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Abstract. We introduce a scale of Lorentz-BMO spaces BMOLp,q on the
bidisk, and show that these spaces do not coincide for different values of p.
Our main tool is a detailed analysis of Carleson’s construction in [C].

1. Introduction and notation

L. Carleson showed in [C] in an ingenious geometric construction that for each
N ∈ N, there exists a finite collection ΦN of dyadic rectangles in [0, 1]2 such that

1. the total area of all rectangles is 1, i. e.
∑

R∈ΦN
|R| = 1

2. the rectangles “intersect heavily”, |∪R∈ΦN
R| < C1

1
N

3. the rectangles are evenly distributed over the unit square in the sense that
a localized version of (1) holds, i. e. for each dyadic rectangle R, we have∑

R′∈ΦN ,R′⊆R |R′| ≤ C2|R|.
Here, C1 and C2 are absolute constants independent from N .

This construction was originally devised to show that the naive generalization of
the Carleson Embedding Theorem to two variables is not true. However, it contains
much more information. R. Fefferman used the construction to show that the dual
of the Hardy space H1(T2) does not coincide with the so-called rectangular BMO
space in two variables [Fef]. C. Sadosky and the second author used the Carleson
construction to give a new proof of the fact that the Carleson Embedding theorem
also does not extend to operator-valued measures (first proved in [NTV]), and to
show that Bonsall’s Theorem does not hold for little Hankel operators on the bidisk
[PS].

In this note, we introduce a scale of BMO-Lorentz spaces on the bitorus and
distinguish the spaces in this scale by a detailed analysis of the Carleson counterex-
ample.

This provides also a proof of the fact that for 1 ≤ p1 < p2 < ∞, the spaces
BMOd

rect,p1
and BMOd

rect,p2
are different (for an alternative proof, see [BP]).

Throughout the paper D denotes the set of dyadic intervals in the unit circle T.
We write R = D ×D for the dyadic rectangles in the bitorus T2, |I| for the length
of I and |R| for the area of R. (hI)I∈D stands for the Haar basis in L2(T) and
(hR)R∈R for the product Haar basis of L2(T2).

Here hI(t) = 1
|R|1/2 (χI+(t) − χI−(t)) for each dyadic interval I ∈ D, where I−

denotes the left half of I, and I+ denotes the right half of I. For each dyadic
rectangle R = I × J ∈ R, hR is defined by hR(s, t) = hI(s)hJ(t).
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For any f ∈ L2(T2), we use the notation fR = 〈f, hR〉 for the Haar coeffi-
cients of f , and mIf(s) = 1

|I|
∫

I
f(t, s)dt, mJf(s) = 1

|J|
∫

J
f(t, s)ds and mRf(t) =

1
|R|

∫
R
f(t, s)dtds for the averages in the first, second and both variables respectively.

We will use “≈” to denote equivalence of expressions.
Given a complex-valued measurable function f ∈ L2(T2), let µf denote the

distribution function of f . Here, µf (λ) = |Eλ| for λ > 0, where Eλ = {w ∈ T2 :
|f(w)| > λ}.

Furthermore, let f∗(t) = inf{λ : µf (λ) ≤ t} be the nonincreasing rearrangement
of f , and let f∗∗(t) = 1

t

∫ t

0
f∗(s)ds.

Now, given a measurable set Ω ⊆ T2 and 0 < p, q ≤ ∞, the Lorentz space Lp,q
Ω =

Lp,q(Ω, µΩ), where µΩ(A) = |A|
|Ω| is the normalized Lebesgue measure, consists of

those measurable functions f supported in Ω such that ‖f‖∗
Lp,q

Ω
< ∞, where

‖f‖∗Lp,q
Ω

=




(
q

p

∫ 1

0

t
q
p f∗(t)q dt

t

) 1
q

, 0 < p < ∞, 0 < q < ∞,

sup
t>0

t
1
p f∗(t) 0 < p ≤ ∞, q = ∞.

(1)

We write Lp,q for the Lorentz space over Lp,q
T2 .

The reader should be aware that ‖f‖∗
Lp,q

Ω
is in general not a norm on Lp,q

Ω .
Nevertheless, replacing f∗ by f∗∗ in (1) and writing ‖f‖Lp,q

Ω
= ‖f∗∗‖∗

Lp,q
Ω

, one
gets a norm on Lp,q

Ω for 1 < p ≤ ∞, 1 ≤ q ≤ ∞, which is equivalent to ‖f‖∗
Lp,q

Ω
(see

e. g. [SW]). The space Lp,p
Ω , for which we will write Lp

Ω, is then the ordinary Lp

space Lp(Ω, µΩ).
We write S[f ] for the dyadic square function of an integrable function f , S[f ] =

(
∑

R∈R
χR

|R| |fR|2)1/2. It is well-known that ‖S[f ]‖p ≈ ‖f‖p for 1 < p < ∞. Using
interpolation, one has also ‖S[f ]‖Lp,q ≈ ‖f‖Lp,q for 1 < p, q < ∞.

For each measurable set Ω ⊆ T2, let PΩ be the orthogonal projection on the
subspace spanned by the Haar functions hR′ , R′ ∈ R, R′ ⊆ Ω. In particular, for
each dyadic rectangle R ∈ R and for f =

∑
R′∈R hR′fR′ ∈ L2(T2), one has

PRf =
∑

R′∈R,R′⊆R

hR′fR′ .

It is easy to see that for R = I × J ∈ R,

PRf = (f −mIf −mJf +mI×Jf)χI×J .(2)

For 1 ≤ p < ∞, a function ϕ ∈ L2(T2) is said to belong to BMOd
rect,p, if

‖ϕ‖rect,p = sup
R∈R

‖PRϕ‖Lp
R
< ∞.

In contrast to the one-dimensional situation, functions in these spaces are not
necessarily in the so-called product BMO space BMOd

prod, the dual of the dyadic
Hardy space H1

d(T2), H1
d = {f ∈ L1(T2) : S[f ] ∈ L1(T2)}.

For p = 2, a continuous version of this fact was shown in [Fef]. In [BP], this was
shown for all 1 ≤ p < ∞. (For an overview of the theory of BMO spaces in two
variables and characterizations of the duals of H1

d(T2) and H1(T2) in terms of the
projections PΩ, see [Be], [Ch], [ChFef1], [ChFef2].)
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It was also shown in [BP] that the spaces BMOrect,p1 and BMOrect,p2 , again in
contrast to the one-dimensional situation, are different for different values of p1, p2

(for p1 = 2 and p2 = 4, this is contained in [Fef]).
Here we improve the results given in [BP] by considering the BMO spaces de-

fined by Lorentz space norms. We also give a new proof for the inequality of the
BMOd

rect,p spaces.
Now we introduce our scale of Lorentz-BMO spaces. Let BMOLp,q be the space

of all ϕ ∈ L2(T2) such that

‖ϕ‖BMOLp,q = sup
R∈R

‖PRϕ‖Lp,q
R

< ∞.

Certainly BMOLp,q ⊆ Lp,q(T2), since mI(f) = mI(PI×Tf) and mJ(f) =
mI(PT×Jf).

Note that for f ≥ 0 and supp(f) ⊆ Ω1 ⊆ Ω2,

‖f‖Lp,q
Ω1

=
( |Ω2|
|Ω1|

)1/p

‖f‖Lp,q
Ω2
.(3)

It is well-known that for 1 ≤ p1 < p2 ≤ ∞ and 1 ≤ q1, q2 ≤ ∞, we have
Lp2,q2 ⊆ Lp1,q1 , and the embedding is continuous.

Therefore for f ≥ 0, supp(f) ⊆ Ω and 1 ≤ p1 < p2 ≤ ∞, 1 ≤ q1, q2 ≤ ∞,

‖f‖Lp1,q1 ≤ Cp1,p2,q1,q2 |Ω|1/p1−1/p2‖f‖Lp2,q2 .(4)

Hence, we have for all R ∈ R and 1 ≤ p1 < p2 ≤ ∞, 1 ≤ q1, q2 ≤ ∞ that

‖PRf‖L
p1,q1
R

≤ ‖PRf‖L
p2,q2
R

.

This shows that BMOLp2,q2 ⊆ BMOLp1,q1 .
The aim of this note is to show that if 2 ≤ p1 < p2 < ∞ and 1 ≤ q1, q2 ≤ ∞,

then BMOLp2,q2 �= BMOLp1,q1 (see [Fef] and [BP] for the cases p1 = q1 = 2 and
p2 = q2 = 4 and p1 = q1 < p2 = q2 respectively). Namely we prove the following:

Theorem 1.1. Let 1 < p1 < p2 < ∞, and 1 ≤ q1, q2 ≤ ∞.
Then BMOLp1,q1 � Lp2,q2(T2).
In particular, BMOLp1,q1 �= BMOLp2,q2 .

As in the proof in [Fef], our proof here will be based on Carleson’s counterexample
in [C] and provide concrete counterexamples. We shall show that the functions
arising from Carleson’s counterexample have BMOLp,q -norm equivalent to Lp,q-
norm which easily leads to the desired result.

We first need to look at Carleson’s construction in some detail. In [C], for each
N ∈ N, a collection of dyadic rectangles ΦN ⊂ R is constructed such that

1.
∑

R∈ΦN
|R| = 1

2. |∪R∈ΦN
R| < C1

1
N

3. For each R ∈ R,
∑

R′∈ΦN ,R′⊆R |R′| ≤ C2|R|.
Here, C1 and C2 are absolute constants independent from N . Let, as in [C], φN =∑

R∈ΦN
hR|R|1/2. Here comes our key result, which makes use of a ”localization

property” of φN .

Theorem 1.2. Let 1 < p < ∞ and 1 ≤ q ≤ ∞. Then there exists a constant Ap

such that
‖φN‖Lp,q ≤ ‖φN‖BMOLp,q ≤ Ap max

1≤k≤N−1
‖φk‖Lp,q

for all N ∈ N.
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Corollary 1.3. Let 1 < p < ∞ and 1 ≤ q ≤ ∞. There exists a constant A′
p such

that
‖φN‖Lp,q ≤ ‖φN‖BMOLp,q ≤ A′

p‖φN‖Lp,q

for all N ∈ N.

Proof. of Theorem 1.1. Let ΩN = ∪R∈ΦN
R. Since p1 < p2 and φN is supported on

ΩN , one has

‖φN‖Lp1,q1 ≤ Cp1,p2,q1,q2 |ΩN |1/p1−1/p2‖φN‖Lp2,q2 .

by (4). Therefore, Corollary 1.3 yields

‖φN‖Lp2,q2 ≥ C−1
p1,p2,q1,q2

‖φN‖Lp1,q1 |ΩN |1/p2−1/p1

≥ A′
p
−1
Cp1,p2,q1,q2C

1/p2−1/p1
1 N1/p1−1/p2‖φN‖BMOLp1,p2 .

Since ‖φN‖Lp2,q2 ≤ ‖φN‖BMOLp2,q2 , it also follows from this inequality that
BMOLp1,q1 � BMOLp2,q2 .

2. The Carleson construction

Before we can turn to the proofs of Theorem 1.2 and Corollary 1.3, we need
some more details of the construction of ΦN in [C]. (For a nice description of the
Carleson Counterexample, see also [T].) ΦN is obtained by the following process.
We first identify T2 with the unit square [0, 1]2. Take a sufficiently fast decreasing
N + 1-tuple (AN , . . . , A0) (for our purposes, we want to assume that this is the
tuple 2(2N ), 2(2N−1), . . . , 2(20)). Now cut the unit square into AN vertical rectangles
with sides parallel to the axis, of sidelength A−1

N × 1. Discard every second of
these rectangles, and denote the collection of the remaining rectangles by Φ(1)

N,y.
Then cut the unit square into AN horizontal rectangles with sides parallel to the
axis, of sidelength 1 × A−1

N . Discard every second of these rectangles, and denote
the remaining collection by Φ(1)

N,x . The collection of the thus kept horizontal and

vertical rectangles, Φ(1)
N,x ∪ Φ(1)

N,y, is denoted by Φ(1)
N .

Now we repeat the process and slice each rectangle in Φ(1)
N vertically and hori-

zontally into AN−1 rectangles with sides parallel to the boundary and again discard
every second of them to obtain the collection Φ(2)

N . This process is iterated, until we
get ΦN := Φ(N+1)

N . Since the tuple (AN , . . . , A0) decreases very fast, each rectangle
in ΦN has a unique “history” in the sense that it is generated from the unit square
by a unique sequence of vertical and horizontal slicings. In paricular, writing ΦN,x

for the collection of those R ∈ ΦN which are generated from a rectangle in Φ(1)
N,x,

and ΦN,y for the collection of those R ∈ ΦN which are generated from a rectangle
in Φ(1)

N,y, we find that ΦN,x ∩ ΦN,y = ∅ and of course ΦN,x ∪ ΦN,y = ΦN .
Moreover, for R ∈ ΦN , we have that R ∈ ΦN,x if and only if there exists

R′ ∈ Φ(1)
N,x with R ⊆ R′. One direction of this equivalence is clear, since each

R ∈ ΦN,x is generated from some R′ ∈ Φ(1)
N,x and therefore contained in this R′.

Conversely, if R ∈ ΦN,y, then its width in y-direction is greater or equal than
A−1

N−1 · · ·A−1
0 > A−1

N . Therefore, R cannot be contained in any R′ ∈ Φ(1)
N,x. A

corresponding statement holds for ΦN,y.
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Another property of the construction we shall frequently use is that for each
R′ ∈ Φ(1)

N , the collection {R ∈ ΦN : R ⊆ R′} is up to translation and dilation equal
to the collection ΦN−1.

For each R ∈ Φ(1)
N , we write τ

(N)
R for the composition of the translation and

dilation which transform R into the unit square, τ (N)
R (R) = [0, 1] × [0, 1]. Given a

dyadic rectangle Q = I×J ⊆ R ∈ Φ(1)
N , we have that τ (N)

R (Q) is a dyadic rectangle,
and |Q| = |R||τ (N)

R (Q)|. With this notation, our statement above means that for
each R ∈ Φ(1)

N ,

{τ (N)
R (Q) : Q ∈ ΦN , Q ⊆ R} = ΦN−1,(5)

and consequently

φN−1 ◦ τ (N)
R = PRφN |R.(6)

3. Proof of 1.2 and 1.3

Lemma 3.1. For Q = I × J ⊆ R ∈ Φ(1)
N , we write Q′ = τ

(N)
R (Q). Then

‖S[PQφN ]‖Lp,q
Q

= ‖S[PQ′φN−1]‖Lp,q

Q′
.

In particular
‖S[PRφN ]‖Lp,q

R
= ‖S[φN−1]‖Lp,q

for any R ∈ Φ(1)
N .

Proof. Observe that

|{x ∈ Q : S[PQφN ](x) > λ}| = |R||{x ∈ Q′ : S[PQ′φN−1](x) > λ}|.
Therefore

µQ({x ∈ Q : S[PQφN ](x) > λ}) = µQ′({x ∈ Q′ : S[PQ′φN−1](x) > λ}).(7)

This gives the result.

Lemma 3.2. If Q ∈ [0, 1] ×D, say Q = [0, 1] × J , and |J | > A−1
N , then

‖S[PQφN,x]‖Lp,q
Q

= 2−1/p‖S[φN−1]‖Lp,q(8)

and

‖S[PQφN,y]‖Lp,q
Q

= 2−1/p‖S[PQφN−1]‖Lp,q
Q
.(9)

In particular

‖S[φN,y]‖Lp,q = ‖S[φN,x]‖Lp,q = 2−1/p‖S[φN−1]‖Lp,q .(10)

A corresponding statement holds for Q ∈ D × [0, 1], Q = I × [0, 1] with |I| > A−1
N .

Proof. We write φN,x =
∑

R∈ΦN,x
hR|R|1/2 and φN,y =

∑
R∈ΦN,y

hR|R|1/2. Note
that S[φN,x] = (

∑
R∈ΦN,x

χR)1/2 and S[φN,y] = (
∑

R∈ΦN,y
χR)1/2 are supported

on the union of the disjoint collection of rectangles Φ(1)
N,x and Φ(1)

N,y, respectively.
In the first situation, we have

S2[PQφN,x] =
∑

R∈Φ
(1)
N,x,R⊆Q

S2[PRφN ],

where the S[PRφN ] are equimeasurable for different R and disjointly supported.
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Then we have, for any R ⊆ Q, R ∈ Φ(1)
N,x,

|{x ∈ Q : S2[PQφN,x](x) > λ}| =
|Q|
2|R| |{x ∈ R : S2[PRφN ](x) > λ}|.

Therefore by (7), for any λ > 0

µQ({S[PQφN,x] > λ}) =
1
2
|{S[φN−1] > λ}|.

This gives S[PQφN,x]∗∗(t) = S[φN−1]∗∗(2t). Therefore we get (8).

For the second situation we have

S2[PQφN,y] =
∑

R∈Φ
(1)
N,y

S2[PR∩QφN ],

where S2[PR∩QφN ] are equimeasurable for different R and disjointly supported.
Then we have, for any R ∈ Φ(1)

N,y,

|{x ∈ Q : S2[PQφN,y](x) > λ}| =
∑

R∈Φ
(1)
N,y

|{x ∈ R ∩Q : S2[PR∩QφN ](x) > λ}|.

Therefore, using (7) and observing that τ (N)
R (Q ∩R) = Q for any R ∈ Φ(1)

N,y we get

|{S[PQφN,y] > λ}| =


 ∑

R∈Φ
(1)
N,y

|R|


 |{S[PQφN−1] > λ}| =

1
2
|{S[PQφN−1] > λ}|.

This gives (9).

Now it is easy to prove Corollary 1.3.
Proof of 1.3. Given Theorem 1.2, it suffices to prove that there exists a constant
Dp such that ‖S[φN−1]‖Lp,q ≤ Dp‖S[φN ]‖Lp,q for all N ∈ N.

Since S2[φN ] = S2[φN,x] + S2[φN,y], we have

‖S[φN ]‖Lp,q = ‖(S2[φN,x] + S2[φN,y])1/2‖Lp,q

≥ ‖S[φN,x]‖Lp,q

= 2−1/p‖S[φN−1]‖Lp,q .

by Lemma 3.2.

Before we can prove the main technical result Theorem 1.2, we need to collect
some more facts.

Lemma 3.3. Let 1 < p < ∞ and 1 ≤ q ≤ ∞ . There exists Cp ≥ (21/p − 1)−1

such that

‖S[PQφN ]‖Lp,q
Q

≤ Cp max
1≤k≤N−1

{‖S[φk]‖Lp,q}(11)

for any Q ∈ [0, 1] ×D.
A corresponding statement holds for Q ∈ D × [0, 1].

Proof. We shall prove this statement by induction. It is obvious for N = 1. Assume
it holds true for N − 1.
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We first consider the case Q = [0, 1]× J , where |J | > A−1
N . Using the inequality

S[PQφN ] =
(
S2[PQφN,x] + S2[PQφN,y]

)1/2 ≤ S[PQφN,x] + S[PQφN,y]

and Lemma 3.2, we obtain

(12)

‖S[PQφN ]‖Lp,q
Q

≤ ‖S[PQφN,x] + S[PQφN,y]‖Lp,q
Q

≤ ‖S[PQφN,x]‖Lp,q
Q

+ ‖S[PQφN,y]‖Lp,q
Q

= 2−1/p(‖S[φN−1]‖Lp,q + ‖S[PQφN−1]‖Lp,q
Q

))

≤ 2−1/p(Cp max
1≤k≤N−2

{‖S[φk]‖Lp,q} + ‖S[φN−1]‖Lp,q )

≤ 2−1/p(Cp + 1) max
1≤k≤N−1

{‖S[φk]‖Lp,q})

≤ Cp max
1≤k≤N−1

{‖S[φk]‖Lp,q}.

In case Q = [0, 1] × J and A−1
N−1 < |J | ≤ A−1

N , we either have PQφN = 0, or
Q ⊆ R for some R ∈ Φ(1)

N,x and Q′ = τ
(N)
R (Q) = [0, 1] × J ′ with |J ′| > A−1

N−1 . Now
Lemma 3.1 and the previous case give

‖S[PQφN ]‖Lp,q
Q

= ‖S[PQ′φN−1]‖Lp,q

Q′
≤ Cp max

1≤k≤N−2
{‖S[φk]‖Lp,q}.

Similarly, we get the result for any Q = [0, 1] × J with |J | ≤ A−1
N and S[PQφN ] �=

0.

Now we can proceed to prove our main technical result.
Proof of Theorem 1.2.

We will show that

‖S[PQφN ]‖Lp,q
Q

≤ Bp max
1≤k≤N−1

‖S[φk]‖Lp,q .(13)

for all N ∈ N and all Q ∈ R. Now from Littlewood-Paley theory (albeit with a
different value of the constant Bp) the result will follow.

We shall use induction again. The case N = 1 is trivial. Assume the statement
holds true for N − 1.

First consider the case that Q is contained in some rectangle R in Φ(1)
N . Using

Lemma 3.1, we obtain

‖S[PQφN ]‖Lp,q
Q

≤ Bp max
1≤k≤N−2

‖S[φk]‖Lp,q .

Consider now the case that Q is not contained in any R ∈ Φ(1)
N .

Note that if Q = I × J , with |J | ≤ A−1
N , then PQφN = PQφN,x. This is due to

the fact that |J ′| > A−1
N for any R′ = I ′ × J ′ ∈ Φ(1)

N,y. So either Q ⊆ R for some

R ∈ Φ(1)
N,x, or PQφN = 0. Similarly, one can deal with the case Q = I × J , where

|I| ≤ A−1
N .

Hence it remains to consider the case that Q = I × J , where |I|, |J | > A−1
N . Let

us write

S2[PQφN ] = S2[PQφN,x]+S2[PQφN,y] =
∑

R∈Φ
(1)
N,x

S2[PQ∩RφN ]+
∑

R∈Φ
(1)
N,y

S2[PQ∩RφN ].
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Observe now that

S2[PQφN,x] =
∑

R∈Φ
(1)
N,x,R∩Q�=∅

S2[PR∩QφN ],

where the S[PR∩QφN ] are equimeasurable for different R, and disjointly supported.
Then we have

|{x ∈ Q : S2[PQφN,x](x) > λ}| =
∑

R∈Φ
(1)
N,x,R∩Q�=∅

|{x ∈ R∩Q : S2[PR∩QφN ](x) > λ}|.

Hence, for any R ∈ Φ(1)
N,x with R ∩Q �= ∅, we can write

|{x ∈ Q : S2[PQφN,x](x) > λ}| =
|J |
2|R| |{x ∈ R ∩Q : S2[PR∩QφN ](x) > λ}|.

This gives that for any λ > 0,

µQ({S[PQφN,x] > λ}) =
|J ||R ∩Q|
2|R||Q| µR∩Q({S[PR∩QφN ] > λ}) =

1
2
µR∩Q({S[PR∩QφN ] > λ}).

Hence S[PQφN,x]∗∗(t) = S[PR∩QφN ]∗∗(2t), and consequently

‖S[PQφN,x]‖Lp,q
Q

= 2−1/p‖S[PQ∩RφN ]‖Lp,q
R∩Q

.

Notice that R∩Q ⊆ R ∈ Φ(1)
N,x, and that τ (N)

R (R∩Q) = I×[0, 1]. Applying Lemmas
3.1 and 3.3, we have

(14) ‖S[PQφN,x]‖Lp,q
Q

= 2−1/p‖S[PQ∩RφN ]‖Lp,q
R∩Q

≤ 2−1/p‖S[PI×[0,1]φN−1]‖Lp,q
I×[0,1]

≤ Cp2−1/p max
1≤k≤N−1

‖S[φk]‖Lp,q .

A similar argument shows that

‖S[PQφN,y]‖Lp,q
Q

≤ Cp2−1/p max
1≤k≤N−1

‖S[φk]‖Lp,q .

Finally, since S[PQφN ] ≤ S[PQφN,x] + S[PQφN,y], we get

‖S[PQφN ]‖Lp,q
Q

≤ ‖S[PQφN,x]‖Lp,q
Q

+ ‖S[PQφN,y]‖Lp,q
Q

≤ Cp21−1/p max
1≤k≤N−1

‖S[φk]‖Lp,q .

Letting Bp = Cp21−1/p, we finish the proof.
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