On functions of integrable mean oscillation.
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Abstract

Given f € LY(T) we denote by wpmo(f) and wp,(f) the moduli of
mean and harmonic oscillation given by

1 i do
wao D)= s 7 [ —mi() | 5

o<|1|<t
where I C T is an interval, \I | stands for the normalized length of I

and my(f /f Ze — and
27

WD) = sw [ 17" = P | PG

1-t<|z|<1

where and P,(e?) and P(f) stand for the Poisson kernel and the

Poisson integral of f respectively. .
It is shown that for each 1 < p < oo there exists C}, > 0 such that

[ wno 0% < [ <, [ iy

1 Introduction.

Let us denote by A the open unit disc {z € C : | z |< 1} and by T the
unit circle. Throughout the paper [ C T is an interval |I| stands for the

normalized length of I and my(f ‘ T /f #y_—. Given z € A\ {0}, we

denote by I, the open interval in T centered at ’—| and | I, |=1—| z | .
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and for an interval I C T and A <| I |7! we write Al for the interval with
the same center as I but length A\ | I | .

We wite P()() = [ FePNS for | 2] < Land Pe?) =
T

R( }jjji’z )= |1:e‘fli29|2 stands for the Poisson kernel. We denote by T} f(e?) =
f (€% the translation operator and by P,(f)(e?) = P(f)(re®) for 0 < r <
1.

A function f is said to have bounded mean oscillation, in short f € BMO
if )

i0
. = SuUp —— e’y —m — < o0.
11l =sup 7 [ 10 = mit) | 52

We write || f||zao =| f(0) |+ £
If f € LYT) and U = P[f] then we say that f € BMOH if

0, d0
£l = sup [ 1767 = PO | PG < .

We write || f|| saron =| P(f)(0) | +[f |«
It is not difficult to prove (see [6]) that f € BMO if and only if f €

BMOH with equivalent norms.
Let f € L}(T) and 0 < t < 1. We define the modulus of mean oscillation
of f at the point ¢ as

do
Wino t) = su ’9 -m —.
(0= s o 1 = min 15
Similarly we define the modulus of harmonic oscillation of f at the point
t as

; 0 d0
w0 = sw_ [ ] e = PN | P
1-t<|z|<1 T
With this notation out of the way we have that f € BMO if and only if
Wino(f)(1) < oo or if and only if wp,(f)(1) < 0.
A function f is said to have vanishing mean oscillation, in short f &

VMO, it
do

1 ,.
i o [ = i) 157 =0

This is a closed subspace of BM O, which can be characterized in many
ways (see [7],[16] or [20]).



Theorem 1.1 Let f € BMO. The following statements are equivalent :
(i) f € VMO.

(i) tEgﬁ IT2f = fllBmo = 0.

(i) lim, 1 || P(f) — fllBmo = 0.

(iv) f belongs to the closure of C(T) in BMO.

(v) limy;_o+ we(f)(t) = 0.

(vi) limy o+ wpo(f)(t) = 0.

It is also well-known that, using John-Nirenberg’ lemma (see [6]), if 1 <
p < oo f e BMO if and only if

1 ” de
sup —— e’)—m P— < o0
sup [ 1) = i) P
or, equivalently,

de

sup [ | £ = PG PP

|z|<1

Spaces of functions where wy,,,(f)(t) = O(p(t)) for a fixed function p with
certain properties have been considered by different authors, usually denoted
by BMO(p) (see [9], [18], [19]).

Our aim will be to analyze spaces where we do not know the function p
but we do know its behaviour at the origin in terms of certain integrability
conditions. Namely for 1 < p < oo, we will denote by MOP(T) and HOP(T)
the spaces of integrable functions such that fol [Wno(f)()PL < oo and

t
fol [wro(f)(1)]PL < oo respectively.
Our main result establishes that MOP(T) = HOP(T) with equivalent
norms.
The paper is divided into three sections. The first one contains the defini-
tions and properties of both modulus. The second one is devoted to introduce
MOP(T) and prove some of its properties. Finally we introduce HOP(T) and

show that coincides with M OP(T).

2 Mean and harmonic oscillation.

Definition 2.1 Let f € LY(T), I C T an interval and t € (0,1]. We define
the modulus of mean oscillation of f at the point t as

= Su L Gie —m ﬁ
ool )0 = swp = [ 11 = milr) | 5

0<|I|<t 2
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Remark 2.1 I[f0 <t <s<1 then

o 1)(8) < ol £)(5) < maxfus()(0), ALy, 0
This follows from the following estimate
1 ; ag 2
s [ = miy 1 5 <

In particular, f € BMO if and only if w,.(f)(t) < oo for some (or for
all) t < 1.

Let us now prove the following useful lemma.

Lemma 2.2 Let f € LYT). If {I,} be a sequence of intervals such that
lim,, o I, = I for some interval I with |I| > 0 then

1 do 1 , do
52 = 1 e = 15

"*‘X’U ’ In

| f(e”) = mu,(f)

PROOF. Let us first estimate

1 6 10 do
o e =m0 15 = [ = min 1 5
1 0 df
< | = ) | o+ s, () = ()
| I, | J1, 27
1 0 df
- o [ —min 1 5
Notice that v(A) = [, f(e?)2 and v;(A) = [, | f(€?) —m;(f) | £ are
a complex and a ﬁmte measure respectively. Hence lim,,_ y([ ) = y(I )
lim,, o v;(1,) = vi(I) and lim,, . | I, |=| I |. Therefore the result follows
passing to the limit. ([l

Proposition 2.3 If f € BMO then wy,(f) is increasing and continuous in
(0,1].



PROOF. Obviously the modulus is increasing.
Let 0 < ty < 1 and let us prove that it is left continuous at t5. Given
e >0 we find I, C T such that 0 <| I, |< o and

1

’ [tO ’ Iy,

Wino([f)(t0) < | () —mp, (f) | 5=+

Let (¢,) be a sequence such that ¢, <ty for all n € N and converges to t.
If | I, |= to, we can find I,, C I, such that lim,_, I,, = I;,. Hence

wmo(f) (to) - wmo(f) (tn> <
! ; o1 7, 0 .
< m It0|f<€0)_mlt0(f)‘§ |] | Inlf( 9) mln(f)|%—|—§

Now use Lemma 2.2 to get lim,, o0 Wino(f)(to) — Wino(f)(tn) = 0.

If | Iy, |< to there exists ng such that | I, |< t, for n > ny. Hence
Wino(f)(t0) — Wino(f)(tn) < § for n > ny.

To see that it is right continuous at o, we shall argue as follows: Let (¢,)
be a sequence such that t,, > ty for all n € N and converges to t,. We shall
find a subsequence (t,,) such that limy_,cc Wo(f)(tn,) = Wmo(f)(to)-

Given € > 0 we find I,, C T such that 0 <| I,, |< ¢, and

1 0 do

Wio(f)(tn) <

Let F ={n e N:| I, |> to}. If F is finite then | I,, |< ¢, for n > ng and

Wino(f)(tn) — Wimo(f)(to) < € for n > ny.

Without lost of generality we assume | I, |> t, for all n € N.
Call Iy = liminf [,,. It is easy to see that Iy is an interval and |Iy| = to.
Take a subsequence ny such that (1,,,) converges to I,. We have

1 do
Wino(f)(tny) — Wino(f) (o) < Wino(f)(tny) — | f(e 26) mi(f) | 5= <
| IQ | 2m
1 , do 1 . deo
< ey —m — — ey —my, ——i—(—:
_|]nk| Ink|f< ) Ink(f)‘2ﬂ_ |IO| Io|f( ) I<)|
Applying Lemma 2.2 the proof is completed. 0
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Remark 2.2 Let f € BMO and take a(f) = limy .o+ wmo(f)(t). Hence
f € VMO if and only if a(f) = 0.

Remark 2.3 One can define other moduli as

i [ [ - e 15 )

W ()(E) = sup (|

1=
@mo(f)()—iug(lgf(|l|/|f ¢ |—)>
Clearly one gets
Wino (f)(t) < Who(f)(t) < 2Wio(f)(2) (2)
and
Wino(f) () < Wino(f)(£) < 2Won (f)(2). (3)
Remark 2.4 If woo(f)(t) = ) EIIJEM |f (") — f(e")| then (2) shows that
Wino () (1) < weo(f)(1). (4)

In particular if f € C(T) then f € VMO.

Definition 2.4 Let f € LY(T) and 0 < t < 1, we define the harmonic
oscillation of f at the point t as

do

O = s [ = PR | PO

1-t<|z|<1

Of course we can also define

Tl£)0) = st [ | e~ e| P0G

1-t<|z|<1 €

Easily one gets

Who(f)(t) < who(f)(t) < 2wno(f)(2). (5)

Let us collect several known facts to be used later on.
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Lemma 2.5 There exist constants 0 < C,Cy, Cy, (3 < oo such that

(i)1—| 2 |<|e? —2|<C (1—|z]), e?el, andzeA.

(ii) C1ﬁ < P,(0) < C’Qﬁ e eI, and z € A.

(iii) iy < Po(0) < Cagrpy , € € 2PLN\ 2L ke (1,2, N +1}
where N = [log, ﬁ} and z € A.

PROOF. All the statements follow from the following estimates

. . z
(1= [z) < e — 2| < e = =]+ (1 = |2])

2]

and . . .
6 — 21 < 1 = 2]+ (1 J2]).

E
O

Proposition 2.6 If f € LY(T) and 0 <t < 1 then wy(f) () < wpo(f)(¢).
PROOF. Let us take I C T interval such that | I |[<t. Consider z € A for

which I = I,. From | I, |[=1—| z |[<twehave 1 —t <| z |[< 1.
Using (ii) in Lemma 2.5 we have

ﬁ/j | f(e) —mu(f) | % < |]1Z ) | £() = P(f)(2) | %
+ [mu(f) = P(f)(2)]
<

o ([ 15 - Py
< C PO

Now taking supremum over all intervals we get wpo(f)(t) < C wpo(f)(t).0



3 Integrable mean oscillation.

Definition 3.1 Let 1 < p < oo. A function f € L'(T) is said to have
modulus of mean oscillation p-integrable, in short f € MOP(T), if

It is elementary to see that defining

o = Ul + ([ oD@

one gets a normed space.
Remark 3.1 Since wp,,(f) is increasing then

(log2>2wmo(f>p(2ik) < /0 [wmo(t)(t)]p% < (logQ)Zwmo(f)p(Q—lk).

Remark 3.2 From Remark 5.1 we have that
MOP(T) € MOYT) (1<p<qg<o0).
Remark 3.3 If Lip,(T) stand for functions f such that

wo(f)(t) = sup |f(e”) = f(e)] < Ct°

0,p€l,|I|<t

then Remark 2.4 implies that Lip,(T) C MOY(T) for any 0 < « .

Lemma 3.2 If f € MOP(T) and0 < s < 1 then wono(£)(s) < || fllyor (log) 7.

PROOF. Let 0<s < 1. Since wp(f)(t) is increasing then

1

wnal0P05) o5 < [ wn70OF

— 1f | a0



Corollary 3.3 MO"(T) ¢ VMO. Moreover | f|lsmo < C ||fllyor-

PROOF. Clearly Lemma 3.2 gives that lim, g+ wpo(f)(s) = 0 for f €
MOP(T).
Use (1) and Lemma 3.2 to get s € (0, 1)

2 1._
o)1) < | fllor max{ 2, (log )7}
Take s, the solution of the equation s? = 2P log(1/s) and C' = 2/s,,. O

Theorem 3.4 ( MO"(T), ||.||y;or) is a Banach space.

PROOF. We only show the completeness. Let {f,} be a Cauchy sequence
in MO"(T). In particular, there exists f € BMO such that {f,} is con-
verging to f.

Let | I |<t, 0<t <1 Usingthat f, — f en LY(T) we get that
my(fn) — mr(f) and that there exists (m,, ) such that f,,, — f a.e.

Now

do

2

57¢|nW%—fw%—mmn—ﬁ

1 A . do
1 . ‘ do
= ) = () = i = F) |
1 . . de
< hm]flnfm/j| fn(ele)_fmk(ew)_ml(fn_fmk) | %

< limkinf Wino(fro = fimy ) (2)-
Therefore
wmo(fn - f)(t) S hmklnf wmo(fn - fmk)(t)

Hence

[ imintlun(f, — fa)OP
0

t
dt

S hmklnf/o [me(fn - fmk)(t)]p?

[ it = 0%

IN

9



Finally, using that f, is a Cauchy sequence we get lim,, ... || f — f||xmor =0
and that f € MOP. O
Let us show that the spaces share some properties of BMO.

Proposition 3.5 Si fe MO"(T) = | f| € MO"(T).
PROOF. Let te (0,1) and I C T with | I|<¢t. Then

LN = 015 < [ =m0 11 g
ma171) — ()]

o [ 1= 1) 1157
2 i — ()1
1 1 =min) 1 5

This shows that w(| f])(t) < 2 wme(f)(t) and the proof is completed. [

IN +

Theorem 3.6 Let f € MO"(T). Then lim, o+ [|Tsf — fll ;00 = 0.

PROOF. Since f € VMO we know that lim, o+ | Tsf — f|lzrmo = 0.
Note that wp,(Tsf — f)(t) < ||Tsf — fllpmo for all 0 <t < 1.
On the other hand

T = DO = s [0 = D) =mi(nf = |

<t

, do
< sup ﬁ J T = mi(rp) 5

T|<t
do
+  sup — / f(e®y —mp(f)] =
\I|<t|]| Y )|27T
= 2 wmo
The Lebesgue dominated convergence theorem gives lim+ \Tsf—fllysor = 0.
s—0

O
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4 Integrable harmonic oscillation.

Definition 4.1 Let 1 < p < oo. A function f € L'(T) is said to have
modulus of harmonic oscillation p-integrable, in short f € HOP(T), if

Jdi

[ twnatnorS <oe.

As above, defining

lior = Il + ([ Lot OP)"

one gets a normed space.

Theorem 4.2 Let 1 < p < oo. Then MOP(T) = HOP(T) with equivalent
norms.

PROOF. HOP(T) C MOP(T) follows from Proposition 2.6.
We first recall the following elementary estimate: If I, J are intervals in
T such that I C J then

| ma(f) = mi(f) | < % wnol )| T ). (6)

Assume now that f € MOP(T). Let us show that f € HOP(T) and

[fllzor < C || fllason-

Take t € (0,1] and z € A with 1 —¢ <| z |< 1. Consider now the
interval I = I, which gives | I, |= 1— | z |< t. Let N = [log, 1] and
Iy (k=0,1,--- ,N+1) be defined by I, = 2*I..
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Using (iii) Lemma 2.5 we have

[ 15 )| PO
< /T!fe’e—mz \z()%
1 [ = mi )P g
< 2 [ 15 - mil) | PO,

C ([ 150 = mth) | P0)5
— df

¥ ;/}k\lkl|f<e”> <>|P<>2ﬂ>

19 hadl

i o o
+ ,;4’“|I| Wﬂ!f( ) =mu(f) 15

N+1
o (wma(f)(t) + 22k|jk|/ | (") m1(f)|§>

IA

IN

IN
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On the other hand from ( 6)

1 6 ﬁ
|]k|[k|f( ) —mu(f) 15 <
k
< g ) e (3 (0) = ) =) o
1 . df i
Sl | F(e") =mi ()] 5 + Z\mrj(f)—mfj ()
1 2. d9 Y
S . | F(e") =mi ()] 5 + ; 7 |wmo(f)(\ I; ])
S wmo ‘Ik + Zzwmo ‘I ’
< (14 2k)wno(f)(] Ik I)
Combining both estimates one gets
df
|11 =P | R0y
N+1 k
< c(wmo<f><t>+2 2 (D 1 ).
k=1

Taking supremum over 1 — ¢ <| z |< 1 and using | I |= 2% | T |< 2% we
obtain

N0 < € (wnNW) + Y L w5

where N = N, = [log, 1]
For 1 < p we apply Holder’s inequality to obtain

Ne+1

wo(f) () < C( Winot Py Z 1+2k

[wnol £ (2.
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Now integrating, and taking into account that 1 < k < N;+1 = [log, %H—l
is equivalent to 0 < t < 27% we get

t ok

[wanord < ¢ [Tumoors +c [ 5 S ey

o £) 0P

IN

< (1+2k)p [*F
C o + Y LR |
k=1 2 0
= (1+2k) [ dt
< Clflor + €S2 [ unnnord
k=1
< CUflon

Putting together all the estimates we have the result. O
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