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Abstract

Given f ∈ L1(T) we denote by wmo(f) and who(f) the moduli of
mean and harmonic oscillation given by

wmo(f)(t) = sup
0<|I|≤t

1
| I |

∫
I
| f(eiθ) − mI(f) | dθ

2π

where I ⊆ T is an interval, |I| stands for the normalized length of I

and mI(f) =
1

| I |

∫
I
f(eiθ)

dθ

2π
and

who(f)(t) = sup
1−t≤|z|<1

∫
T

| f(eiθ) − P (f)(z) | Pz(eiθ)
dθ

2π

where and Pz(eiθ) and P (f) stand for the Poisson kernel and the
Poisson integral of f respectively. .

It is shown that for each 1 ≤ p < ∞ there exists Cp > 0 such that∫ 1

0
[wmo(f)(t)]p

dt

t
≤

∫ 1

0
[who(f)(t)]p

dt

t
≤ Cp

∫ 1

0
[wmo(f)(t)]p

dt

t
.

1 Introduction.

Let us denote by ∆ the open unit disc {z ∈ C : | z |< 1} and by T the
unit circle. Throughout the paper I ⊆ T is an interval, |I| stands for the

normalized length of I and mI(f) =
1

| I |

∫
I

f(eiθ)
dθ

2π
. Given z ∈ ∆ \ {0}, we

denote by Iz the open interval in T centered at
z

| z | and | Iz |= 1− | z | .
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and for an interval I ⊂ T and λ ≤| I |−1 we write λI for the interval with
the same center as I but length λ | I | .

We write P (f)(z) =

∫
T

f(eiθ)Pz(e
iθ)

dθ

2π
for | z | < 1 and Pz(e

iθ) =

�(1+ze−iθ

1−ze−iθ ) = 1−|z|2
|1−ze−iθ|2 stands for the Poisson kernel. We denote by Ttf(eiθ) =

f(ei(θ−t)) the translation operator and by Pr(f)(eiθ) = P (f)(reiθ) for 0 < r <
1.

A function f is said to have bounded mean oscillation, in short f ∈ BMO
if

‖f‖∗ = sup
I⊆T

1

| I |

∫
I

| f(eiθ) −mI(f) | dθ
2π

< ∞.

We write ‖f‖BMO =| f̂(0) | +‖f‖∗.
If f ∈ L1(T) and U = P [f ] then we say that f ∈ BMOH if

‖f‖∗∗ = sup
z∈∆

∫
T

| f(eiθ) − P (f)(z) | Pz(eiθ)
dθ

2π
< ∞.

We write ‖f‖BMOH =| P (f)(0) | +‖f‖∗∗.
It is not difficult to prove (see [6]) that f ∈ BMO if and only if f ∈

BMOH with equivalent norms.
Let f ∈ L1(T) and 0 < t ≤ 1. We define the modulus of mean oscillation

of f at the point t as

wmo(f)(t) = sup
0<|I|≤t

1

| I |

∫
I

| f(eiθ) −mI(f) | dθ
2π

.

Similarly we define the modulus of harmonic oscillation of f at the point
t as

who(f)(t) = sup
1−t≤|z|<1

∫
T

| f(eiθ) − P (f)(z) | Pz(eiθ)
dθ

2π
.

With this notation out of the way we have that f ∈ BMO if and only if
wmo(f)(1) < ∞ or if and only if who(f)(1) < ∞.

A function f is said to have vanishing mean oscillation, in short f ∈
VMO, if

lim
|I|→0

1

| I |

∫
I

| f(eiθ) −mI(f) | dθ
2π

= 0.

This is a closed subspace of BMO, which can be characterized in many
ways (see [7],[16] or [20]).
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Theorem 1.1 Let f ∈ BMO. The following statements are equivalent :
(i) f ∈ VMO.
(ii) lim

t→0+
‖Ttf − f‖BMO = 0.

(iii) limr→1 ‖Pr(f) − f‖BMO = 0.
(iv) f belongs to the closure of C(T) in BMO.
(v) limt→0+ wmo(f)(t) = 0.
(vi) limt→0+ who(f)(t) = 0.

It is also well-known that, using John-Nirenberg’ lemma (see [6]), if 1 ≤
p < ∞ f ∈ BMO if and only if

sup
I⊆T

1

| I |

∫
I

| f(eiθ) −mI(f) |p dθ

2π
< ∞

or, equivalently,

sup
|z|<1

∫
T

| f(eiθ) − P (f)(z) |p Pz(eiθ)
dθ

2π
.

Spaces of functions where wmo(f)(t) = O(ρ(t)) for a fixed function ρ with
certain properties have been considered by different authors, usually denoted
by BMO(ρ) (see [9], [18], [19]).

Our aim will be to analyze spaces where we do not know the function ρ
but we do know its behaviour at the origin in terms of certain integrability
conditions. Namely for 1 ≤ p < ∞, we will denote by MOp(T) and HOp(T)

the spaces of integrable functions such that
∫ 1

0
[wmo(f)(t)]p dt

t
< ∞ and∫ 1

0
[who(f)(t)]p dt

t
< ∞ respectively.

Our main result establishes that MOp(T) = HOp(T) with equivalent
norms.

The paper is divided into three sections. The first one contains the defini-
tions and properties of both modulus. The second one is devoted to introduce
MOp(T) and prove some of its properties. Finally we introduce HOp(T) and
show that coincides with MOp(T).

2 Mean and harmonic oscillation.

Definition 2.1 Let f ∈ L1(T), I ⊂ T an interval and t ∈ (0, 1]. We define
the modulus of mean oscillation of f at the point t as

wmo(f)(t) = sup
0<|I|≤t

1

| I |

∫
I

| f(eiθ) −mI(f) | dθ
2π

.
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Remark 2.1 If 0 < t ≤ s ≤ 1 then

wmo(f)(t) ≤ wmo(f)(s) ≤ max{wmo(f)(t),
2‖f‖1

t
}. (1)

This follows from the following estimate

sup
t<|I|≤s

1

| I |

∫
I

| f(eiθ) −mI(f) | dθ
2π

≤ 2

t
||f ||1.

In particular, f ∈ BMO if and only if wmo(f)(t) < ∞ for some (or for
all) t < 1.

Let us now prove the following useful lemma.

Lemma 2.2 Let f ∈ L1(T). If {In} be a sequence of intervals such that
limn→∞ In = I for some interval I with |I| > 0 then

lim
n→∞

1

| In |

∫
In

| f(eiθ) −mIn(f) | dθ
2π

=
1

| I |

∫
I

| f(eiθ) −mI(f) | dθ
2π

.

PROOF. Let us first estimate

1

| In |

∫
In

| f(eiθ) −mIn(f) | dθ
2π

− 1

| I |

∫
I

| f(eiθ) −mI(f) | dθ
2π

≤ 1

| In |

∫
In

| f(eiθ) −mI(f) | dθ
2π

| + |mIn(f) −mI(f)|

− 1

| I |

∫
I

| f(eiθ) −mI(f) | dθ
2π

.

Notice that ν(A) =
∫
A
f(eiθ) dθ

2π
and νI(A) =

∫
A
| f(eiθ) −mI(f) | dθ

2π
are

a complex and a finite measure respectively. Hence limn→∞ ν(In) = ν(I),
limn→∞ νI(In) = νI(I) and limn→∞ | In |=| I |. Therefore the result follows
passing to the limit. �

Proposition 2.3 If f ∈ BMO then wmo(f) is increasing and continuous in
(0, 1].
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PROOF. Obviously the modulus is increasing.
Let 0 < t0 ≤ 1 and let us prove that it is left continuous at t0. Given

ε > 0 we find It0 ⊂ T such that 0 <| It0 |≤ t0 and

wmo(f)(t0) ≤
1

| It0 |

∫
It0

| f(eiθ) −mIt0
(f) | dθ

2π
+

ε

2
.

Let (tn) be a sequence such that tn ≤ t0 for all n ∈ N and converges to t0.
If | It0 |= t0, we can find In ⊂ It0 such that limn→∞ In = It0 . Hence

wmo(f)(t0) − wmo(f)(tn) ≤

≤ 1

| It0 |

∫
It0

| f(eiθ) −mIt0
(f) | dθ

2π
− 1

| In |

∫
In

| f(eiθ) −mIn(f) | dθ
2π

+
ε

2
.

Now use Lemma 2.2 to get limn→∞ wmo(f)(t0) − wmo(f)(tn) = 0.
If | It0 |< t0 there exists n0 such that | It0 |≤ tn for n ≥ n0. Hence

wmo(f)(t0) − wmo(f)(tn) <
ε
2

for n ≥ n0.
To see that it is right continuous at t0, we shall argue as follows: Let (tn)

be a sequence such that tn ≥ t0 for all n ∈ N and converges to t0. We shall
find a subsequence (tnk

) such that limk→∞ wmo(f)(tnk
) = wmo(f)(t0).

Given ε > 0 we find In ⊂ T such that 0 <| In |≤ tn and

wmo(f)(tn) ≤
1

| In |

∫
In

| f(eiθ) −mIn(f) | dθ
2π

+ ε.

Let F = {n ∈ N :| In |> t0}. If F is finite then | In |≤ t0 for n ≥ n0 and

wmo(f)(tn) − wmo(f)(t0) < ε for n ≥ n0.

Without lost of generality we assume | In |> t0 for all n ∈ N.
Call I0 = lim inf In. It is easy to see that I0 is an interval and |I0| = t0.

Take a subsequence nk such that (Ink
) converges to I0. We have

wmo(f)(tnk
) − wmo(f)(t0) ≤ wmo(f)(tnk

) − 1

| I0 |

∫
I0

| f(eiθ) −mI0(f) | dθ
2π

≤

≤ 1

| Ink
|

∫
Ink

| f(eiθ) −mInk
(f) | dθ

2π
− 1

| I0 |

∫
I0

| f(eiθ) −mI0(f) | dθ
2π

+ ε.

Applying Lemma 2.2 the proof is completed. �
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Remark 2.2 Let f ∈ BMO and take a(f) = limt→0+ wmo(f)(t). Hence
f ∈ VMO if and only if a(f) = 0.

Remark 2.3 One can define other moduli as

w′
mo(f)(t) = sup

|I|≤t

(
1

| I |2
∫
I

∫
I

| f(eiθ) − f(eiϕ) | dθ
2π

dϕ

2π

)
or

w̃mo(f)(t) = sup
|I|≤t

(
inf
c

(
1

| I |

∫
I

| f(eiθ) − c | dθ
2π

))
Clearly one gets

wmo(f)(t) ≤ w′
mo(f)(t) ≤ 2wmo(f)(t) (2)

and

w̃mo(f)(t) ≤ wmo(f)(t) ≤ 2w̃om(f)(t). (3)

Remark 2.4 If w∞(f)(t) = sup
θ,ϕ∈I,|I|≤t

|f(eiθ) − f(eiϕ)| then (2) shows that

wmo(f)(t) ≤ w∞(f)(t). (4)

In particular if f ∈ C(T) then f ∈ VMO.

Definition 2.4 Let f ∈ L1(T) and 0 < t ≤ 1, we define the harmonic
oscillation of f at the point t as

who(f)(t) = sup
1−t≤|z|<1

∫
T

| f(eiθ) − P (f)(z) | Pz(θ)
dθ

2π
.

Of course we can also define

w̃ho(f)(t) = sup
1−t≤|z|<1

inf
c

∫
T

| f(eiθ) − c | Pz(θ)
dθ

2π
.

Easily one gets

w̃ho(f)(t) ≤ who(f)(t) ≤ 2w̃ho(f)(t). (5)

Let us collect several known facts to be used later on.
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Lemma 2.5 There exist constants 0 < C,C1, C2, C3 < ∞ such that
(i) 1− | z |≤| eiθ − z |≤ C (1− | z |), eiθ ∈ Iz, and z ∈ ∆.
(ii) C1

1
|Iz | ≤ Pz(θ) ≤ C2

1
|Iz | , e

iθ ∈ Iz and z ∈ ∆.

(iii) 1
4k|Iz | ≤ Pz(θ) ≤ C3

1
4k|Iz | , eiθ ∈ 2kIz \ 2k−1Iz , k ∈ {1, 2, · · · , N + 1}

where N = [log2
1

|Iz | ] and z ∈ ∆.

PROOF. All the statements follow from the following estimates

(1 − |z|) ≤ |eiθ − z| ≤ |eiθ − z

|z| | + (1 − |z|)

and
|eiθ − z

|z| | ≤ |eiθ − z| + (1 − |z|).

�

Proposition 2.6 If f ∈ L1(T) and 0 < t ≤ 1 then wmo(f)(t) ≤ who(f)(t).

PROOF. Let us take I ⊆ T interval such that | I |≤ t. Consider z ∈ ∆ for
which I = Iz. From | Iz |= 1− | z |≤ t we have 1 − t ≤| z |< 1.

Using (ii) in Lemma 2.5 we have

1

| I |

∫
I

| f(eiθ) −mI(f) | dθ
2π

≤ 1

| Iz |

∫
Iz

| f(eiθ) − P (f)(z) | dθ
2π

+ |mI(f) − P (f)(z)|

≤ 2

| Iz |

∫
Iz

| f(eiθ) − P (f)(z) | dθ
2π

≤ C

(∫ π

−π
| f(eiθ) − P (f)(z) | Pz(θ)

dθ

2π

)
≤ C who(f)(t)

Now taking supremum over all intervals we get wmo(f)(t) ≤ C who(f)(t).�
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3 Integrable mean oscillation.

Definition 3.1 Let 1 ≤ p < ∞. A function f ∈ L1(T) is said to have
modulus of mean oscillation p-integrable, in short f ∈ MOp(T), if∫ 1

0

[wmo(f)(t)]p
dt

t
< ∞.

It is elementary to see that defining

‖f‖MOp = ‖f‖L1(T) +
( ∫ 1

0

[wmo(f)(t)]p
dt

t

)1/p

one gets a normed space.

Remark 3.1 Since wmo(f) is increasing then

(log 2)
∞∑
k=1

wmo(f)
p
(

1

2k
) ≤

∫ 1

0

[wmo(t)(t)]
pdt

t
≤ (log 2)

∞∑
k=0

wmo(f)
p
(

1

2k
).

Remark 3.2 From Remark 3.1 we have that

MOp(T) ⊆ MOq(T) (1 ≤ p ≤ q < ∞).

Remark 3.3 If Lipα(T) stand for functions f such that

w∞(f)(t) = sup
θ,ϕ∈I,|I|≤t

|f(eiθ) − f(eiϕ)| ≤ Ctα

then Remark 2.4 implies that Lipα(T) ⊂ MO1(T) for any 0 < α .

Lemma 3.2 If f ∈ MOp(T) and 0 < s < 1 then wmo(f)(s) ≤ ‖f‖MOp

(
log 1

s

)− 1
p .

PROOF. Let 0 < s < 1. Since wmo(f)(t) is increasing then

wmo(f)p(s) log
1

s
≤

∫ 1

s

wmo(f)p(t)
dt

t
≤ ‖f‖MOp .

�
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Corollary 3.3 MO
p
(T) ⊂ VMO. Moreover ‖f‖BMO ≤ C ‖f‖MOp .

PROOF. Clearly Lemma 3.2 gives that lims→0+ wmo(f)(s) = 0 for f ∈
MOp(T).

Use (1) and Lemma 3.2 to get s ∈ (0, 1)

wmo(f)(1) ≤ ‖f‖MOp max{2

s
, (log

1

s
)−1/p}.

Take sp the solution of the equation sp = 2p log(1/s) and C = 2/sp. �

Theorem 3.4 ( MO
p
(T), ‖.‖MOp) is a Banach space.

PROOF. We only show the completeness. Let {fn} be a Cauchy sequence
in MO

p
(T). In particular, there exists f ∈ BMO such that {fn} is con-

verging to f .
Let | I |≤ t, 0 < t ≤ 1. Using that fn → f en L1(T) we get that

mI(fn) → mI(f) and that there exists (mnk
) such that fmk

→ f a.e.
Now

1

| I |

∫
I

| fn(eiθ) − f(eiθ) −mI(fn − f) | dθ
2π

=
1

| I |

∫
I

| fn(eiθ) − lim
k

fmk
(eiθ) − lim

k
mI(fn − fmk

) | dθ
2π

=
1

| I |

∫
I

lim
k

| fn(eiθ) − fmk
(eiθ) −mI(fn − fmk

) | dθ
2π

≤ lim inf
k

1

| I |

∫
I

| fn(eiθ) − fmk
(eiθ) −mI(fn − fmk

) | dθ
2π

≤ lim inf
k

wmo(fn − fmk
)(t).

Therefore

wmo(fn − f)(t) ≤ lim inf
k

wmo(fn − fmk
)(t).

Hence∫ 1

0

[wmo(fn − f)(t)
dt

t
]p ≤

∫ 1

0

lim inf
k

[wmo(fn − fmk
)(t)]p

dt

t

≤ lim inf
k

∫ 1

0

[wmo(fn − fmk
)(t)]p

dt

t
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Finally, using that fn is a Cauchy sequence we get limn→∞ ‖fn − f‖MOp = 0
and that f ∈ MOp. �

Let us show that the spaces share some properties of BMO.

Proposition 3.5 Si f ∈ MO
p
(T) ⇒ | f | ∈ MO

p
(T).

PROOF. Let t ∈ (0, 1) and I ⊂ T with | I | ≤ t. Then

1

| I |

∫
I

| | f(eiθ) | −mI(| f |) | dθ
2π

≤ 1

| I |

∫
I

| | f(eiθ) | − | mI(f) | | dθ
2π

+ |mI(|f |) − |mI(f)||

≤ 2

| I |

∫
I

| | f(eiθ) | − | mI(f) | | dθ
2π

≤ 2

| I |

∫
I

| f(eiθ) −mI(f) | dθ
2π

This shows that wmo(| f |)(t) ≤ 2 wmo(f)(t) and the proof is completed. �

Theorem 3.6 Let f ∈ MO
p
(T). Then lims→0+ ‖Tsf − f‖MOp = 0.

PROOF. Since f ∈ VMO we know that lims→0+ ‖Tsf − f‖BMO = 0.
Note that wmo(Tsf − f)(t) ≤ ‖Tsf − f‖BMO for all 0 < t ≤ 1.
On the other hand

wmo(Tsf − f)(t) = sup
|I|≤t

1

| I |

∫
I

∣∣(Tsf − f)(eiθ) −mI(Tsf − f)
∣∣ dθ
2π

≤ sup
|I|≤t

1

| I |

∫
I

∣∣Tsf(eiθ) −mI(Tsf)
∣∣ dθ
2π

+ sup
|I|≤t

1

| I |

∫
I

∣∣f(eiθ) −mI(f)
∣∣ dθ
2π

= 2 wmo(f)(t)

The Lebesgue dominated convergence theorem gives lim
s→0+

‖Tsf−f‖MOp = 0.

�
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4 Integrable harmonic oscillation.

Definition 4.1 Let 1 ≤ p < ∞. A function f ∈ L1(T) is said to have
modulus of harmonic oscillation p-integrable, in short f ∈ HOp(T), if∫ 1

0

[who(f)(t)]p
dt

t
< ∞.

As above, defining

‖f‖HOp = ‖f‖L1(T) +
( ∫ 1

0

[who(f)(t)]p
dt

t

)1/p

one gets a normed space.

Theorem 4.2 Let 1 ≤ p < ∞. Then MOp(T) = HOp(T) with equivalent
norms.

PROOF. HOp(T) ⊆ MOp(T) follows from Proposition 2.6.
We first recall the following elementary estimate: If I, J are intervals in

T such that I ⊂ J then

| mJ(f) −mI(f) | ≤ | J |
| I | wmo(f)(| J |). (6)

Assume now that f ∈ MOp(T). Let us show that f ∈ HOp(T) and
‖f‖HOp ≤ C ‖f‖MOp .

Take t ∈ (0, 1] and z ∈ ∆ with 1 − t ≤| z |< 1. Consider now the
interval I = Iz, which gives | Iz |= 1− | z |≤ t. Let N = [log2

1
t
] and

Ik (k = 0, 1, · · · , N + 1) be defined by Ik = 2kIz.
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Using (iii) Lemma 2.5 we have∫
T

| f(eiθ) − P (f)(z) | Pz(θ)
dθ

2π

≤
∫

T

| f(eiθ) −mI(f) | Pz(θ)
dθ

2π

+ |
∫

T

(f(eiθ) −mI(f))Pz((e
iθ)

dθ

2π
|

≤ 2

∫
T

| f(eiθ) −mI(f) | Pz(θ)
dθ

2π

≤ C (

∫
I

| f(eiθ) −mI(f) | Pz(θ)
dθ

2π

+
N+1∑
k=1

∫
Ik\Ik−1

| f(eiθ) −mI(f) | Pz(θ)
dθ

2π
)

≤ C (
1

| I |

∫
I

| f(eiθ) −mI(f) | dθ
2π

+
N+1∑
k=1

1

4k | I |

∫
Ik\Ik−1

| f(eiθ) −mI(f) | dθ
2π

)

≤ C

(
wmo(f)(t) +

N+1∑
k=1

1

2k | Ik |

∫
Ik

| f(eiθ) −mI(f) | dθ
2π

)
.
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On the other hand from ( 6)

1

| Ik |

∫
Ik

| f(eiθ) −mI(f) | dθ
2π

≤

≤ 1

| Ik |

∫
Ik

| f(eiθ) + (
k∑
j=1

mIj(f) −mIj−1
(f)) −mIk(f) | dθ

2π

≤ 1

| Ik |

∫
Ik

| f(eiθ) −mIk(f) | dθ
2π

+
k∑
j=1

| mIj(f) −mIj−1
(f) |

≤ 1

| Ik |

∫
Ik

| f(eiθ) −mIk(f) | dθ
2π

+
k∑
j=1

| Ij |
| Ij−1 |

wmo(f)(| Ij |)

≤ wmo(f)(| Ik |) +
k∑
j=1

2 wmo(f)(| Ij |)

≤ (1 + 2k)wmo(f)(| Ik |).

Combining both estimates one gets∫
T

| f(eiθ) − P (f)(z) | Pz(θ)
dθ

2π

≤ C
(
wmo(f)(t) +

N+1∑
k=1

1 + 2k

2k
wmo(f)(| Ik |)

)
.

Taking supremum over 1 − t ≤| z |< 1 and using | Ik |= 2k | I |≤ 2kt we
obtain

who(f)(t) ≤ C
(
wmo(f)(t) +

Nt+1∑
k=1

1 + 2k

2k
wmo(f)(2kt)

)
where N = Nt = [log2

1
t
].

For 1 ≤ p we apply Hölder’s inequality to obtain

who(f)
p
(t) ≤ C

(
[wmo(t)(t)]

p +
Nt+1∑
k=1

(1 + 2k)p

2k
[wmo(f)(2kt)]p

)
.
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Now integrating, and taking into account that 1 ≤ k ≤ Nt+1 = [log2
1
t
]+1

is equivalent to 0 < t ≤ 2−k, we get∫ 1

0

[who(f)(t)]p
dt

t
≤ C

∫ 1

0

[wmo(t)(t)]
pdt

t
+ C

∫ 1

0

Nt+1∑
k=1

(1 + 2k)p

2k
[wmo(f)(2kt)]p

dt

t

≤ C ‖f‖pMOp + C
∞∑
k=1

(1 + 2k)p

2k

∫ 2−k

0

[wmo(f)(2kt)]p
dt

t

≤ C ‖f‖pMOp + C

∞∑
k=1

(1 + 2k)p

2k

∫ 1

0

[wmo(f)(t)]p
dt

t

≤ C ‖f‖pMOp .

Putting together all the estimates we have the result. �
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