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Abstract

It is shown that multilinear operators of the form T (f1, ..., fk)(x) =∫
Rn K(x, y1, ..., yk)f1(y1)...fk(yk)dy1...dyk of restricted weak type (1, ..., 1, q)

are always of weak type (1, ..., 1, q) whenever the map x → Kx is a
locally integrable L1(Rn)-valued function.
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1 Introduction and the main result.

Throughout the paper 0 < q, p1, ..., pk < ∞, l, k ∈ N, nj ∈ N and n = n1 +
... + nk. We write y = (y1, ..., yk) ∈ Rn = Rn1 × ...×Rnk and mn(A) denotes
the Lebesgue measure in Rn. Given a Banach space X we write L0(Rl, X),
Lp(Rl, X) and L1

loc(Rl, X) for the spaces of (strongly) measurable functions
on Rl with values in X, Bochner p-integrable functions (0 < p < ∞) and
locally Bochner integrable respectively (we use the notation L0(Rl), Lp(Rl)
and L1

loc(Rl) if X = C).
Let us recall that a multilinear operator T : Lp1(Rn1)× ...× Lpk(Rnk) →

L0(Rl) is continuous if for every measurable set E ⊂ Rl of finite measure
there exists a function CE : (0,∞) → R+ with limλ→∞ CE(λ) = 0 such that

ml({x ∈ E : |T (f1, ..., fk)(x)| > λ
k∏

i=1

‖fi‖Lpi (Rni )} ≤ CE(λ)
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for fi ∈ Lpi(Rni), i = 1, ..., k.
Particular examples are the operators of weak type (p1, ..., pk, q), i.e. those

for which there exists C > 0 such that

m
1/q
l ({x ∈ Rl : |T (f1, ..., fk)(x)| > λ} ≤ C

λ

k∏
i=1

‖fi‖Lpi (Rni ).

When the previous estimate holds only for characteristic functions of
measurable sets, i.e. there exists C > 0 such that

m
1/q
l ({x ∈ Rl : |T (χE1 , ..., χEk

)(x)| > λ} ≤ C

λ

k∏
i=1

mni
(Ei)

1/pi

for measurable sets Ei in Rni , the operator is said to be of restricted weak-
type (p1, ..., pk, q).

Lots of examples in Harmonic Analysis turn out to be only of weak type
or restricted weak type (see [10]) for some tuples (p1, ..., pk, q). It is well
known that interpolation techiques allow then to pass from restricted weak
type in two different tuples to strong type estimates in intermediate spaces.

In general linear operators of restricted weak-type (p, q) need not be of
weak-type (p, q) (see [9] for the case p > 1).

It was first shown by K.H. Moon that convolution and maximal of convo-
lution operators of restricted weak type (1, 1) are always of weak-type (1, 1).

Theorem 1.1 ([8]) Let Kj ∈ L1(Rn) for j ∈ N. Denote Tj(f) = f ∗Kj and
T ∗(f) = supj∈N|Tj(f)|.

If T ∗ is of restricted weak type (1, q) for some q > 0 then T ∗ is also of
weak type (1, q) with constant independent of the quantities ‖Kj‖1.

Recently Moon’s theorem has been extended to the multilinear case by
L. Grafakos and M. Mastylo.

Theorem 1.2 ([5]) Let Kj ∈ L1((Rl)k) ∩ L∞((Rl)k) for j ∈ N. Define

Tj(f1, ..., fk)(x) =

∫
(Rl)k

Kj(x− y1, ..., x− yk)f1(y1)...fk(yk)dy1...dyk

and
T ∗(f1, ..., fk)(x) = supj∈N|Tj(f1, ..., fk)(x)|
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for x ∈ Rl and fi ∈ L1(Rl), i = 1, ..., k.
If T ∗ is of restricted weak type (1, ..., 1, q) for some q > 0 then T ∗ is also

of weak type (1, ...1, q) with constant independent of the quantities ‖Kj‖1 and
‖Kj‖∞.

Although the proofs of the previous theorems work the same for all values
of 0 < q < ∞, I would like to point out that that only the case q ≤ 1 is
relevant.

Proposition 1.3 Let Tj : L1(Rn1)× ...×L1(Rnk) → L0(Rl) be a sequence of
continuous multilinear operators and set T ∗(f1, ..., fk) = supj∈N |Tj(f1, ..., fk)|.

If q > 1 and T ∗ is of restricted weak type (1, ..., 1, q) then T ∗ is of weak
type (1, ..., 1, q).

PROOF. It is known that weak − Lq(Rn) is a complete normed space for
q > 1 (see [10]). Hence there exists a norm ‖.‖Lq,∞(Rl) such that

‖g‖Lq,∞(Rl) ≈ sup
λ>0

λm
1/q
l ({x ∈ Rl : |g(x)| > λ}).

Therefore, if fi =
∑Mi

j=1 αi
jχEi

j
for pairwise disjoint measurable sets Ei

j ⊂
Rni , 1 ≤ i ≤ k, then

λm
1/q
l ({x ∈ Rl : sup

j∈N
|Tj(f1, ..., fk)(x)| > λ})

≤ C‖ sup
j
|

k∑
i=1

Mi∑
ji=1

Tj(α
1
j1

χE1
j1

, ..., αk
jk

χEk
jk

)|‖Lq,∞

≤ C‖
k∑

i=1

Mi∑
ji=1

sup
j
|Tj(α

1
j1

χE1
j1

, ..., αk
jk

χEk
jk

)|‖Lq,∞

≤ C

k∑
i=1

Mi∑
ji=1

|α1
j1
||αk

jk
|‖ sup

j
|Tj(χE1

j1
, ..., χEk

jk

)‖Lq,∞

≤ C ′
k∑

i=1

Mi∑
ji=1

|α1
j1
||αk

jk
|mn1(E

1
j1

)....mnk
(Ek

jk
)

= C ′
k∏

i=1

‖fi‖L1(Rni ). �
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On the other hand, it was shown by M. Akcoglu, J. Baxter, A. Bellow
and R.L. Jones that, in the linear case, if we replace R by Z the Moon’s
result is not longer true.

Theorem 1.4 ([1]) There exists a countable set C of probability densities on
Z such that MCf = supg∈C g ∗ f for non-negative f ∈ `1(Z) is of restricted
weak type (1, 1) but not of weak type (1, 1)

Making use of such a construction and the transference principle due to
A. Calderón (see [2]), P.H. Hagelstein and R.L. Jones have recently shown
the following:

Theorem 1.5 ([7]) There exists a sequence of translation invariant opera-
tors Tj acting on L1(T) such that T ∗(f) = supj∈N |Tj(f)| is of restricted weak
type (1, 1) but it is not of weak type (1, 1).

The operators in [7] are given by

Tj(f)(eiθ) =
∑
k∈Z

wj(k)f(ei(θ+k))

for a sequence {wj} of probability measures on Z with finite support. In
other words, Tj(f)(eiθ) = Kj ∗f(eiθ) =

∫
T Kj(e

i(θ−θ′))f(ei(θ′))dθ′

2π
, where Kj =∑

k∈Z wj(k)δ−k ∈ M(T).
The aim of this paper is to exhibit a general class of the continuous

multilinear operators Tj : L1(Rn1)× ..×L1(Rnk) → L0(Rl) for which the res-
tricted (1, ..., 1, q)-weak type of T ∗(f1, ..., fk) = supj∈N |Tj(f1, ..., fk)| implies
the (1, ..., 1, q)-weak type of T ∗. We shall restrict ourselves to the class of
operators Tj given by

Tj(f1, ..., fk)(x) =

∫
Rn

Kj(x, y1, ..., yk)f1(y1)...fk(yk)dy1...dyk

where Kj : Rl × Rn1 × ...× Rn1 → C is measurable.
The reader is referred to [3] for some families of kernels where the restric-

ted weak type in the linear situation also implies better estimates.
Let us start by mentioning some weak assumptions for the integral above

to be well defined for almost all x ∈ Rl.

Definition 1.6 Let T : L1(Rn1) × .. × L1(Rnk) → L0(Rl) be continuous
multilinear operator. We shall say that T is an integral operator with kernel
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K if there exists a measurable function K : Rl × Rn1 × ... × Rnk → C such
that K0(x) = Kx given by

Kx(y1, ..., yk) = K(x, y1, ..., yk)

is strongly measurable L1(Rn)-valued function, i.e. K0 ∈ L0(Rl, L1(Rn)),
and

T (f1, ..., fk)(x) =

∫
Rn

K(x, y1, ..., yk)f1(y1)...fk(yk)dy1...dyk

for almost all x ∈ Rl and fi ∈ L∞(Rni) for i = 1, ..., k.
We shall write T = TK.

Remark 1.1 If K : Rl × Rn1 × ... × Rnk → C is measurable and K0 ∈
Lp(Rl, L1(Rn)) for some 1 ≤ p ≤ ∞ then it follows from Minkowski’s ine-
quality that TK : L1(Rn1)× ...× L1(Rnk) → Lp(Rl) is bounded and

‖TK(f1, ..., fk)‖Lp(Rl) ≤ ‖K0‖Lp(Rl,L1(Rn))

k∏
i=1

‖fi‖L1(Rni ).

Now we state the main result of the paper:

Theorem 1.7 Let 0 < q ≤ 1 and let Tj be a sequence of continuous multili-
near operators from L1(Rn1)× ...× L1(Rnk) → L0(Rl) with kernels Kj such
that

K0
j ∈ L1

loc(Rl, L1(Rn)). (1)

Let T ∗(f1, ..., fk)(x) = supj∈N |
∫

Rn Kj(x, y1, ..., yk)f1(y1)...fk(yk)dy1...dyk|
for fj ∈ L∞(Rnj), 1 ≤ j ≤ k.

If T ∗ is of restricted weak type (1, ..., 1, q) then T ∗ is of weak type (1, ..., 1, q).

Let us mention that our result gives the following corollary (which seems
to be new even in the linear case) when applied to a single operator

Corollary 1.8 Let 0 < q ≤ 1 and let T : L1(Rn) × ... × L1(Rn) → L0(Rn)
be multilinear with kernel K such that K0 ∈ C(Rn, L1(Rn)).

Then TK(f1, ..., fk)(x) =
∫

(Rn)k Kj(x, y1, ..., yk)f1(y1)...fk(yk)dy1...dyk is

of restricted weak type (1, ..., 1, q) if and only if it is of weak type (1, ..., 1, q).

Let us mention some particular examples where Corollary 1.8 or its ma-
ximal formulation can be applied:
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Proposition 1.9 Let k ≥ 1, n1 = ... = nk = l (hence n = kl) and let
φ ∈ L1(Rn) and Φ real valued function uniformly continuous on Rl × Rn.
Define K : Rl × Rn1 × ...× Rnk → C by

K(x, y1, ..., yk) = eiΦ(x,y1,...,yk)φ(x− y1, ..., x− yk).

Then K0 : Rl → L1(Rn) is uniformly continuous and bounded.

PROOF. Clearly ‖Kx‖L1(Rn) = ‖φ‖L1(Rn) for all x ∈ Rn.

Given ε > 0 take δ > 0 so that |eiΦ(x,y1,...,yk) − eiΦ(x′,y′1,..,y′k)| < ε whenever
|x− x′|+

∑k
i=1 |yi − y′i| < δ.

Denoting τ ′xφ(y1, ..., yk) = φ(x− y1, ..., x− yk), if for |x− x′| < δ then

‖Kx −Kx′‖1 ≤
∫

Rl

|φ(x− y1, ..., x− yk)− φ(x′ − y1, ..., x
′ − yk)|dy1...dyk

+

∫
Rl

|eiΦ(x,y1,...,yk) − eiΦ(x′,y1,...,yk)||φ(x− y1, ..., x− yk)|dy1...dyk

≤ ‖τ ′x−x′φ− φ‖1 + ε‖φ‖1.

Now use the fact that x → τ ′xφ is uniformly continuous from Rl into
L1(Rn) to finish the proof. �

In particular one obtains Theorems 1.1 and 1.2 as particular cases of
Theorem 1.7.

2 Proof of the main theorem.

Let us first establish the approximation lemmas to be used in the proof.
Denote, as usual, ϕt(u) = 1

tn
ϕ(u

t
) for u ∈ Rn and t > 0.

The proof of the following result is the same as in the scalar-valued case
and it is left to the reader (see [10]).

Lemma 2.1 Let X be a Banach space and Φ ∈ L1(Rl, X). Let Pt denote
the Poisson kernel in Rl, that is Pt(x) = t

(t2+|x|2)
l+1
2

. Then

Φt = Pt ∗ Φ(x) =

∫
Rl

Φ(x− u)Pt(u)du ∈ C0(Rl, X) ∩ L1(Rl, X), (2)

sup
t>0

‖Φt‖L1(Rl,X) = ‖Φ‖L1(Rl,X), (3)
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lim
t→0

‖Φt − Φ‖L1(Rl,X) = 0, (4)

lim
t→0

‖Φt(x)− Φ(x)‖X = 0 for almost all x ∈ Rl. (5)

Lemma 2.2 Let φ ∈ C0(Rn) ∩ L1(Rn), φ ≥ 0 and
∫

Rn φ(y)dy = 1.
Let K is a relatively compact set in L1(Rn). Then

lim
t→0

sup
F∈K

‖φt ∗ F − F‖L1(Rn) = 0. (6)

For each t > 0 the family {φt ∗ F : F ∈ K} is equicontinuous, i.e. given
ε > 0 there exists δ > 0 such that

sup
F∈K

|φt ∗ F (y′)− φt ∗ F (y)| < ε, |y′ − y| < δ. (7)

PROOF. It is known (see [4], Theorem 4.8.20) that a set K ⊂ L1(Rn) is
relatively compact if and only if K is bounded,

lim
y→0

sup
F∈K

‖τyF − F‖L1(Rn) = 0, (8)

where τyF (y′) = F (y′ − y) and

lim
M→∞

sup
F∈K

∫
|y′|>M

|F (y′)|dy′ = 0 (9)

Using the standard approach one obtains the estimate

|φt ∗ F (y′)− F (y′)| ≤
∫
|y|<δ

|F (y′ − y)− F (y′)|φt(y)dy

+

∫
|y|≥δ

|F (y′ − y)− F (y′)|φt(y)dy

As usual, this leads to

‖φt ∗ F − F‖L1(Rn) ≤
∫
|y|<δ

‖τyF − F‖L1(Rn)φt(y)dy + 2‖F‖L1(Rn)

∫
|y|≥δ

φt(y)dy

≤ sup
|y|<δ

‖τyF − F‖L1(Rn) + 2‖F‖L1(Rn)

∫
|y|≥ δ

t

φ(y)dy.
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Given ε > 0, using (8) there exists δ > 0 so that

sup
|y|<δ

sup
F∈F

‖τyF − F‖L1(Rn) < ε/2.

For such a δ one has

sup
F∈F

‖φt ∗ F − F‖L1(Rn) ≤ ε/2 + 2 sup
F∈F

‖F‖L1(Rn)

∫
|y|≥ δ

t

φ(y)dy.

Taking limit as t → 0 one gets (6).
To obtain (7) use that F → φt ∗ F is continuous from L1(Rn) to C0(Rn).

Hence {φt ∗ F : F ∈ K} is relatively compact in C0(Rn). �

Proof of Theorem 1.7.
Assume T ∗ is of restricted weak type (1, ..., 1, q). Let N ∈ N, λ > 0 and

let fi 6= 0 be a non-negative simple functions on Rni for 1 ≤ i ≤ k and denote
f(y) = f1(y1)...fk(yk).

Let us show that there exists C > 0 (independent of N)

m
1/q
l ({|x| ≤ N : sup

1≤j≤N
|TKj

(f1, ..., fk)(x)| > λ}) ≤ C

λ

k∏
i=1

‖fi‖L1(Rni ) (10)

Let t > 0 and 1 ≤ j ≤ N and let us use the notation

Kj,N(x, y) = Kj(x, y)χ{|x|≤N}(x),

K̃t,j,N(x, y1, ..., yk) =

∫
Rl

Pt(x− u)Kj,N(u, y1, ..., yk)du.

Consider the Banach space

XN = L1(Rn, `N
∞) = {(gj)

N
j=1 :

∫
Rn

sup
1≤j≤N

|gj(y)|dy < ∞},

and ΦN : Rl → XN given by

ΦN(x) = (K0
j (x)χ{|x|≤N})

N
j=1. (11)

From the assumption (1) one has K0
j,N ∈ L1(Rl, L1(Rn))). Hence ΦN ∈

L1(Rl, XN) and (K̃0
t,j,N)N

j=1 = Pt ∗ ΦN .
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Taking into account (5) in Lemma 2.1 one obtains that there exists A ⊂ Rl

with ml(A) = 0 and if x /∈ A then

lim
t→0

∫
Rn

sup
1≤j≤N

|Pt ∗Kj,N(x, y1, ..., yk)−Kj,N(x, y1, ..., yk)|dy1...dyk = 0.

Therefore, if x /∈ A then

lim
t→0

sup
1≤j≤N

|TK̃t,j,N
(f1, ..., fk)(x)| = sup

1≤j≤N
|TKj,N

(f1, ..., fk)(x)|

Now, for any η > 0,

ml({|x| ≤ N : sup
1≤j≤N

|TKj
(f1, ..., fk)(x)| > η})

= ml({x /∈ A : sup
1≤j≤N

|TKj,N
(f1, ..., fk)(x)| > η})

≤ lim inf
M→∞

ml({|x| ≤ N : sup
1≤j≤N

|TK̃1/M,j,N
(f1, ..., fk)(x)| > η}).

Let M ∈ N be fixed. Using (2) in Lemma 2.1 one has that

K̃0
1/M,j,N : {|x| ≤ N} → L1(Rn)

is continuous for all 1 ≤ j ≤ N . Hence Fi,j,N = {(K̃1/M,j,N)x : |x| ≤ N}
is relatively compact in L1(Rn) for each 1 ≤ j ≤ N . Select, for instance,
φ(y) = 1

(1+|y|2)(n+1)/2 in Lemma 2.2 and define H t
M,j(x, y) = φt ∗ (K̃1/M,j,N)x

for 1 ≤ j ≤ N . Let us denote

THt
M,j

(f1, ..., fk)(x) =

∫
Rn

H t
M,j(x, y1, ..., yk)f1(y1)...fk(yk)dy1...dyk.

If 1 ≤ j ≤ N and |x| ≤ N then

|TK̃1/M,j,N
(f1, ..., fk)(x)− THt

M,j
(f1, ..., fk)(x)|

≤
∫

Rn

|K̃1/M,j,N(x, y)−H t
M,j(x, y)||f(y)|dy

≤ ‖f‖L∞(Rn)‖φt ∗ (K̃1/M,j,N)x − (K̃1/M,j,N)x‖L1(Rn)

For a given ε > 0, from (6), there exists t = t(M) > 0 such that

sup
1≤j≤N,|x|≤N

‖(K̃1/M,j,N)x − φt ∗ (K̃1/M,j,N)x‖L1(Rn) <
ε

‖f‖L∞(Rn)

.
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Therefore, for 1 ≤ j ≤ N and |x| ≤ N ,

|TK̃1/M,j,N
(f1, ..., fk)(x)− THt

M,j
(f1, ..., fk)(x)| < ε. (12)

On the other hand, from (7) there exists δ > 0 such that

sup
1≤j≤N,|x|≤N

|H t
M,j(x, y)−H t

M,j(x, y′)| < ε

‖f‖L1(Rn)

, |y − y′| <
√

nδ. (13)

Now consider, for 1 ≤ i ≤ k, Rni = ∪s∈NI
(i)
s where I

(i)
s are disjoint cubes

with length side δ (in particular, mni
(I

(i)
s ) = δni and diam(I

(i)
s ) <

√
niδ)

and write fi =
∑Mi

s=1 α
(i)
s χ

I
(i)
s

for some α
(i)
s > 0. Denote α(i) = ‖fi‖∞.

Since α
(i)
s ≤ α(i) and the Lebesgue measure is non-atomic we can then find

J
(i)
s ⊂ I

(i)
s such that α(i)mni

(J
(i)
s ) = α

(i)
s mni

(I
(i)
s ) = α

(i)
s δni . Hence, denoting

E(i) = ∪Mi
s=1J

(i)
s and E = E(1) × ...×E(k), one gets ‖fi‖1 = α(i)mni

(E(i)) and
‖f‖1 = α(1)...α(k)mn(E) .

Let us write I(j1,...,jk) = I
(1)
j1
× ...× I

(k)
jk

and J(j1,...,jk) = J
(1)
j1
× ...× J

(k)
jk

for
1 ≤ jl ≤ Ml and 1 ≤ l ≤ k. One has

THt
M,j

(f1, ..., fk)(x)− THt
M,j

(α(1)χE(1) , ..., α(k)χE(k))(x) =

=

M1∑
j1=1

...

Mk∑
jk=1

(
α

(1)
j1

...α
(k)
jk

THt
M,j

(χ
I
(1)
j1

, ..., χ
I
(k)
jk

)(x)

− α(1)...α(k)THt
M,j

(χ
J

(1)
j1

, ..., χ
J

(k)
jk

)(x)
)

=

M1∑
j1=1

...

Mk∑
jk=1

(
α

(1)
j1

...α
(k)
jk

∫
I(j1,...,jk)

H t
M,j(x, y)dy

− α(1)...α(k)

∫
J(j1,...,jk)

H t
M,j(x, y)dy

)
Now, denoting α(j1,...,jk) = α

(1)
j1

...α
(k)
jk

and α = α(1)...α(k) one has that
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α(j1,...,jk)δ
n = α(j1,...,jk)mn(I(j1,...,jk)) = αmn(J(j1,...,jk)). Therefore

THt
M,j

(f1, ..., fk)(x)− THt
M,j

(α(1)χE(1) , ..., α(k)χE(k))(x) =

=

M1∑
j1=1

...

Mk∑
jk=1

α(j1,...,jk)mn(I(j1,...,jk))
( 1

mn(I(j1,...,jk))

∫
I(j1,...,jk)

H t
M,j(x, y)dy

− 1

mn(J(j1,...,jk))

∫
J(j1,...,jk)

H t
M,j(x, y)dy

)
=

M1∑
j1=1

...

Mk∑
jk=1

α(j1,...,jk)mn(I(j1,...,jk))

×
( 1

mn(I(j1,...,jk))mn(J(j1,...,jk))

∫
I(j1,...,jk)

∫
J(j1,...,jk)

(H t
M,j(x, y)dy −H t

M,j(x, y′)dydy′
)

Now observe that y ∈ I(j1,...,jk) and y′ ∈ J(j1,...,jk) then |y − y′| <
√

nδ.
Hence (13) shows that, for 1 ≤ j ≤ N and |x| ≤ N ,

|THt
M,j

(f1, ..., fk)(x)− αTHt
M,j

(χE(1) , ..., χE(k))(x)| ≤

≤
M1∑

j1=1

...

Mk∑
jk=1

α(j1,...,jk)mn(I(j1,...,jk))

×
( 1

mn(I(j1,...,jk))mn(J(j1,...,jk))

∫
I(j1,...,jk)

∫
J(j1,...,jk)

|H t
M,j(x, y)−H t

M,j(x, y′)|dydy′
)

≤ ε

‖f‖1

k∏
i=1

( Mi∑
ji=1

α
(i)
ji

m(I
(i)
ji

)
)

=
ε

‖f‖1

k∏
i=1

‖fi‖1 = ε.

Therefore, using (12) and the previous estimate one gets

ml({|x| ≤ N : sup
1≤j≤N

|TK̃1/M,j,N
(f1, ..., fk)(x)| > λ + 3ε}

≤ ml({|x| ≤ N : sup
1≤j≤N

|THt
M,j

(f1, ..., fk)(x)| > λ + 2ε})

≤ ml({|x| ≤ N : sup
1≤j≤N

|THt
M,j

(α(1)χE(1) , ..., α(k)χE(k))(x)| > λ + ε}

≤ ml({|x| ≤ N : sup
1≤j≤N

|TK̃1/M,j,N
(χE(1) , ..., χE(k))(x)| > λ

α
}.
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From the restricted weak type assumption we conclude that

ml({|x| ≤ N : sup
1≤j≤N

|TK̃1/M,j,N
(χE(1) , ..., χE(k))(x)| > λ

α
}

≤ ml({|x| ≤ N : sup
1≤j≤N

|TK̃j
(χE(1) , ..., χE(k))(x)| > λ

2α
}

+ ml({|x| ≤ N : ‖P1/M ∗ ΦN(x)− ΦN(x)‖XN
>

λ

2α
}

≤ ml({|x| ≤ N : sup
1≤j≤N

|TK̃j
(χE(1) , ..., χE(k))(x)| > λ

2α
}

+
2α

λ
‖P1/M ∗ ΦN − ΦN‖L1(Rl,XN )

≤ C
αq

λq
mq

n(E) +
2α

λ
‖P1/M ∗ ΦN − ΦN‖L1(Rl,XN )

= C
‖f‖q

L1(Rn)

λq
+

2α

λ
‖P1/M ∗ ΦN − ΦN‖L1(Rl,XN ).

Taking lim infM→∞ and combining all the previous estimates one gets

m
1/q
l ({|x| ≤ N : sup

1≤j≤N
|TKj

(f1, ..., fk)(x)| > λ + 3ε} ≤ C
‖f‖L1(Rn)

λq
.

Finally, since ε > 0 is arbitrary one gets (10).
Using that {|x| ≤ N : sup1≤j≤N |TKj

(f1, ..., fk)(x)| > λ} is an increasing
sequence, one concludes

m
1/q
l ({x ∈ Rl : |T ∗(f1, ..., fk)(x)| > λ} ≤ C

∏k
i=1 ‖fi‖L1(Rni )

λ
(14)

for all simple functions fi ≥ 0, 1 ≤ i ≤ k.
Let us now extend (14) for integrable functions fi. Let fi ≥ 0 be an

arbitrary integrable function in L1(Rni) with ‖fi‖1 = 1 for i = 1, .., k.
For each N, j ∈ N denote

Cj,N(λ) = sup
‖gi‖L1(Rni )=1

ml({|x| ≤ N : |TKj
(g1, ..., gk)(x)| > λ}.

Given ε > 0 there exists λ0 > 0 such that Cj,N(η) < ε
kN

for η > λ0 and
1 ≤ j ≤ N .
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On the other hand, for each 1 ≤ i ≤ k, N ∈ N we can find a simple
f

(i)
N ≥ 0 such that f

(i)
N ≤ fi and ‖fi − f

(i)
N ‖L1(Rni ) < ε

λ0
.

Denote

B
(1)
j (N) = {x ∈ Rl : |TKj

(f1 − f
(1)
N , f2, ..., fk)| > ε},

and, for 2 ≤ i ≤ N ,

B
(i)
j (N) = {x ∈ Rl : |TKj

(f
(1)
N , ...f

(i−1)
N , fi − f

(i)
N , fi+1, ..., fk)| > ε}.

Set B(i)(N) = ∪N
j=1B

(i)
j (N) and B(N) = ∪k

i=1B
(i)(N). Note that

ml(B(N)) ≤
N∑

j=1

k∑
i=1

ml(B
(i)
j (N))

≤
N∑

j=1

k∑
i=1

Cj,N(ε/
i−1∏
j=1

‖f (j)
N ‖L1(Rnj )‖fi − f

(i)
N ‖L1(Rni )) < ε.

Since

TKj
(f1, ..., fk) = TKj

(f1 − f
(1)
N , f2, ..., fk)

+
k−1∑
i=2

TKj
(f

(1)
N , ..., f

(i−1)
N , fi − f

(i)
N , fi+1, ..., fk)

+ TKj
(f

(1)
N , ..., f

(k−1)
N , fk − f

(k)
N )

+ TKj
(f

(1)
N , ..., f

(k)
N ),

then, for each x /∈ B(N), one has

sup
1≤j≤N

|TKj
(f1, ..., fk)(x)| ≤ sup

1≤j≤N
|TKj

(f
(1)
N , ..., f

(k)
N )(x)|+ kε

≤ T ∗(f
(1)
N , ..., f

(k)
N )(x) + kε.

Therefore
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ml({x ∈ Rl : sup
1≤j≤N

|TKj
(f1, ..., fk)(x)| > λ + kε}) ≤

≤ ml({x /∈ B(N) : sup
1≤j≤N

|TKj
(f1, ..., fk)(x)| > λ}+ ml(B(N))

≤ ml({x /∈ B(N) : T ∗(f
(1)
N , ..., f

(k)
N )(x) > λ}+ ε

≤ (
C

λ

k∏
i=1

‖f (i)
N ‖L1(Rni ))

q + ε

≤ Cq

λq
(1 +

ε

λ0

)qk + ε.

Finally using the fact sup1≤j≤N |TKj
(f1, ..., fk)| ≤ sup1≤j≤N+1 |TKj

(f1, ..., fk)|
and multilinearity we conclude that

m
1/q
l ({x ∈ Rl : |T ∗(f1, ..., fk)(x)| > λ}) ≤ C

λ

k∏
i=1

‖fi‖L1(Rni )

for non negative integrable functions fi. The case of complex-valued functions
in now immediate using the multilinearity of the operators.

�
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