖
∫

Σ

(TσPIB∗)(TσPIB)dσ‖L1(T,A)

≤
∫

Σ

‖(PITσB∗)(PITσB)‖L1(T,A)dσ

≤
∫

Σ

‖PITσB‖L2(T,L(H))‖PITσB‖L2(T,A)dσ

≤
∫

Σ

‖PITσB‖2
L2(T,A)dσ

≤ (
∫

Σ

‖TσB‖2
BMOd

norm
dσ)|I|.

Use now John-Nirenberg’s lemma to obtain

‖SB‖BMOd
norm(A) ≤ C sup

I∈D

1
|I| ‖PI(SB)‖L1(T,A) ≤ C(

∫
Σ

‖TσB‖2
BMOd

norm
dσ).

(ii) Use the argument above, together with the estimate ‖uv‖Sp/2 ≤ ‖u‖Sp‖v‖Sp ,
to get that

‖PI(SB)‖L1(T,Sp/2) ≤
∫

Σ

‖PITσB‖2
L2(T,Sp)dσ

≤ (
∫

Σ

‖TσB‖2
BMOd

norm(Sp)dσ)|I|

≤ |I| sup
σ∈Σ

‖TσB‖2
BMOd

norm(Sp)

≤ C|I|‖B‖2
BMOd

norm(Sp),

where the last inequality follows from the fact that Sp is a UMD space. Now finish
the proof applying John-Nirenberg’s lemma again.

Definition 4.5. Let A be an operator ideal and let B : T → L(H) such that
B(t)u, vB(t) ∈ L2(T,A) for any u, v ∈ A. We say that B ∈ BMOd

so,A(T,L(H)) , if

γr,A(B) = sup
I∈D,u∈A,‖u‖A=1

(
1
|I|

∫
I

‖(B(t) −mIB)u‖2
Adt)

1/2 <∞(35)

and

γl,A(B) = sup
I∈D,v∈A,‖v‖A=1

(
1
|I|

∫
I

‖v(B(t) −mIB)‖2
Adt)

1/2 <∞.(36)

The norm ‖B‖BMOd
norm(T,A) = γr,A(B) + γl,A(B).

Definition 4.6. Let A be an operator ideal and let B : T → L(H) such that
vB(t)u ∈ L2(T,A) for any u, v ∈ A. We say that B ∈ WBMOdA(T,L(H)) ,
if

γA(B) = sup
I∈D,u,v∈A,‖v‖=‖u‖A=1

(
1
|I|

∫
I

‖v(B(t) −mIB)u‖2
Adt)

1/2 <∞.(37)

Of course for A = H (see Proposition 4.1), one has

BMOso,H(T,L(H)) = BMOso(T,L(H)),

WBMOd
H(T,L(H) = WBMOd(T,L(H).
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It is also elementary to show

BMOd
norm(T,A) ⊆ BMOso,A(T,L(H)) ⊆ WBMOd

A(T,L(H)).

Although for A = H it was shown (see [BPo3]) that the inclusions are strict,
however for A = L(H) one obviously has

BMOd
norm(T,L(H)) = BMOso,L(H)(T,L(H)) = WBMOd

L(H)(T,L(H)).

Let us study the situation for A = S1.

Proposition 4.7.
(i) BMOso,S1(T,L(H)) = BMOso(T,L(H)).
(ii) WBMOd

S1(T,L(H)) = WBMOd(T,L(H)).

Proof. (i) Let B ∈ BMOso,S1(T,L(H)). Take u = e ⊗ h with ‖e‖ = ‖h‖ = 1 and
observe that (B(t)−mIB)u = (B(t)−mIB)e⊗h and u(B(t)−mIB) = e⊗(B∗(t)−
mIB

∗)h. Hence ‖(B(t)−mIB)u‖S1 = ‖(B(t)−mIB)e‖ and ‖u(B(t)−mIB)‖S1 =
‖(B∗(t) −mIB

∗)h‖. This implies that BMOso,S1(T,L(H)) ⊆ BMOso(T,L(H)).
Conversely, let B ∈ BMOso(T,L(H) and let u =

∑∞
k=1 λkek ⊗ hk where∑∞

k=1 |λk| <∞ and ‖ek‖ = ‖hk‖ = 1. Now

‖(B(t) −mIB)u‖S1 = ‖
∞∑
k=1

λk(B(t) −mIB)ek ⊗ hk‖S1

≤
∞∑
k=1

|λk|‖(B(t) −mIB)ek‖

Then, for I ∈ D and u ∈ S1, one gets

1
|I|

∫
I

‖(B(t) −mIB)u‖S1dt ≤
∞∑
k=1

|λk|
1
|I|

∫
I

‖(B(t) −mIB)ek‖dt

≤
∞∑
k=1

|λk|‖B‖BMOso

Hence using John-Nirenberg’s lemma one gets γr,A(B) ≤ ‖u‖S1‖B‖BMOso . Sim-
ilarly one obtains γl,A(B) ≤ ‖u‖S1‖B‖BMOso .

(ii) Note that for ‖e‖ = ‖h‖ = ‖e′‖ = ‖h′‖ = 1, (e⊗ h)(B(t) −mIB)(e′ ⊗ h′) =
〈h, (B(t)−mIB)e′〉e⊗ h′ . Hence ‖(e⊗ h)(B(t)−mIB)(e′ ⊗ h′)‖S1 = |〈h, (B(t)−
mIB)e′〉. Now similar arguments to the ones used in (i) allow to get the result.

Let F00(A) denote the subspace of A-valued functions on T with finite formal
Haar expansion (we keep the notation F00 in the case A = L(H)) and write L2

0(T,A)
the closure of F00(A) in L2(T,A).

Definition 4.8. Let (ΦI)I∈D ⊂ L2(T,L(H)) be a sequence of operators. It is said
to be an A-Haar multiplier if there exists C > 0 such that

‖
∑
I∈D

ΦIFIhI‖L2(T,A) ≤ C‖
∑
I∈D

FIhI‖L2(T,A)

for any F ∈ F00(A).
We write ‖(ΦI)I∈D‖mult,A for the norm of the extension of the operator to

L2
0(T,A).
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Definition 4.9. Let B ∈ L2(T,L(H)). We say that B ∈ BMOmultA(T,A) if
(PIB)I∈D defines a A-Haar multiplier and we write

‖B‖BMOmult,A = ‖(PIB)I∈D‖mult,A.

It was shown in [BPo3] that BMOd
norm(T,L(H)) � BMOmult(T,L(H)). Now one

has the following

Proposition 4.10. BMOmult,L(H) ⊆ BMOd
norm(T,L(H)).

Proof. Let B ∈ BMOmult,L(H) . Take F = IhJ for fixed J ∈ D. Observe that

‖
∑
I∈D

PI(B)FIhI‖L2
0(L(H)) = ‖PJ(B)hJ‖L2

0(L(H))

=
1

|J |1/2 ‖PJ(B)‖L2(L(H))

≤ ‖B‖BMOmultL(H)
.

Definition 4.11. Let B ∈ L2(T,L(H)). We define the A-paraproduct with symbol
B by

πA
B : F00(A) → F00(A)

given by
F =

∑
I∈D

FIhI �→
∑
I∈D

BImIFhI ,

where BImIF stands for the composition of operators.

Definition 4.12. Let B ∈ L2(T,L(H)). We say that B ∈ BMOpara,A (T,L(H)) if
πA
B extends to a bounded operator from L2

0(T,A) to L2
0(T,A).

We write
‖B‖BMOpara,A = ‖πA

B‖L2
0(T,A)→L2

0(T,A),

Theorem 4.13. BMOpara,L(H) ⊆ BMOd
norm(T,L(H)). Moreover

‖B‖BMOd
norm(L(H)) ≤

√
2√

2 − 1
‖B‖BMOpara,L(H)

Proof. Applying the assumption on functions F = (e⊗h)φ for fixed ‖e‖ = ‖h‖ = 1
and ‖φ‖L2(T) = 1, one easily obtains that ‖B‖WBMOd ≤ ‖πL(H)

B ‖. In particular
‖BJ‖ ≤ ‖πL(H)

B ‖|J |1/2 for all J ∈ D.
Consider F (t) = IχJ(t) for some J ∈ D where I stands for the identity operator.

Now

π
L(H)
B (F ) =

∑
I⊆J

BIhI + |J |
∑
J⊂I

BI
|I| hI = PJ(B) +

∑
I=2kJ,k≥1

BI
2k
hI .

Clearly

‖
∑

I=2kJ,k≥1

BI
2k
hI‖L2(L(H)) ≤

∑
I=2kJ,k≥1

‖BI‖
2k

≤

≤ |J |1/2‖πL(H)
B ‖

∑
k≥1

2−k/2 ≤ 1√
2 − 1

‖πL(H)
B ‖|J |1/2.
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Therefore

‖PJ(B)‖L2(L(H)) ≤ ‖πL(H)
B ‖ +

1√
2 − 1

‖B‖WBMOd |J |1/2 ≤
√

2√
2 − 1

‖πL(H)
B ‖|J |1/2.

Thus the proof is complete.

Definition 4.14. Let B ∈ L2(T,L(H)). We can define

∆A
B : F00(A) → L2(T,A)

given by

F =
∑
I∈D

FIhI �→
∑
I∈D

BIFI
χI
|I| .

Let us denote ΛA
B = πA

B + ∆A
B.

We also define
ΓA
B : F00(A) → F00(A)

given by

F =
∑
I∈D

FIhI �→
∑
I∈D

BI
|I|1/2FIhI .

Remark 4.15. Clearly if ΓA
B is bounded on L2(T,A) then sup‖u‖A=1‖BIu‖ ≤

C|I|1/2.
For A = H one has ΓA

B is bounded if and only if ‖BI‖ ≤ C|I|1/2.

Proposition 4.16. B ∈ BMOmultA(T,L(H)) if and only if ΛA
B extends to a

bounded operator on L2
0(T,A). Moreover

‖B‖BMOmult,A = ‖ΛA
B‖L2

0(T,A)→L2(T,A).

Proof. It follows from the formula

ΛA
BF = BF −

∑
I∈D

(mIB)FIhI =
∑
I∈D

(PIB)FIhI .(38)

We observe that the boundedness of ∆A
B on L2

0(T,A) can be pushed to
BMOd

norm(T,A).

Proposition 4.17.

‖∆A
B‖BMOd

norm(T,A)→BMOd
norm(T,A) ≤ 2‖∆A

B‖L2
0(T,A)→L2

0(T,A).(39)

Proof. Assume ∆A
B is bounded on L2

0(T,A). Let F ∈ BMOd
norm(T,A) of norm 1,

that is PIF ∈ L2(T,L(H)) with norm bounded by |I|1/2.
It is not difficult to see that ‖PI∆A

B(F )‖L2(T,A) = ‖PI∆A
B(PIF )‖L2(T,A).

Since PIG = (G−mIG)χI then we have

‖PI∆A
B(PIF )‖L2(T,A) ≤ 2‖∆A

B(PIF )‖L2(T,A) ≤ 2‖∆A
B‖L2

0(T,A)→L2
0(T,A)|I|1/2.

Hence one gets the desired estimate.

Definition 4.18. We write ∆ : F00 ×F00 → L2(T,L(H)) for the map

∆(B,F ) = ∆L(H)
B∗ (F ) =

∑
I∈D

B∗
IFI

χI
|I| .
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And we denote Γ : F00 ×F00 → F00 given by

Γ(B,F ) =
∑
I∈D

B∗
IFI

|I|1/2 hI .

Of course Γ(B,F ) = ΓL(H)
B∗ (F ).

In particular, the “dyadic sweep” of B ∈ F00 is given by

SB =
∑
I∈D

χI
|I|B

∗
IBI = ∆L(H)

B∗ (B) = ∆(B,B).(40)

Let us finish by giving the formulation of the main connection between BMOpara

and BMOmult (see [BPo3]) in the new situation.
Next result is the extension of the similar one shown in [BPo3], and the proof

presented here is different from the one given there for A = H.

Theorem 4.19. Let B,F ∈ F00. Then

∆A
F π

A
B = ΛA

∆(F∗,B) − ΓA
Γ(F,B).

Proof.

∆A
F π

A
B (G) = ∆A

F (
∑
I∈D

BImI(G)hI)

=
∑
I∈D

FIBImI(G)
χI
|I|

=
∑
I∈D

FIBI
∑
I�J

GJhJ
χI
|I|

=
∑
J∈D

(
∑
I�J

FIBI
χI
|I| )GJhJ

=
∑
J∈D

(
∑
I⊆J

FIBI
χI
|I| )GJhJ −

∑
J∈D

FJBJ
|J | GJhJ

= ΛA
∆(F∗,B)(G) − ΓA

Γ(F∗,B)(G).

Corollary 4.20. Let B ∈ F00. Then

∆L(H)
B∗ π

L(H)
B = ΛL(H)

SB
− ΓL(H)

B′

where B′ = Γ(B,B) =
∑

I∈D
B∗

IBI

|I|1/2 hI .

The author thanks T. Hytonen for pointing out that Proposition 4.17 holds for
any ideal of operators.
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