
Some classes of p-summing type operators.

Oscar Blasco ∗ and Teresa Signes †

Abstract

Let X, Y be Banach spaces and denote by �wp (X, Y ), �sp(X, Y ) and
�p(X, Y ) the spaces of sequences of operators (Tn) from X into Y such
that sup||x||=1,||y∗||=1

∑
| < Tn(x), y∗ > | < ∞, sup||x||=1

∑
||Tn(x)|| <

∞ and
∑

||Tn|| < ∞, respectively. Given Banach spaces X, Y, Z and
W , we introduce and study the classes of bounded linear operators
Φ : L(X, Y ) → L(Z, W ) such that (Tn) → (Φ(Tn)) maps �sp(X, Y )
into �p(Z, W ), �sp(X, Y ) into �sp(Z, W ) and �wp (X, Y ) into �sp(Z, W ).

1 Introduction

Throughout this paper X, Y , Z, W will stand for Banach spaces, L(X, Y )

for the space of bounded linear operators from X into Y and X∗ for the dual

of X. As usual BX denotes the closed unit ball of X.

For 1 ≤ p < ∞ we write 	p(X) for the Banach space of all absolutely

p-summable sequences (xn)
∞
n=1 in X, i.e., the space of sequences such that

‖(xn)‖	p(X) = (
∑∞

n=1 ‖xn‖
p
X)

1
p < ∞ and 	wp (X) for the space of all weakly

p-summable sequences in X, i.e., the space of sequences (xn)
∞
n=1 such that

(〈x∗, xn〉)∞n=1 ∈ 	p for every x∗ ∈ X∗, which becomes a Banach space with

respect to the norm ‖(xn)‖	wp (X) = supx∗∈BX∗ (
∑∞

n=1 |〈x∗, xn〉|p)
1
p .

Recall that the space of p-summing operators Πp(X, Y ) consists in those

bounded linear operators T ∈ L(X, Y ) such that T̃ ((xn)
∞
n=1) = (T (xn))

∞
n=1

defines a bounded linear operator from 	wp (X) into 	p(Y ). The reader is
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referred to [2], [3], [7], [11], [12] or [14] for definitions and results about these

classes and their applications in Banach space theory.

We shall simply recall here two related notions which are the main moti-

vations for our future considerations.

The first one appears when analyzing operators acting on spaces of vector-

valued continuous functions T : C(Ω, X) → Y , where Ω is a compact Hauss-

dorf space. An operator is called p-dominated operator (see [4], III.19.3) if

there exist a constant C > 0 and a probability measure µ on Ω such that

‖T (f)‖p ≤ C

∫
Ω

‖f(t)‖pdµ(t)

for all f ∈ C(Ω, X). The connection between p-summing and p-dominated

operators was first given by A. Pietsch, who showed that for finite dimen-

sional Banach spaces X both notions are the same. For infinite dimensional

Banach spaces C. Swartz (see [13]) showed that operators in Π1(C(Ω, X), Y )

are always 1-dominated but the space of 1-dominated operators from C(Ω, X)

into Y coincides with Π1(C(Ω, X), Y ) if and only if X is finite dimensional.

Later S. Kislyakov introduced (see [6], Def. 1.1.5) the following notion in

the setting of injective tensor products: Given 1 ≤ p < ∞ and three Banach

spaces E,X and Y , an operator T from the injective tensor product X⊗̌E
into Y is said to be (p, E)-summing if there exists a constant C > 0 such

that for all N ∈ N and u1, u2, ..., uN ∈ X ⊗ E we have

N∑
k=1

‖T (uk)‖pY ≤ C sup
F∈BX∗

N∑
k=1

‖uk(F )‖pE

where uk(F ) =
∑nk

j=1〈F, xj,k〉ej,k for uk =
∑nk

j=1 xj,k ⊗ ej,k for some ej,k ∈ E

and xj,k ∈ X. The space of such operators is denoted by ΠE
p (X⊗̌E, Y ).

Theorem 1.1.6 of [6] gives an analogue to Pietsch’s domination theorem

for (p,X)-summing operators. This result actually enables us to get the p-

dominated operators in a very similar fashion to the p-summing ones. Since

C(Ω)⊗̌X = C(Ω, X) then the class of p-dominated operators actually coin-

cides with ΠX
p (C(Ω)⊗̌X, Y ).
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Given two Banach spaces X and Y we shall be denoting by 	p(X, Y ) and

	wp (X, Y ) the spaces 	p(L(X, Y )) and 	wp (L(X, Y )) respectively.

Recall that if (en) is a sequence in a Banach space E then

‖(en)‖	wp (E) = sup
(αn)∈B�p′

∥∥∥
∞∑
n=1

αnen

∥∥∥
E
.

Hence one easily gets that

‖(Tn)‖	wp (X,Y ) = sup
x∈BX

sup
y∗∈BY ∗

( ∞∑
n=1

|〈y∗, Tnx〉|p
) 1

p
.(1.1)

The fact that we have the strong operator topology at our disposal al-

lows to consider the following intermediate space of sequences of operators.

We shall use the notation 	sp(X, Y ) for the space of strongly p-summable

sequences of operators (Tn), that is supx∈BX
(
∑∞

n=1 ‖Tnx‖
p
Y )1/p < ∞.

Let Φ : L(X, Y ) −→ L(Z,W ) be a bounded operator. The correspon-

dence

Φ̃ : (Tn)
∞
n=1 �−→ (Φ(Tn))

∞
n=1

always induces a linear bounded operator from 	p(X, Y ) to 	p(Z,W ), as

well as from 	wp (X, Y ) to 	wp (Z,W ). Recall that Φ is p-summing if Φ̃ maps

	wp (X, Y ) to 	p(Z,W ).

In this paper we study several questions concerning the class of operators

Φ such that this vector-valued extension Φ̃ produces a bounded linear oper-

ator either from 	sp(X, Y ) to 	p(Z,W ), from 	sp(X, Y ) to 	sp(Z,W ), or from

	wp (X, Y ) to 	sp(Z,W ).

In particular we study operators Φ from L(X, Y ) into Z such that Φ̃

defines a bounded linear operator from 	sp(X, Y ) into 	p(Z). These operators

will be called (	sp, 	p)-summing and denoted by Π(	sp,	p)(L(X, Y ), Z).

Since X⊗̌E is a subspace of L(X∗, E) we easily get that if Φ : L(X∗, E) →
Y is (	sp, 	p)-summing then its restriction to X⊗̌E is (p, E)-summing. Also,

the theory can be applied, among other things, to operators acting on weakly

p-summable sequences 	wp (X) = L(	p′ , X) or Pettis-p-integrable functions

which are subspaces of L(Lp′(µ), X).
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The paper is divided into five sections. In Section 2 the notions of (	sp, 	p)-

summing, (	wp , 	
s
p)-summing and (	sp, 	

s
p)-summing operators are introduced

and studied. It is shown that the classes of (	wp , 	
s
p)-summing and (	sp, 	

s
p)-

summing operators can be easily described in terms of the classes Πp or

Π(	sp,	p) (see Theorems 2.13 and 2.16 below).

In section 3 several characterizations of the class Π(	sp,	p)(L(X, Y ), Z) are

achieved and several examples are exhibited.

In Section 4 some results about the coincidence of classes are shown, in

particular an analogue of Maurey’s theorem is presented.

Finally we pose two open problems in Section 5.

2 Definitions and preliminaries

Definition 2.1 Let 1 ≤ p ≤ ∞ and X, Y be Banach spaces. A sequence of

operators (Tn)
∞
n=1 ⊆ L(X, Y ) is said to be strongly p-summable in L(X, Y )

if the vector-valued sequence (Tnx)∞n=1 belongs to 	p(Y ) for every x ∈ X.

We shall use the notation 	sp(X, Y ) for the space of all strongly p-summable

sequences. The norm in 	sp(X, Y ) is given by

‖(Tn)‖	sp(X,Y ) = sup
x∈BX

( ∞∑
n=1

‖Tnx‖pY
) 1

p
.

It is rather easy to see that (	sp(X, Y ), ‖ · ‖	sp(X,Y )) is a Banach space for any

1 ≤ p ≤ ∞.

Easy examples of sequences in 	sp(X, Y ) are given in the next propositions,

whose proofs are left to the reader.

Proposition 2.2 Let X, Y be Banach spaces and 1 ≤ r1, r2, p ≤ ∞ with
1
r1

+ 1
r2

= 1
p
. If (x∗n)

∞
n=1 ∈ 	wr1(X

∗) and (yn)
∞
n=1 ∈ 	r2(Y ), then (x∗n ⊗ yn)

∞
n=1 ∈

	sp(X, Y ).

Proposition 2.3 Let X, Y and Z be Banach spaces and 1 ≤ p ≤ ∞. If

(Tn)
∞
n=1 ∈ 	wp (X, Y ) and S ∈ Πp(Y, Z), then (STn)

∞
n=1 ∈ 	sp(X,Z).
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As mentioned in the introduction 	p(X, Y ) stands for 	p(L(X, Y )) and

	wp (X, Y ) for 	wp (L(X, Y )). Let us first notice the inclusions appearing be-

tween these spaces and the new one.

Note that 	sp(K, Y ) = 	p(K, Y ) = 	p(Y ) and 	sp(X,K) = 	wp (X,K) =

	wp (X∗). Observe also that for every bounded sequence (Tn) in L(X, Y ) we

have

sup
n

‖Tn‖ = sup
x∈BX

sup
n

‖Tnx‖Y = sup
x∈BX

sup
y∗∈BY ∗

sup
n

|〈y∗, Tnx〉|.

Hence for p = ∞, 	∞(X, Y ) = 	s∞(X, Y ) = 	w∞(X, Y ).

Proposition 2.4 Let X, Y be Banach spaces and 1 ≤ p < ∞. Then

	p(X, Y ) ⊆ 	sp(X, Y ) ⊆ 	wp (X, Y ).

Moreover, each of the inclusions is strict in general.

PROOF. We shall only show the last statement, since the inclusions are

immediate by definitions.

Let (en)
∞
n=1 be the usual basis in 	p′ (or c0 for p = 1) and consider (en ⊗

en)
∞
n=1 as operators from 	p into 	∞. Since (en) ∈ 	wp (	p′) and (en) ∈ 	∞(	∞),

by Proposition 2.2 we get that (en ⊗ en) ∈ 	sp(	p, 	∞). On the other hand,

‖en ⊗ en‖	p,	∞ = ‖en‖	p′‖en‖	∞ = 1 thus (en ⊗ en) /∈ 	p(	p, 	∞).

Let us now find a weakly p-summable sequence which is not strongly p-

summable. Simply choose p < r < ∞ and take s so that 1/r+1/p′ = 1/s. A

direct computation, using (1.1), shows that (en ⊗ en) ∈ 	wp (	r, 	s). However

(en ⊗ en) /∈ 	sp(	r, 	s) as it is shown by selecting any λ = (λn)
∞
n=1 ∈ 	r \ 	p,

since ‖〈en, λ〉en‖	s = |λn| /∈ 	p. �

Observe that if (Tn)
∞
n=1 in L(X, Y ) is a strongly p-summable sequence,

using the closed graph theorem, then one can associate a linear and bounded

operator S : X −→ 	p(Y ) defined by S(x) = (Tnx)∞n=1. In this way we

get 	sp(X, Y ) as a closed subspace of L(X, 	p(Y )). Let us see that they are

actually isometrically isomorphic.
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Proposition 2.5 Let X, Y be Banach spaces and 1 ≤ p ≤ ∞. For each

n ∈ N, let Qn : 	p(Y ) → Y be the operator Qn((yi)
∞
i=1) = yn. The correspon-

dence T �−→ (QnT )∞n=1 is an isometric isomorphism from L(X, 	p(Y )) onto

	sp(X, Y ).

PROOF. Given T ∈ L(X, 	p(Y )), the sequence Tn = QnT , n = 1, 2, . . . ,

belongs to 	sp(X, Y ) and

‖(Tn)‖	sp(X,Y ) = sup
x∈BX

( ∞∑
n=1

‖QnTx‖pY
) 1

p
= sup

x∈BX

‖Tx‖	p(Y ) = ‖T‖X,	p(Y ).

Therefore, the correspondence T �−→ (QnT )∞n=1 induces an isometry. To see

the isomorphism let us take (Sn) ∈ 	sp(X, Y ) and note that S : X −→ 	p(Y )

defined by S(x) = (Snx)∞n=1 gives a bounded operator and QnS = Sn. �
As a consequence, we get that 	wp (X∗) is isometrically isomorphic to

L(X, 	p) for any 1 ≤ p ≤ ∞ and any Banach space X (see [5], Prop. 19.4.3).

Let us also recall that, for every Banach space Z, 	wp (Z) is also isometrically

isomorphic to L(	p′ , Z) if 1 < p < ∞ and L(co, Z) for p = 1. In these

last cases the isomorphims are given by associating to each operator T the

sequence xn = T (en). Of course the connection between both results goes

through the adjoint operator.

Combining both identifications we get that the strongly p-summable se-

quences in L(	q′ , X) are precisely the weakly q-summable sequences in 	p(X).

Corollary 2.6 Let X be a Banach space, 1 ≤ p ≤ ∞ and 1 < q < ∞. Then

the map Ψ : 	wq (	p(X)) → 	sp(	q′ , X), defined by Ψ((xk)k) = (Tn)n where Tn

are defined by Tn(ek) = Qn(xk) for all n, k ∈ N, is an isometric isomorphism.

Similar result is true for q = 1 replacing 	∞ by co.

The concept of strongly p-summing sequence can now be used to define

new classes of p-summing type operators.

Definition 2.7 Let 1 ≤ p < ∞. Let X, Y, Z and W be Banach spaces.
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An operator Φ : L(X, Y ) −→ Z is said to be (	sp, 	p)-summing if there

exists a constant C > 0 such that

( n∑
i=1

‖Φ(Ti)‖pZ
) 1

p ≤ C sup
x∈BX

( n∑
i=1

‖Tix‖pY
) 1

p
(2.1)

for any finite family of operators T1, . . . , Tn in L(X, Y ).

An operator Φ : X −→ L(Y, Z) is said to be (	wp , 	
s
p)-summing if there

exist a constant C > 0 such that

sup
y∈BY

( n∑
i=1

‖Φ(xi)(y)‖pZ
) 1

p ≤ C sup
x∗∈BX∗

( n∑
i=1

|〈x∗, xi〉|p
) 1

p
(2.2)

for every choice of elements x1, . . . , xn in X.

An operator Φ : L(X, Y ) −→ L(Z,W ) is said to be (	sp, 	
s
p)-summing if

there exist a constant C > 0 such that

sup
z∈BZ

( n∑
i=1

‖Φ(Ti)(z)‖pW
) 1

p ≤ C sup
x∈BX

( n∑
i=1

‖Tix‖pY
) 1

p
.(2.3)

for every choice of operators T1, . . . , Tn in L(X, Y ).

The least constants in (2.1), (2.2) and (2.3) are denoted by π(	sp,	p)(Φ),

π(	wp ,	
s
p)(Φ) and π(	sp,	

s
p)(Φ) respectively.

We shall denote by Π(	sp,	p)(L(X, Y ), Z) the space of all (	sp, 	p)-summing

operators from L(X, Y ) to Z, by Π(	wp ,	
s
p)(X,L(Y, Z)) the space of all (	wp , 	

s
p)-

summing operators from X to L(Y, Z) and by Π(	sp,	
s
p)(L(X, Y ),L(Z,W )) the

space of all strongly (	sp, 	p)-summing operators from L(X, Y ) to L(Z,W ).

Π(	sp,	p)(L(X, Y ), Z), Π(	wp ,	
s
p)(X,L(Y, Z)) and Π(	sp,	

s
p)(L(X, Y ),L(Z,W ))

become Banach spaces with the norms π(	sp,	p)(·), π(	wp ,	
s
p)(·) π(	sp,	

s
p)(·), respec-

tively.

The corresponding definitions for p = ∞ would simply lead to the space

of bounded operators in all cases.

Alternative definition for (	sp, 	p)-summing operators is the following one:

Remark 2.8 Let 1 ≤ p < ∞ and Φ ∈ L(L(X, Y ), Z). The following are

equivalent:
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i) Φ is (	sp, 	p)-summing.

ii) Φ maps sequences (Tn) ∈ 	sp(X, Y ) into sequences (Φ(Tn)) ∈ 	p(Z).

iii) The linear operator Φ̃ : 	sp(X, Y ) −→ 	p(Z) defined by Φ̃((Tn)
∞
n=1) =

(Φ(Tn))
∞
n=1 is continuous.

Similar equivalences are true for (	wp , 	
s
p)-summing operators and (	sp, 	

s
p)-

summing operators.

Remark 2.9 It is rather easy to see that, when some of the spaces is fi-

nite dimensional, the classes Π(	sp,	p)(L(X, Y ), Z), Π(	wp ,	
s
p)(X,L(Y, Z)) reduce

either to bounded operators or to p-summing operators and that the class

Π(	sp,	
s
p)(L(X, Y ),L(Z,U)) reduces to one of the previous cases.

Remark 2.10 Recall that dimX = ∞ implies Πp(X,X) � L(X,X) and

observe that

Π(	sp,	p)(L(K, X∗), Y ) = L(X∗, Y )

and

Π(	sp,	p)(L(X,K), Y ) = Πp(X
∗, Y ).

Therefore, for any infinite dimensional X, we have

Π(	sp,	p)(L(K, X∗), Y ) �= Π(	sp,	p)(L(X,K), Y ), for some Banach space Y,

Π(	sp,	p)(L(X,K),L(X,K)) � Π(	wp ,	
s
p)(L(X,K),L(X,K)),

Π(	wp ,	
s
p)(L(K, X),L(K, X)) � Π(	sp,	p)(L(K, X),L(K, X)).

Remark 2.11 If A and B are spaces of operator then

Πp(A,B) ⊆ Π(	wp ,	
s
p)(A,B) ∩ Π(	sp,	p)(A,B),

Π(	wp ,	
s
p)(A,B) ∪ Π(	sp,	p)(A,B) ⊆ Π(	sp,	

s
p)(A,B).

It is not difficult to show that the inclusions are strict in general.
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Remark 2.12 (i) For each x ∈ X, the evaluation map ex : L(X, Y ) → Y

given by ex(T ) = Tx is (	s1, 	1)-summing.

(ii) For each y ∈ Y , the operator Φy : X∗ → L(X, Y ) given by Φy(x
∗) =

x∗ ⊗ y is (	w1 , 	
s
1)-summing.

(iii) For each S ∈ L(Y, Z) the operator ΦS : L(X, Y ) → L(X,Z) given

by ΦS(T ) = ST is (	s1, 	
s
1)-summing. Moreover, if S ∈ Πp(Y, Z), 1 ≤ p < ∞,

then ΦS is (	wp , 	
s
p)-summing.

We now show that actually Π(	wp ,	
s
p)(X,L(Y, Z)) and L(Y,Πp(X,Z)) can

be identified.

Theorem 2.13 Let Φ : X −→ L(Y, Z) be a bounded operator and let us

define Φ# : Y −→ L(X,Z) by Φ#(y)(x) := Φ(x)(y), x ∈ X, y ∈ Y .

The correspondence Φ �−→ Φ# is an isometric isomorphism between

Π(	wp ,	
s
p)(X,L(Y, Z)) and L(Y,Πp(X,Z)).

PROOF. Take Φ ∈ Π(	wp ,	
s
p)(X,L(Y, Z)) and y ∈ Y , then

( n∑
i=1

‖Φ#(y)(xi)‖pZ
) 1

p ≤ ‖y‖Y Π(	wp ,	
s
p)(Φ) sup

x∗∈BX∗

( n∑
i=1

|〈x∗, xi〉|p
) 1

p

for every choice of elements {x1, . . . , xn} in X. Thus, Φ#(y) ∈ Πp(X,Z)

and πp(Φ
#(y)) ≤ ‖y‖Y π(	wp ,	

s
p)(Φ). Hence Φ# ∈ L(Y,Πp(X,Z)) and ‖Φ#‖ ≤

π(	wp ,	
s
p)(Φ).

On the other hand, if Ψ ∈ L(Y,Πp(X,Z)) then

sup
y∈BY

( n∑
i=1

‖Ψ#(xi)(y)‖pZ
) 1

p
= sup

y∈BY

( n∑
i=1

‖Ψ(y)(xi)‖pZ
) 1

p

≤ sup
y∈BY

{πp(Ψ(y))} sup
x∗∈BX∗

( n∑
i=1

|〈x∗, xi〉|p
) 1

p

≤ ‖Ψ‖ sup
x∗∈BX∗

( n∑
i=1

|〈x∗, xi〉|p
) 1

p

for every finite sequence {x1, . . . , xn} in X. Hence Ψ# ∈ Π(	wp ,	
s
p)(X,L(Y, Z))

and π(	wp ,	
s
p)(Ψ

#) ≤ ‖Ψ‖. Since (Ψ#)# = Ψ the proof is finished. �
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Therefore, the class Π(	wp ,	
s
p) inherits some properties from those in Πp. For

example, Grothendieck theorem (see [3], Theorem 1.13) implies the following:

Corollary 2.14 Let X be a Banach space. Every operator from 	1 into

L(X, 	2) is (	w1 , 	
s
1)-summing, i.e. Π(	w1 ,	

s
1)(	1,L(X, 	2)) = L(	1,L(X, 	2)).

Corollary 2.15 Let X be a Banach space, K be a compact Hausdorff space

and (Ω, µ) be a σ-finite measure space.

Every operator from C(K) into L(X,L1(Ω, µ)) is (	w2 , 	
s
2)-summing, i.e.

Π(	w2 ,	
s
2)(C(K),L(X,L1(µ))) = L(C(K),L(X,L1(µ))).

Furthermore, arguing as in Theorem 2.13 we get also the following result

whose proof is left to the interested reader.

Theorem 2.16 The correspondence Φ �−→ Φ# is an isometric isomorphism

between Π(	sp,	
s
p)(L(X, Y ),L(Z,W )) and L(Z,Π(	sp,	p)(L(X, Y ),W )).

We would like to point out also certain behaviour of these classes as

operator ideals and some composition results. The proof of the following

proposition is straightforward.

Proposition 2.17 Let 1 ≤ p < ∞ and let X, Y , Z, W , U , X0 and Z0 be

Banach spaces.

1) If Φ ∈ Π(	sp,	p)(L(X, Y ), Z) and Ψ ∈ L(Z,Z0), then the composition ΨΦ

belongs to Π(	sp,	p)(L(X, Y ), Z0) with π(	sp,	p)(ΨΦ) ≤ ‖Ψ‖Z,Z0 ·π(	sp,	p)(Φ). That

is, L ◦ Π(	sp,	p) ⊆ Π(	sp,	p).

2) If Φ ∈ L(X0, X) and Ψ ∈ Π(	wp ,	
s
p)(X,L(Y, Z)), then the composition ΨΦ

belongs to Π(	wp ,	
s
p)(X0,L(Y, Z)) with π(	wp ,	

s
p)(ΨΦ) ≤ π(	wp ,	

s
p)(Ψ)·‖Φ‖X0,X . That

is, Π(	wp ,	
s
p) ◦ L ⊆ Π(	wp ,	

s
p).

3) If Φ ∈ Π(	sp,	
s
p)(L(X, Y ),L(Z,W )) and Ψ ∈ Π(	sp,	p)(L(Z,W ), U), then ΨΦ ∈

Π(	sp,	p)(L(X, Y ), U) with π(	sp,	p)(ΨΦ) ≤ π(	sp,	p)(Ψ)·π(	sp,	
s
p)(Φ). That is, Π(	sp,	p)◦

Π(	sp,	
s
p) ⊆ Π(	sp,	p).
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4) If Φ ∈ Π(	wp ,	
s
p)(X,L(Y, Z)) and Ψ ∈ Π(	sp,	

s
p)(L(Y, Z),L(W,U)), then ΨΦ ∈

Π(	wp ,	
s
p)(X,L(W,U)) with π(	wp ,	

s
p)(ΨΦ) ≤ π(	wp ,	

s
p)(Ψ) · π(	wp ,	

s
p)(Φ). That is,

Π(	sp,	
s
p) ◦ Π(	wp ,	

s
p) ⊆ Π(	wp ,	

s
p).

5) If Φ ∈ Π(	wp ,	
s
p)(X,L(Y, Z)) and Ψ ∈ Π(	sp,	p)(L(Y, Z),W ), then ΨΦ ∈

Πp(X,W ) with πp(ΨΦ) ≤ π(	sp,	p)(Ψ) · π(	wp ,	
s
p)(Φ). That is, Π(	sp,	p) ◦Π(	wp ,	

s
p) ⊆

Πp.

The classical theorem of Pietsch stated that if Φ is q-summing and Ψ is

p-summing then ΨΦ is r-summing, with 1
r

= min{1, 1
p
+ 1

q
} (see [3], Theorem

2.22 or [5], Theorem 19.10.3). Next we establish that when Ψ is (	wp , 	
s
p)-

summing then ΨΦ is (	wr , 	
s
r)-summing. The proof follows along the lines of

Theorem 2.22 in [3].

Proposition 2.18 Let Φ ∈ Πq(X, Y ) and Ψ ∈ Π(	wp ,	
s
p)(Y,L(Z,W )) with

1 ≤ p, q < ∞. Define 1 ≤ r < ∞ by 1
r

= min{1, 1
p
+ 1

q
}. Then ΨΦ is (	wr , 	

s
r)-

summing with πsr(ΨΦ) ≤ π(	wp ,	
s
p)(Ψ)πq(Φ). That is, Π(	wp ,	

s
p) ◦ Πq ⊆ Π(	wr ,	

s
r).

PROOF. We assume first that 1
p

+ 1
q
≤ 1 then 1

r
= 1

p
+ 1

q
. Let (xn) ∈ 	wr (X)

be given. Applying Lemma 2.23 in [3] we get sequences (σn) ∈ 	q and (yn) ∈
	wp (Y ) such that ‖(σn)‖	q ≤ ‖(xn)‖r/q	wr (X), ‖(yn)‖	wp (Y ) ≤ πq(Φ)‖(xn)‖r/p	wr (X) and

Φ(xn) = σnyn for all n. By Hölder’s inequality, using that Ψ is (	wp , 	
s
p)-

summing and that [ΨΦ(xn)](z) = σn[Ψ(yn)(z)] for every z ∈ Z, we get

sup
z∈BZ

( k∑
n=1

‖[ΨΦ(xn)](z)‖rW
) 1

r ≤
( k∑
n=1

|σn|q
) 1

q
sup
z∈BZ

( k∑
n=1

‖Ψ(yn)(z)‖pW
) 1

p

≤ ‖(xn)‖r/q	wr (X)π(	wp ,	
s
p)(Ψ) sup

y∗∈BY ∗

( k∑
n=1

|〈y∗, yn〉|p
) 1

p

≤ π(	wp ,	
s
p)(Ψ) · πq(Φ) · ‖(xn)‖	wr (X).

Then ΨΦ belongs to Π(	wr ,	
s
r)(X,L(Z,W )).

If 1
p

+ 1
q
> 1 and we assume that 1 < p ≤ q, then Φ ∈ Πp′(X, Y ) with

πp′(Φ) ≤ πq(Φ) and applying the first part with p and p′ we get ΨΦ ∈
Π(	w1 ,	

s
1)(X,L(Z,W )), which completes the proof. �
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3 (	sp, 	p)-summing operators

Let us now present several examples of such operators. The first one connects

the notion of p-summing and (	sp, 	p)-summing operators.

Let 1 ≤ p < ∞ and let T : X −→ Y be a bounded operator. Denote

T̃ : L(	p′ , X) −→ 	p(Y ) the map given by T̃ (S) = (TSen)
∞
n=1. Recall that T

is p-summing if and only if T̃ is bounded and πp(T ) = ‖T̃‖.
We first study when T̃ is (	sp, 	p)-summing operator. The answer is given

in the following theorem.

Theorem 3.1 Let X, Y be Banach spaces, 1 < p < ∞ and T ∈ L(X, Y ).

Then T̃ ∈ Π(	sp,	p)(L(	p′ , X), 	p(Y )) if and only if T̄ ∈ Πp(	p(X), 	p(Y )) where

T̄ : 	p(X) → 	p(Y ) is given by T̄ ((xj)
∞
j=1) = (T (xj))

∞
j=1. Moreover πp(T̄ ) =

π(	sp,	p)(T̃ ).

Same result holds for p = 1 with the replacement of 	∞ by c0.

PROOF. Assume that T̃ ∈ Π(	sp,	p)(L(	p′ , X), 	p(Y )). Given (xk)k ∈ 	wp (	p(X))

we define the operators Tn : 	p′ → X such that Tn(ek) = Qn(xk) for all

n, k ∈ N. Since Corollary 2.6 gives that (Tn) ∈ 	sp(	p′ , X) then (T̃ (Tn))n =

((TTn(ek))k)n ∈ 	p(	p(Y )). Now we have

∞∑
k=1

‖T̄ (xk)‖p	p(Y ) =
∞∑
n=1

∞∑
k=1

‖T (Qn(xk))‖pY =
∞∑
n=1

‖T̃ (Tn)‖p	p(Y )

≤ (π(	sp,	p)(T̃ ))p‖(Tn)‖p	sp(	p′ ,X) = (π(	sp,	p)(T̃ ))p‖(xk)‖p	wp (	p(X)).

For the converse assume that T̄ is p-summing and, as above, we write
∞∑
n=1

‖T̃ (Tn)‖p	p(Y ) =
∞∑
k=1

‖T̄ (xk)‖p	p(Y )

≤ (πp(T̄ ))p‖(xk)‖p	wp (	p(X)) = (πp(T̄ ))p‖(Tn)‖p	sp(	p′ ,X).

�

Example 3.2 Let 1 < p < ∞, X, Y be Banach spaces. Assume that

T ∈ Πp(X
∗, Y ), then the operator

ΦT : L(X, 	p) −→ 	p(Y )
u � (Tu∗(ei))

∞
i=1

12



is (	sp, 	p)-summing with π(	sp,	p)(ΦT ) = πp(T ).

PROOF. For any choice of u1, . . . , uN ∈ L(X, 	p), since T : X∗ −→ Y is

p-summing we have

N∑
n=1

‖ΦT (un)‖p	p(Y ) = sup
m

{ m∑
i=1

N∑
n=1

‖Tu∗n(ei)‖pY
}

≤ (πp(T ))p sup
m

sup
x∈BX

{ m∑
i=1

N∑
n=1

|〈u∗n(ei), x〉|p
}

= (πp(T ))p sup
x∈BX

sup
m

{ m∑
i=1

N∑
n=1

|〈ei, unx〉|p
}

≤ (πp(T ))p sup
x∈BX

{ N∑
n=1

‖unx‖p	p
}
.

Therefore ΦT is (	sp, 	p)-summing and π(	sp,	p)(ΦT ) ≤ πp(T ). Therefore ΦT

is (	sp, 	p)-summing and π(	sp,	p)(ΦT ) ≤ πp(T ). It is straightforward to get

equality of norms since π(	sp,	p)(ΦT ) ≥ ‖ΦT‖ = πp(T ). �

Example 3.3 Let 1 ≤ p < ∞, let X be a reflexive Banach space, Y be a sep-

arable Banach space and Lp(µ, Y ) denote the space of Bochner p-integrable

functions. If µ is a finite Borel measure on the compact topological space

(BX , σ(X,X∗)) then the operator Θp : L(X, Y ) −→ Lp(µ, Y ) defined by

Θp(T )(x) = T (x), x ∈ BX , is (	sp, 	p)-summing with π(	sp,	p)(Θp) ≤ µ(BX)
1
p .

PROOF. We first note that x → T (x) is weakly continuous function on BX

and hence weakly measurable. Using the separability of Y we get that it is

a bounded measurable function and then in Lp(µ, Y ). This shows that the

operator Θp is well defined and bounded.

If T1, . . . , Tn are in L(X, Y ), then

n∑
i=1

‖Θp(Ti)‖pLp(µ,Y ) =
n∑
i=1

∫
BX

‖Ti(x)‖pY dµ(x)

≤ µ(BX) sup
x∈BX

{ n∑
i=1

‖Ti(x)‖pY
}
.

13



Hence we have that Θp is (	sp, 	p)-summing and π(	sp,	p)(Θp) ≤ µ(BX)
1
p . �

Example 3.4 Let (Ω, µ) be a σ-finite measure space, X, Y be Banach

spaces, 1 ≤ p < ∞ and denote by Lp(µ,X) the space of Bochner p-integrable

functions. For each f ∈ Lp(µ,X), the operator Φf : L(X, Y ) −→ Lp(µ, Y )

defined by Φf (T )(w) = T (f(w)), w ∈ Ω, is (	sp, 	p)-summing and π(	sp,	p)(Φf ) ≤
‖f‖Lp(µ,X).

PROOF. Observe first that the operator is well defined. Let T1, . . . , Tn op-

erators from X into Y . If E = {w ∈ Ω : f(w) �= 0} then

n∑
i=1

‖Φf (Ti)‖pLp(µ,Y ) =
n∑
i=1

∫
E

‖Ti(f(w))‖pY dµ(w)

=
n∑
i=1

∫
E

‖Ti(
f(w)

‖f(w)‖)‖pY ‖f(w)‖pdµ(w)

≤ ‖f‖pLp(µ,X) sup
x∈BX

( n∑
i=1

‖Tix‖pY
)
.

�

Example 3.5 Let 1 ≤ p < ∞ and let X, Y be Banach spaces. Any sequence

(Tn)
∞
n=1 ∈ 	p(X, Y ) induces an operator

∆T : L(	1, X) −→ 	p(Y )
S � (TnS(en))

∞
n=1

which is (	sp, 	p)-summing with π(	sp,	p)(∆T ) ≤ ‖(Tn)‖	p(X,Y ).

PROOF. Take S1, . . . , SN ∈ L(	1, X), then

N∑
k=1

‖∆T (Sk)‖p =
N∑
k=1

∞∑
n=1

‖TnSk(en)‖pY ≤ (
∞∑
n=1

‖Tn‖p) sup
a∈B�1

( N∑
k=1

‖Sk(a)‖pX
)
.

This gives that π(	sp,	p)(∆T ) ≤ ‖(Tn)‖	p(X,Y ). �

To finish the section we give several equivalent formulations for the notion

of (	sp, 	p)-summing operator.

14



Note that we can write the fact (Tn)n∈N ∈ 	sp(X, Y ) using duality:

sup
x∈BX

( n∑
i=1

‖Tix‖pY
) 1

p
= sup

(y∗i )∈B�n
p′ (Y

∗)

∥∥∥
n∑
i=1

T ∗
i y

∗
i

∥∥∥
X∗
.

Proposition 3.6 Let 1 ≤ p < ∞ and Φ ∈ L(L(X, Y ), Z). The following

statements are equivalent:

i) Φ ∈ Π(	sp,	p)(L(X, Y ), Z).

ii) There exists a constant C > 0 such that

( n∑
i=1

‖Φ(Ti)‖pZ
) 1

p ≤ C sup
(y∗i )∈B�n

p′ (Y
∗)

∥∥∥
n∑
i=1

T ∗
i y

∗
i

∥∥∥
X∗

(3.1)

for every T1, . . . , Tn in L(X, Y ).

Moreover π(	sp,	p)(Φ) = inf{C : C verifying (3.1)}.

Proposition 3.7 Let 1 ≤ p < ∞ and Φ ∈ L(L(X, Y ), Z). The following

statements are equivalent:

i) Φ ∈ Π(	sp,	p)(L(X, Y ), Z).

ii) For each u ∈ L(X, 	p(Y )) the operator

Φu : L(	p(Y ), Y ) −→ Z
T � Φ(Tu)

is (	sp, 	p)-summing.

iii) There exist a constant c such that π(	sp,	p)(Φu) ≤ c‖u‖ for each n ∈ N and

each u ∈ L(X, 	np (Y )).

Moreover

π(	sp,	p)(Φ) = sup{π(	sp,	p)(Φu) : u ∈ L(X, 	p(Y ), ||u|| = 1}
= inf{c : c verifies (iii)}.
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PROOF. (i)⇒(ii) Observe that Ψu : L(	p(Y ), Y ) → L(X, Y ), Ψu(T ) =

Tu, is strongly (	sp, 	p)-summing with π(	sp,	
s
p)(Ψu) ≤ ‖u‖ and Φu = ΦΨu.

Then by (iii) in Proposition 2.17, Φu is (	sp, 	p)-summing with π(	sp,	p)(Φu) ≤
π(	sp,	p)(Φ) · ‖u‖.

(ii)⇒(iii) It follows easily from the closed graph theorem.

(iii)⇒(i) Let T1, . . . , Tn be operators in L(X, Y ) and let Sn : X −→ 	np (Y )

be defined by Sn(x) = (Tix)ni=1. Note that ‖Sn‖X,	np (Y ) = ‖(Ti)ni=1‖	sp(X,Y ).

For i = 1, . . . , n we denote by Qi,n the projections Qi,n : 	np (Y ) −→ Y

given by Qi,n(yj)
n
j=1 = yi. Hence for each n ∈ N and i = 1, . . . , n, Ti = Qi,nSn

and Φ(Ti) = Φ(Qi,nSn) = ΦSn(Qi,n). By hypothesis ΦSn is (	sp, 	p)-summing

with π(	sp,	p)(ΦSn) ≤ B‖Sn‖X,	np (Y ), thus

( n∑
i=1

‖Φ(Ti)‖pZ
) 1

p
=

( n∑
i=1

‖ΦSn(Qi,n)‖pZ
) 1

p

≤ B‖Sn‖X,	np (Y ) sup
{( n∑

i=1

‖Qi,n(λ)‖pY
) 1

p
: λ ∈ B	np (Y )

}

≤ B‖(Ti)ni=1‖	sp(X,Y ).

Consequently, Φ is (	sp, 	p)-summing with π(	sp,	p)(Φ) ≤ B. �

4 Relations between the classes

As in the case of p-summing operators we have the following inclusions.

Proposition 4.1 Let X, Y, Z and W be Banach spaces and 1 ≤ p < q ≤ ∞.

Then

(i) Π(	wp ,	
s
p)(X,L(Y, Z)) ⊂ Π(	wq ,	

s
q)(X,L(Y, Z)).

(ii) Π(	sp,	p)(L(X, Y ), Z) ⊂ Π(	sq ,	q)(L(X, Y ), Z).

(iii) Π(	sp,	
s
p)(L(X, Y ),L(Z,W )) ⊂ Π(	sq ,	

s
q)(L(X, Y ),L(Z,W )).

PROOF. (i) follows from Theorem 2.13 and Πp(X,Z) ⊂ Πq(X,Z).

To see (ii) we take Φ ∈ Π(	sp,	p)(L(X, Y ), Z) and Tk ∈ L(X, Y ) for k =

1, ..., n. Let us write
∑n

k=1 ‖Φ(Tk)‖q =
∑n

k=1 ‖Φ(βkTk)‖p where βk = ‖Φ(Tk)‖
q−p

p .
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Applying Hölder’s inequality with conjugate indices q
p

and q
q−p we get

n∑
k=1

‖Φ(Tk)‖q ≤ (π(	sp,	p)(Φ))p sup
x∈BX

( n∑
k=1

‖Tk(x)‖pβpk
)

≤ (π(	sp,	p)(Φ))p sup
x∈BX

( n∑
k=1

‖Tk(x)‖q
)p/q( n∑

k=1

β
qp

q−p

k

) (q−p)
q

= (π(	sp,	p)(Φ))p sup
x∈BX

( n∑
k=1

‖Tk(x)‖q
)p/q( n∑

k=1

‖Φ(Tk)‖q
) (q−p)

q
.

This gives that

( n∑
k=1

‖Φ(Tk)‖q
)1/q

≤ π(	sp,	p)(Φ) sup
x∈BX

( n∑
k=1

‖Tk(x)‖q
)1/q

.

(iii) now follows using Theorem 2.16 and (ii). �
Next we are going to see that, under some assumptions on the Banach

spaces, these classes coincide, at least for certain values of p and q.

Let us recall that some classical result, due to B. Maurey (see [10] or [3],

Theorem 11.13), states that if Y has cotype 2 and 2 < p < ∞ then

Πp(X, Y ) = Π2(X, Y ).

Using Theorem 2.13 we get the following corollary.

Corollary 4.2 Let X, Y, Z be Banach spaces and 2 < p < ∞. Assume that

Z has cotype 2, then Π(	wp ,	
s
p)(X,L(Y, Z)) = Π(	w2 ,	

s
2)(X,L(Y, Z)).

It is natural to ask whether there are generalizations in the framework of

(	sp, 	p)-summing operators. Next result is the extension of Theorem 1.2.3 in

[6] to our setting.

Theorem 4.3 Let X, Y, Z and W be Banach spaces and 2 < p < ∞.

Assume that Y has type 2 and Z has cotype 2. Then

Π(	sp,	p)(L(X, Y ), Z) = Π(	s2,	2)(L(X, Y ), Z).
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PROOF. Let Φ ∈ Π(	sp,	p)(L(X, Y ), Z) and T1, . . . , Tn be a finite sequence

of operators in L(X, Y ). Using that Z has cotype 2 one has

( n∑
i=1

‖Φ(Ti)‖2
Z

) 1
2 ≤ C2(Z)

∫ 1

0

∥∥∥
n∑
i=1

ri(t)Φ(Ti)
∥∥∥
Z
dt

≤ C2(Z)
(∫ 1

0

∥∥∥Φ
( n∑
i=1

ri(t)Ti

)∥∥∥p

Z
dt

) 1
p
.

Observe that
∑n

i=1 ri(t)Ti is a simple function
∑2n

j=1 Sjχ[ j−1
2n , j

2n ) for some

operators Sj and then

∫ 1

0

∥∥∥Φ
( n∑
i=1

ri(t)Ti

)∥∥∥p

Z
dt = 2−n

2n∑
j=1

‖Φ(Sj)‖pZ

≤ (π(	sp,	p)(Φ))p2−n sup
x∈BX

2n∑
j=1

‖Sj(x)‖pY

≤ (π(	sp,	p)(Φ))p sup
x∈BX

∫ 1

0

∥∥∥
n∑
i=1

ri(t)Ti(x)
∥∥∥p

Y
dt.

Hence, using Kahane’s inequality and the type 2 condition on Y , it yields

( n∑
i=1

‖Φ(Ti)‖2
Z

) 1
2 ≤ π(	sp,	p)(Φ)C2(Z) sup

x∈BX

(∫ 1

0

∥∥∥
n∑
i=1

ri(t)Ti(x)
∥∥∥p

Y
dt

) 1
p

≤ π(	sp,	p)(Φ)C2(Z)Kp sup
x∈BX

∫ 1

0

∥∥∥
n∑
i=1

ri(t)Ti(x)
∥∥∥
Y
dt

≤ π(	sp,	p)(Φ)C2(Z)T2(Y )Kp sup
x∈BX

( n∑
i=1

‖Ti(x)‖2
Y

) 1
2

and the proof is finished. �

Corollary 4.4 Let 2 < p < ∞, X, Y, Z and W be Banach spaces. If Y has

type 2 and W has cotype 2, then

Π(	sp,	
s
p)(L(X, Y ),L(Z,W )) = Π(	s2,	

s
2)(L(X, Y ),L(Z,W )).
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In particular we get the following applications to operators acting on

	wr (X) = L(	r′ , X).

Corollary 4.5 Let X and Y be Banach spaces of type 2 and cotype 2 re-

spectively. If 2 < p < ∞ and 1 ≤ r, q < ∞, then

(i) Π(	sp,	p)(	
w
r (X), Y ) = Π(	s2,	2)(	

w
r (X), Y ).

(ii) Π(	sp,	
s
p)(	

w
r (X), 	wq (Y )) = Π(	s2,	

s
2)(	

w
r (X), 	wq (Y )).

5 Open problems

Recall the domination theorem in the setting of (p, Y )-summing operators

proved by S. Kisliakov.

Theorem 5.1 (see [6] ) Let 1 ≤ p < ∞ and X, Y and Z be Banach spaces.

An operator T : X⊗̌Y → Z is (p, Y )-summing if and only if there are a

probability measure µ on (BX∗ , σ(X∗, X)) and a constant C > 0 such that

for all u ∈ X ⊗ Y one has

‖T (u)‖pZ ≤ Cp

∫
BX∗

‖u(x∗)‖pY dµ(x∗).

Moreover πYp (T ) is the least of the constants verifying the previous estimate.

Question 1. Let 1 ≤ p < ∞ and X, Y and Z be Banach spaces. Assume

T : L(X∗, Y ) → Z is (	sp, 	p)-summing operator.

Does there exist a probability measure µ on (BX∗ , σ(X∗, X)) and a con-

stant C > 0 such that

‖T (u)‖pZ ≤ Cp

∫
BX∗

‖u(x∗)‖pY dµ(x∗)

for all u ∈ L(X∗, Y ) ?

The reader should be aware that the classical proofs can be repeated,

under certain assumptions of reflexivity and separability on the spaces X

and Y . The difficulty appears when dealing with general Banach spaces.

Now let us point out that the authors, relying upon Theorem 5.1, have

been able to show the following result about composition operators for (p, Y )-

summing operators.
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Theorem 5.2 (see [1]) Let X, Y, Z and W be Banach spaces and 1 ≤
p, q, s ≤ ∞ where 1

q
= 1

p
+ 1

s
≤ 1. If T ∈ ΠY

p (X⊗̌Y, Z) and S ∈ Πs(Z,W )

then the operator ST ∈ ΠY
q (X⊗̌Y,W ) and πYq (ST ) ≤ πs(S) · πYp (T ).

Since we do not have at our disposal such a domination theorem in general

we do not know the answer to the following question.

Question 2. Let X, Y, Z and W be Banach spaces and 1 ≤ p, q, r ≤ ∞
where 1

q
= 1

p
+ 1

r
≤ 1. Let T ∈ Π(	sp,	p)(L(X, Y ), Z) and S ∈ Πr(Z,W ).

Does ST belong to Π(	sq ,	q)(L(X, Y ),W ) ?
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