
K-CONVEXITY AND DUALITY FOR
ALMOST SUMMING OPERATORS

O. BLASCO; V. TARIELADZE and R. VIDAL ∗

Setember, 1999

Abstract

For a fixed sequence f. = (fn) of independent identically distrib-
uted symmetric random variables with Ef2

1 = 1, we introduce the
notion of Kf.-convex Banach space and the notions (fn)-bounding
and (fn)-converging operators acting between Banach spaces. It is
shown that the dual of the space of (fn)-converging operators between
a Hilbert space and a Kf.-convex Banach space admits a precise de-
scription in terms of trace duality. The obtained results recover similar
formulations for almost summing and γ-Radonifying operators.

1 Introduction

Given two Banach spaces X and Y we shall be dealing with the class of
operators u : X → Y which map sequences (xn) in lweak

2 (X) into series∑
u(xn)fn which converge in L2(Ω;Y ),where (fn) is a sequence of inde-

pendent identically distributed symmetric random variables with Ef 2
1 = 1.

We shall call these operators (fn)-converging operators and the class of all
(fn)-converging operators will be denoted by R(fn)(X, Y ). In the case (fn)
being the Rademacher sequence (rn) they are called almost summing op-
erators and denoted by Πas(X, Y ) (see [?]) and for (fn) being the standard
gaussian sequences (γn) they are called γ-Radonifying operators and denoted
by Rγ(X, Y ).

Our aim is to describe the dual of the R(fn)(H,X) for an infinite di-
mensional separable Hilbert space H. Previous results for finite dimensional
Hilbert space and (γn) were achieved in [?]. Motivated from her results we
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are introducing the space Rdual
(fn)(X,H) given by those continuous linear op-

erators v : X −→ H whose adjoint v∗ ∈ R(fn)(H,X
∗). We are showing

that for an arbitrary u ∈ R(fn)(H,X) and v ∈ Rdual
(fn)(X,H), the operator

vu : H −→ H is nuclear and the linear functional u −→ tr(vu) is continuous
on R(fn)(H,X). In this way Rdual

(fn)(X,H) can be identified with a subspace

of (R(fn)(H,X))∗.
We shall be able to give a complete characterisation of the dual in terms

of the trace duality only for Kf.-convex spaces X (see definition below).
Namely, we are showing that the equality (R(fn)(H,X))∗ = Rdual

(fn)(X,H)

holds isomorphically in the sense of trace duality if and only if X is Kf.-
convex.

As a corollary of our results we get that it is equivalent that X is a K-
convex Banach space to the fact (Πas(H,X))∗ = Πdual

as (X,H) (cf. [?], p. 280)
or to the fact (Rγ(H,X))∗ = Rdual

γ (X,H).
We are not using the general theory of conjugate operators ideals. Our

arguments are based upon the study of the dual of the space s2[(fn), X],
which is given by sequences (xn) such that

∑
xnfn is convergent in L2(Ω, X).

This dual space can be represented as b2[(fn), X∗], the space of sequences
(x∗n) in the dual X∗ such that the series

∑
x∗nfn has bounded partial sums in

L2(Ω, X∗), only in the case that X is Kf.-convex.
In particular we shall show that for any (xn) ∈ Rad(X) and (x∗n) ∈

Rad(X∗) we have
∑ |x∗n(xn)| <∞ and the linear functional (xn) −→ ∑

x∗n(xn)
is continuous on Rad(X). Again the equality (Rad(X))∗ = Rad(X∗) holds
if and only if X is K-convex. The equality (Rad(X))∗ = Rad(X∗) for the
separable Banach spaces having type 2 was obtained in [?] and it was already
pointed out in [?] for the general case.

The paper is divided into three sections. In the first one we are recalling
the facts that will be used in the sequel and introduce a new notion of (fn)-
contractive Banach space (see definition below), that plays a particular role
because it allows to connect the vector-valued sequence spaces with the spaces
of operators which are (fn)-bounding. The second section is devoted to
analyse the duality for sequence spaces and in the last section we prove
duality results for the spaces of (fn)-converging operators between Hilbert
and Banach spaces.
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2 Notation and Auxiliary Results

2.1 Random vector series and (fn)-contractivity.

For a given Banach space X the notations lstrong
p (X) and lweak

p (X), 0 <
p < ∞ have the same meaning as in [?]. If (Ω,A, P ) is a probability space
and X is a Banach space then Lp(Ω,A, P ;X) or shortly Lp(Ω;X) denote the
ordinary space of X-valued strongly measurable functions ξ : Ω −→ X, such
that ‖ξ‖p := (

∫
Ω ‖ξ(ω)‖pdP (ω))1/p <∞.

For a scalar or a vector-valued integrable function f , Ef will denote the
integral

∫
Ω fdP .

Throughout the paper (fn) will stand for a sequence of independent identi-
cally distributed symmetric random variables on (Ω,A, P ) such that Ef 2

1 = 1.
Let us recall the following notations from [?] (p. 316)

b2[(fn);X] =
{
(xn) ∈ XN : sup

n

∥∥∥ n∑
k=1

fkxk

∥∥∥
2
<∞

}
,

s2[(fn);X] =
{
(xn) ∈ XN :

∑
xnfn is convergent in L2(Ω;X)

}
,

S2[(fn);X] =
{∑

xnfn : (xn) ∈ s2[(fn);X]
}
.

Notice that b2[(fn);X] is a Banach space with respect to the norm

|||(xn)|||(fn) = sup
n

∥∥∥ n∑
k=1

fkxk

∥∥∥
2

= lim
n

∥∥∥ n∑
k=1

fkxk

∥∥∥
2
.

The space s2[(fn);X] is a closed subspace of b2[(fn);X] and

|||(xn)|||(fn) =
∥∥∥ ∑

n

xnfn

∥∥∥
2
, (xn) ∈ s2[(fn);X],

and also S2[(fn);X] is a closed subspace of L2(Ω;X). Evidently s2[(fn);X]
and S2[(fn);X] are isometric.

The cases that have been very deeply studied correspond to (fn) being
either the sequence (rn) of Rademacher functions on [0, 1] with the Lebesgue
measure or the sequence (γn) of independent standard Gaussian random vari-
ables on a probability space (Ω,A, P ). We shall denote the space s2[(rn);X]
by Rad(X), although in the literature the notation Rad(X) is sometimes
used for the space S2[(rn);X].

Remark 2.1. In general the sets b2[(fn);X] and s2[(fn);X] are different;
Actually (see [?], p. 347-348) b2[(fn);X] = s2[(fn);X] if and only if X does
not contain a subspace isomorphic to c0.
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Fix two numbers p, q, 1 < p ≤ 2 ≤ q <∞. We recall that a Banach space
X is said to have (fn)-type p, resp. (fn)-cotype q if

lstrong
p (X) ⊂ s2[(fn);X],

resp. if
s2[(fn);X] ⊂ lstrong

q (X).

If X has (fn)-type p (resp. (fn)-cotype q), then the norm of inclusion op-
erator lstrong

p (X) ⊂ s2[(fn);X] (resp. s2[(fn);X] ⊂ lstrong
q (X)) is denoted by

tp(f., X), (resp. cq(f., X)) and is called the type p constant, (resp. cotype q
constant of X).

The spaces of (rn)-type p, (resp. (rn)-cotype q) are named simply type p
(resp. cotype q).

Remark 2.2. (a) It is known that

||
n∑

k=1

rkxk||2 ≤ c1||
n∑

k=1

fkxk||2 (2.1)

for all x1, x2, ..., xn ∈ X and n ∈ N, where c1 = (E|f1|)−1 (see [?], pp.
323-324). Therefore

b2[(fn);X] ⊂ b2[(rn);X].

and
s2[(fn);X] ⊂ Rad(X).

(b) It follows from (a) that if X is of (fn)-type p, then X is type p and
tp(r., X) ≤ c1tp(f., X). Conversely, if X is type p, then X is also (fn)-type
p and tp(f., X) ≤ tp(r., X). (In fact, fix n ∈ N, x1, . . . , xn ∈ X, t ∈ [0, 1].
Since (fn) is i.i.d. symmetric sequence, we can write

||
n∑

k=1

xkfk||22 = E||
n∑

k=1

xkfk||2 = E||
n∑

k=1

xkfkrk(t)||2, ∀t ∈ [0, 1]

Integrating with respect to t, using Fubini’s theorem and Minkowski’s
inequality, we obtain

||
n∑

k=1

xkfk||22 = E
∫ 1

0
||

n∑
k=1

xkfkrk(t)||2dt ≤

≤ t2p(rn, X)E(
n∑

k=1

||xk||p|fk|p)2/p ≤ t2p(rn, X)(
n∑

k=1

||xk||p)2/p.)
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(c) Again using (a) we have that if X has cotype q, thenX has(fn)-cotype
q and cq(f., X) ≤ cq(r., X). The question of validity converse statement is
more delicate (see (e) below).

SupposeX has (fn)-cotype q. Suppose additionally that E|f1|r <∞, ∀r >
0. Observe that then X does not contain ln∞ uniformly (this is not difficult
to check). Using this and (d) (see below) we can conclude that then X has
cotype q and cq(r., X) ≤ Cf1(X)cq(f., X).

(d) When a Banach space X does not contain ln∞ uniformly and E|f1|r <
∞ for all r, 0 < r <∞, then there is a constant Cf1(X) such that

||
n∑

k=1

fkxk||2 ≤ Cf1(X)||
n∑

k=1

rkxk||2

for all x1, x2, ..., xn ∈ X and n ∈ N. This is an important result of [?] (see
Cor. 1.3 and Remark 1.5 (d) of that paper).

Remark 2.3. Let us recall that from the Contraction Principle (see [?],
page 301) we have that

||
n∑

k=1

αkxkfk||2 ≤ max1≤k≤n|αk|||
n∑

k=1

fkxk||2 (2.2)

for all α1, α2, ..., αn ∈ R , x1, x2, ..., xn ∈ X and n ∈ N.
Therefore it follows that if (xn) ∈ b2[(fn);X] (respect. (xn) ∈ s2[(fn);X])

and (αn) ∈ l∞ then (αnxn) ∈ b2[(fn);X] (respect. (αnxn) ∈ s2[(fn);X]).
We shall need the following stronger contractivity property.

Definition 2.1 A Banach space X is (fn)-contractive if there exists a con-
stant c > 0 such that for any (xn) ∈ b2[(fn);X] and any sequence (yn) in X
verifying ∑

|〈yn, x
∗〉|2 ≤

∑
|〈xn, x

∗〉|2, ∀x∗ ∈ X∗,

we have that (yn) ∈ b2[(fn);X] and

|||(yn)|||(fn) ≤ c|||(xn)|||(fn).

The infimum of all constants c for which the last inequality holds is called
the (fn)-contractivity constant of X and it will be denoted bf.(X).

This new notion will be very relevant for our purposes. It is justified by
the following two assertions, first of which is well known (see, e.g., [?], Th.
8)

Proposition 2.1 Any Banach space is (γn)-contractive and bγ.(X) = 1.
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Proposition 2.2 (see [?]) Let X be a Banach space. The following are
equivalent:

(i) X does not contain ln∞ uniformly.
(ii) X is (rn)-contractive.
(iii) X is (fn)-contractive for any (fn) such that E|f1|p < ∞ for all

p, 0 < p <∞.
Moreover, (i) implies that br.(X) ≤ Cγ1(X), where Cγ1(X) is the constant

from Remark 2.2 (b).

2.2 Converging and bounding operators.

Let us now recall some definitions and notation on operators to be used
later on. Let X, Y be Banach spaces. Let us say that a continuous lin-
ear operator u : X −→ Y is (fn)-bounding (respectively (fn)-converging) if
for any (xn) ∈ lweak

2 (X) we have (uxn) ∈ b2[(fn);Y ] (respectively (uxn) ∈
s2[(fn);Y )]). Denote by Π(fn)(X, Y ) (respectively by R(fn)(X, Y )) the set of
all (fn)-bounding (respectively of all (fn)-converging) operators u : X −→ Y .

In the standard way it can be shown, that a linear operator u : X −→ Y
is (fn)-bounding if and only if it is (fn)-summing, i.e., there is a constant
c > 0 such that the inequality

∥∥∥ n∑
k=1

uxkfk

∥∥∥
2
≤ c sup

‖x∗‖≤1

(
n∑

k=1

|x∗(xk)|2
)1/2

holds for all n ∈ N and x1, . . . , xn ∈ X. If u ∈ Π(fn)(X, Y ) then the infimum
of the constants c for which the above inequality holds shall be denoted by
‖u‖(fn) and called the (fn)-bounding norm of u.

It can be shown that (Π(fn)(X, Y ), ‖ ‖(fn)) is a Banach space and R(fn)(X, Y )
is a closed subspace of it.

In [?] (rn)-converging operators are called almost summing and the cor-
responding space is denoted by Πas(X, Y ); the norm ‖u‖(rn) is denoted there
as πas(u). Therefore in our notations Πas(X, Y ) is R(rn)(X, Y ).

The (γn)-bounding operators with the name of γ-summing operators were
introduced in [?]; the notion was discovered independently in [?]. The (γn)-
converging operators sometimes are called γ-Radonifying operators. Already
in [?] is remarked that Π(γn)(H, c0) = R(γn)(H, c0).

Remark 2.4. Notice, that in [?] it is stated incorrectly, that Πas(X, Y ) =
Π(rn)(X, Y ); in fact it can be shown that ifH is an infinite dimensional Hilbert
space, then for a Banach space Y the equality Πas(H, Y ) = Π(rn)(H, Y ) holds
if and only if Y does not contain a subspace isomorphic to c0 (see [?]).
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Notice also that the notion of (fn)-summing operators, where (fn) is an
arbitrary orthonormal sequence, is introduced and studied in [?] and [?].

It follows from Remark 2.2 that, in general,

Π(fn)(X, Y ) ⊂ Π(rn)(X, Y ). (2.3)

The following result, obtained in [?], will be important in further consid-
erations. We formulate it in our notations.

Theorem 2.1 (See [?], p. 240, theorem 12.12). Let X, Y be Banach spaces.
Then Π(rn)(X, Y ) = Π(γn)(X, Y ) and

√
2/ππas(u) ≤ ‖u‖(γn) ≤ πas(u)

for any u ∈ Π(rn)(X, Y ).

Let us collect some easy relationships between (fn)-summing operators
and other well-known classes of operators.
Remark 2.5. Denoting Πp(X, Y ) and Πp,q(X, Y ) the space of p-summing
operators and (p, q)-summing operators. An application of Pietch’s domina-
tion theorem allows us to get the following observations:

(a) Π2(X, Y ) ⊂ Π(fn)(X, Y ).
Moreover ‖u‖(fn) ≤ π2(u) for all u ∈ Π2(X, Y ).

(b) If Y is of cotype q ≥ 2 then Π(fn)(X, Y ) ⊂ Πq,2(X, Y ).
Moreover πq(u) ≤ (E|f1|)−1‖u‖(fn)cq(r., Y ) for all u ∈ Π(fn)(X, Y ) where

cq(r., Y ) is the cotype q-constant of Y .

(c) If H is an infinite dimensional separable Hilbert space and
Π(fn)(X, Y ) ⊂ Π2(X, Y ), then Y is of cotype 2. (In fact, by remark

2.2 (a) we have also Π(rn)(X, Y ) ⊂ Π2(X, Y ), this and Theorem 2.1 imply
Π(γn)(X, Y ) ⊂ Π2(X, Y ). The last inclusion implies that Y is of cotype 2
(see [?])).

(d) If we assume (fn) is such that E|f1|p < ∞ for some p > 2 then
Πp(X, Y ) ⊂ Π(fn)(X, Y ) for all u ∈ Πp(X, Y ).

Moreover ‖u‖(fn) ≤ πp(u)‖f1‖pBp where Bp is the constant appearing in
Kintchine’s inequality.

When dealing with the particular case X being a separable Hilbert space
much easier descriptions of Π(fn)(H, Y ) can be obtained, at least for some
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spaces Y . To formulate the corresponding result we need some more nota-
tions.

Let X be a Banach space and (en) be an orthonormal bases in H. De-

note by Π
(en)
(fn)(H,X), (respectively R

(en)
(fn)(H,X)),the set of continuous lin-

ear operators u : H → X such that (uen) ∈ b2[(fn), X], ( respectively
(uen) ∈ s2[(fn), X]). Evidently these set are vector subspaces of L(H,X).

The functional || ||(en)
(fn) defined by the equality

||u||(en)
(fn) = |||(uen)|||(fn)

is a norm on Π
(en)
(fn)(H,X),andΠ

(en)
(fn)(H,X) is a Banach space with this norm

and also R
(en)
(fn)(H,X) a closed subspace of it.

Notice that R(fn)(H,X) ⊂ R
(en)
(fn)(H,X), Π(fn)(H,X) ⊂ Π

(en)
(fn)(H,X) and

corresponding inclusion maps have norms one.
We have the following well-known characterisation of (γn)-bounding and

(γn)-converging operators.

Proposition 2.3 Let H be a separable Hilbert space, X be a Banach space
and (en) be an orthonormal bases of H. Then following assertions are valid.

(a) Π(γn)(H,X) = Π
(en)
(γn)(H,X) and the equality

‖u‖(γn) = sup
n

∥∥∥ n∑
k=1

γkuek

∥∥∥
2

= lim
n

∥∥∥ n∑
k=1

γkuek

∥∥∥
2

holds for any u ∈ Π(γn)(H,X).

(b)R(γn)(H,X) = R
(en)
(γn)(H,X) and the equality

‖u‖(γn) =
∥∥∥∑

γkuek

∥∥∥
2

(2.4)

holds for any u ∈ R(γn)(H,X).

Remark 2.6. In page 82 of [?] the norm ‖u‖(γn) denoted as l(u) and it
is stated incorrectly that the equality (2.4) holds for all u ∈ Lγ(H,X) :=
Π(γn)(H,X).

Remark 2.7. It is interesting to note that if we replace in Proposition 2.3
(γn) by (rn), then the corresponding conclusions (without the equalities for
norms) remain valid if and only if X is of finite (Rademacher) cotype (see
[?] theorem 1.7).
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Remark 2.8. If X has cotype 2 then X is (fn)-contractive for any sequence
(fn).

Indeed, let us take (xn) ∈ b2[(fn);X] and (yn) ∈ lweak
2 (X) such that

∑
|〈yn, x

∗〉|2 ≤
∑

|〈xn, x
∗〉|2, ∀x∗ ∈ X∗.

We need to show that (yn) ∈ b2[(fn);X] and

|||(yn)|||(fn) ≤ C|||(xn)|||(fn)

for certain constant C > 0.
Since (xn) ∈ b2[(fn);X] , then Remark 2.2 (a) shows that (xn) ∈ b2[(rn);X].
Let us fix a Hilbert space H and an orthonormal bases (en) and consider

the operator u : H → X given by u(en) = xn. Since Remark 2.7 gives that

Π(rn)(H,X) = Π
(en)
(rn)(H,X) we have that u ∈ Π(rn)(H,X).

In particular (see Remark 2.5 (c)) u ∈ Π2(H,X). On the other hand if
v : H → X is given by v(en) = yn, then there exists w : H → H such that
v = uw. Hence we get that v ∈ Π2(H,X) and therefore (see Remark 2.5
(a)) we have that v ∈ Π(fn)(H,X) what, in particular, shows that (yn) ∈
b2[(fn);X]. �.

In general the following assertion is true:

Theorem 2.2 Let X be a Banach space, H be a separable Hilbert space and
(en) a fixed orthonormal basis of H. The following are equivalent:

(i) X is (fn)-contractive.

(ii) Π(fn)(H,X) = Π
(en)
(fn)(H,X) and there is a constant c2 such that

||u||(fn) ≤ c2 sup
n

∥∥∥ n∑
k=1

fkuek

∥∥∥
2

= c2 lim
n

∥∥∥ n∑
k=1

fkuek

∥∥∥
2
, ∀u ∈ Π(fn)(H,X).

Moreover, (i) implies that in (ii) we can put c2 = bf.(X) and (ii) implies that
bf.(X) ≤ c2.

Proof. (i)⇒(ii). It is enough to prove that

Π
(en)
(fn)(H,X) ⊂ Π(fn)(H,X).

Take arbitrarily u ∈ Π
(en)
(fn)(H,X). Let us show that u ∈ Π(fn)(H,X). Take

(hn) ∈ lweak
2 (H) such that ||(hn)||w2 = 1 and denote by B : H → H the norm

one operator for which B∗en = hn for all n ∈ N, that is

Bh =
∑

(h|hn)en.
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Observe now that if yn = uhn = uB∗en then we have

∑
|〈yn, x

∗〉|2 = ||Bu∗x∗||2 ≤ ||u∗x∗||2 =
∑

|〈uen, x
∗〉|2

for all x∗ ∈ X∗. Therefore, since (uen) ∈ b2[(fn);X] andX is (fn)-contractive,
it follows that (yn) ∈ b2[(fn);X] and

|||(uhn)|||(fn) ≤ bf.(X)|||(uen)|||(fn).

Consequently
||u||(fn) ≤ bf.(X)||u||(en)

(fn).

(ii) ⇒ (i). Take (xn) ∈ b2[(fn);X] and (yn) ∈ lweak
2 (X) such that

∑
|〈yn, x

∗〉|2 ≤
∑

|〈xn, x
∗〉|2, ∀x∗ ∈ X∗. (2.5)

We need to show that (yn) ∈ b2[(fn);X] and

|||(yn)|||(fn) ≤ c2|||(xn)|||(fn).

Since (xn) ∈ b2[(fn);X] there is u ∈ Π
(en)
(fn)(H,X) such that uen = xn, ∀n ∈ N.

According to (ii) we have u ∈ Π(fn)(H,X). Therefore it is sufficient to
find (hn) ∈ lweak

2 (H) such that uhn = yn, ∀n ∈ N. For this we shall use (2.5).
There is a continuous linear operator v : H → X such that ven = yn, ∀n ∈ N.
So we have

v∗x∗ =
∑
n

〈yn, x
∗〉en, ∀x∗ ∈ X∗.

Observe that

||v∗x∗||2 =
∑
n

|〈yn, x
∗〉|2 ≤

∑
n

|〈xn, x
∗〉|2 = ||u∗x∗||2, ∀x∗ ∈ X∗

The last inequality implies there exists a continuous linear operator B : H →
H such that ||B|| ≤ 1 and Bu∗ = v∗. This implies that v = uB∗. Denote
hn = B∗en, ∀n ∈ N. Then evidently (hn) ∈ lweak

2 (H), ||(hn)||w2 ≤ 1 and

uhn = uB∗en = ven = yn, ∀n ∈ N

Therefore (yn) ∈ b2[(fn);X]. Also we can write

|||(yn)|||(fn) = |||(uhn)|||(fn) ≤ ||u||(fn) ≤ c2||u||(en)
(fn) = c2|||(uen)|||(fn) = c2|||(xn)|||(fn).

So we obtain that
|||(yn)|||(fn) ≤ c2|||(xn)|||(fn).

Consequently (fn)-contractivity constant of X is less or equal than c2. �
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Corollary 2.1 Suppose X is (fn)-contractive Banach space, H be a separa-
ble Hilbert space and (en) a fixed orthonormal basis of H. Then

(a) For any u ∈ R(fn)(H;X) we have ||u||(fn) ≤ bf.(X)||∑k uekfk||2.
(b) If X does not contains a subspace isomorphic to c0, then R(fn)(H;X) =

R
(en)
(fn)(H;X).

Proof. (a) Since u ∈ R(fn)(H;X) the series
∑

k uekfk is convergent, so we
can apply the inequality from Theorem 2.2.

(b) By Theorem 2.2 we have Π(fn)(H;X) = Π
(en)
(fn)(H;X).

Since by our assuption X does not contains a subspace isomorphic to c0,
we have also R(fn)(H;X) = Π(fn)(H;X) and R

(en)
(fn)(H;X) = Π

(en)
(fn)(H;X). So

this implies the assertion.�

2.3 Kf.-convex spaces.

Let us introduce now the notion of Kf.-convexity of a Banach space X.
We use the method of [?]. Fix a natural number n and consider the operator

Rf.
n : L2(Ω;X) −→ S2[(fn);X]

defined by the equality

Rf.
n ξ =

n∑
k=1

(Eξfk)fk; ξ ∈ L2(Ω;X).

Set, Kf.
n (X) = ‖Rf.

n ‖ and define the Kf.-convexity constant, Kf.(X) by

Kf.(X) = sup
n
Kf.

n (X).

Definition 2.2 A Banach space X is called Kf.-convex, if Kf.(X) <∞.

Recall that a Banach space is called K-convex if it is Kr.-convex.

Let us formulate different characterisations of Kf.-convexity, whose ele-
mentary proofs are left to the reader.

Proposition 2.4 Let X be a Banach space. The following assertions are
equivalent:

(i) X is Kf.-convex.
(ii) For any ξ ∈ L2(Ω;X) we have

(Eξfn) ∈ b2[(fn);X].

11



(iii) For any ξ ∈ L2(Ω;X) we have

(Eξfn) ∈ s2[(fn);X].

(iv) For any ξ ∈ L2(Ω;X) we have (Eξfn) ∈ s2[(fn);X] and the oper-
ator ξ −→ ∑

n(Eξfn)fn is a continuous linear projection of L2(Ω;X) onto
S2[(fn);X] (i.e. S2[(fn);X] is complemented in L2(Ω;X)).

Proposition 2.5 Let X be a Banach space. Then:
(a) For any fixed natural number n we have Kf.

n (X) = Kf.
n (X∗).

(b) X is Kf.-convex if and only if X∗ is Kf.-convex and Kf.(X) =
Kf.(X∗).

Proof.
(a) Let ξ∗ ∈ L2(Ω, X∗), φ ∈ L2(Ω, X) and n ∈ N. Note that

∫
Ω
〈

n∑
k=1

E(ξ∗fk)fk(w), φ(w)〉dP (w) =
∫
Ω
〈ξ∗(w),

n∑
k=1

E(φfk)fk(w)〉dP (w).

This clearly gives that

|
∫
Ω
〈

n∑
k=1

E(ξ∗fk)fk(w), φ(w)〉dP (w)| ≤ ||ξ∗||2Kf.
n (X)||φ||2.

Hence ‖∑n
k=1 E(ξ∗fk)fk‖2 ≤ ||ξ∗||2Kf.

n (X).
Therefore

Kf.
n (X∗) ≤ Kf.

n (X). (2.6)

The converse follows from (2.6) and the embedding X ⊂ X∗∗.
(b) Follows from (a).�

Proposition 2.6 Let X be a Banach space and (gn)n∈N be an another se-
quence of independent identically distributed symmetric random variables
such that Eg2

1 = 1. Supose further that there are constants C1 and C2 such
that for any n ∈ N, x1, x2, . . . , xn ∈ X and x∗1, x

∗
2, . . . , x

∗
n ∈ X∗

‖
n∑

k=1

xkgk‖2 ≤ C1‖
n∑

k=1

xkfk, and ‖
n∑

k=1

x∗kgk‖2 ≤ C2‖
n∑

k=1

x∗kfk‖2.

Then the following statement are valid:
(a) For any natural number n we have Kg.

n (X) ≤ C1C2K
f.
n (X).

(b) If X is Kf.-convex then X is Kg.-convex, and Kg.(X) ≤ C1C2K
f.(X).

(c) For any natural number n we have Kr.
n (X) ≤ c21K

f.
n (X).

(d) If X is Kf.-convex then X is K-convex, and Kr.(X) ≤ c21K
f.(X),

where c1 = (E(|f1|))−1.

12



Proof. (a) This is, up to notations, a particular case of Lemma 12.6 in [?].
(b) Follows from (a).
(c) Follows from (a) and Remark 2.2 (a).
(d) Follows from (c).�

Remark 2.9 Consider the following assertions concerning a Banach space
X:

(i) X is K-convex.
(ii) X does not contain ln1 uniformly.
(iii) X does not contain ln∞ uniformly.
It is not difficult to see that (i) ⇒ (ii) ⇒ (iii) (see [?], p. 260). This

already implies that the spaces c0, l1, L1[0, 1] are not K-convex. From this
also follows that if X is K-convex Banach space then X does not contain a
subspace isomorphic to c0. An important result of G. Pisier asserts that the
implication (ii) ⇒ (i) also is valid (see [?], p. 260). We shall not make use
of this implication in the sequel. It is not difficult to show that any type 2
Banach space is K-convex (see Proposition 2.8 (c)).

Corollary 2.2 (a) If X is a K-convex Banach space then X is Kg.-convex
for any sequence (gn) be such that E|g1|p <∞ for any p, 0 < p <∞.

Moreover Kg.(X) ≤ Cg1(X)Cg1(X
∗)Kr.(X), where Cg1(X) and Cg1(X

∗)
are constants from Remark 2.2 (b).

(b) In particular X is Kγ.-convex if and only if X is K-convex.

Proof. (a) By Proposition 2.5 X and X∗ are both K-convex. Hence Remark
2.9 gives that X and X∗ do not contain ln∞ uniformly. Now Remark 2.2 (b)
allows to have the assumptions of Propositions 2.6 satisfied for (fn) = (rn)
and (gn) and then (a) follows from Proposition 2.6 ( b) .

(b) Use part (a) and Proposition 2.6 (d).�
Notice that Corollary 2.2 is known for (gn) = (γn), see [?], p. 88, where

a better estimate Kγ.(X) ≤ Kr.(X) is obtained.

Proposition 2.7 Let X be a Banach space. Then
(a) For any n ∈ N and y1, . . . , yn ∈ X

‖
n∑

k=1

ykfk‖2 ≤ (E|f1|)−1 ·Kf.
n (X)‖

n∑
k=1

ykrk‖2.

(b) If X is Kf.-convex then Rad(X) = s2[(fn), X] = b2[(fn), X].
(c) If X is Kf.-convex, then X is (fn)-contractive.
Moreover bf.(X) ≤ (E|f1|)−2 ·Kf.(X) · Cγ1(X) where Cγ1(X) is the con-

stant in Remark 2.2 (b).
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Proof. (a) Given ξ∗ ∈ L2(Ω, X∗) and n ∈ N we can write

|
∫
Ω
〈ξ∗(w),

n∑
k=1

ykfk(w)〉dP (w)| = |
n∑

k=1

〈E(ξ∗fk), yk〉|

= |
∫ 1

0
<

n∑
k=1

E(ξ∗fk)rk(t),
n∑

k=1

ykrk(t) > dt|

≤ ‖
n∑

k=1

E(ξ∗fk)rk‖2‖
n∑

k=1

ykrk‖2.

From this and Remark 2.2 (a) we obtain

|
∫
Ω
〈ξ∗(w),

n∑
k=1

ykfk(w)〉dP (w)| ≤ (E|f1|)−1 ·Kf.(X)‖
n∑

k=1

ykrk‖2.

As ξ∗ was arbitrary, the last inequality implies (a).
(b) It follows from (a) and Remark 2.2 (a) that Rad(X) = s2[(fn), X].

Now use Proposition 2.6 (b) together with Remarks 2.7 and 2.1 to get
s2[(fn), X] = b2[(fn), X].

(c) Let us take (xn) ∈ b2[(fn);X] and a sequence (yn) in X satisfying

∑
|〈yn, x

∗〉|2 ≤
∑

|〈xn, x
∗〉|2

for all x∗ ∈ X∗.
Note first that using (a) and Remark 2.2 (a) we can write

sup
n

‖
n∑

k=1

ykfk‖2 ≤ (E|f1|)−1 ·Kf.(X) sup
n

‖
n∑

k=1

ykrk‖2.

Since X is Kf.-convex, according to Remark 2.9 it does not contain ln∞ uni-
formly, so by Proposition 2.2, X is (rn)-contractive with constant Cγ1(X).
This implies

sup
n

‖
n∑

k=1

ykrk‖2 ≤ Cγ1(X) sup
n

‖
n∑

k=1

xkrk‖2.

Now using Remark 2.2 (a) again we have

sup
n

‖
n∑

k=1

ykrk‖2 ≤ (E|f1|)−1 · Cγ1(X) sup
n

‖
n∑

k=1

xkfk‖2.

Consequently,

sup
n

‖
n∑

k=1

ykfk‖2 ≤ (E|f1|)−2 ·Kf.(X) · Cγ1(X) sup
n

‖
n∑

k=1

xkfk‖2

14



and (c) is proved.�
Regarding the converse of the implication of part (c) in Proposition 2.7,

let us observe that co is (γn)-contractive while it is not Kγ.-convex or that
L1(µ) is (rn)-contractive according to Proposition 2.2 but it is not K- convex.

Definition 2.3 Let (fn) be a sequence of independent identically distributed
symmetric random variables such that Ef 2

1 = 1 and let 2 < r <∞. We shall
say that (fn) is r-regular if

lim inf
t→∞

trP{ω ∈ Ω : |f1(ω)| > t} > 0. (2.8)

It is easy to construct r-regular sequences for any r, by using,for instance
independent standard Cauchy random variables.
Remark 2.10 It is rather simple to see that the condition (2.8) implies

b2[(fn);X] ⊂ lstrong
r (X). (2.9)

Let us now show that, in general, the notions of K-convex and Kf.-convex
Banach spaces are different. Note that

Corollary 2.3 Let 2 < r <∞ and (fn) be r-regular sequence.
If X is Kf.-convex, then X is of cotype r.
In particular lp is not Kf.-convex for r < p <∞, while it is of type 2 and

hence is K-convex (see, e. g., Remark 2.11 below).

Proof. Observe that cotype r means s2[(rn);X] ⊂ lstrong
r (X)., then the result

follows from (2.9) and by Proposition 2.7 (b). �
Let us present some extra assumption to get Kf.-convexity out of (fn)-

contractivity.

Proposition 2.8 Let X be a Banach space which is type 2 and (fn)-contractive.
Then the following assertion are valid:

(a) For any n ∈ N and x1, . . . , xn ∈ X

‖
n∑

k=1

xkfk‖2 ≤ bf.(X) · t2(f., X)‖
n∑

k=1

xkrk‖2.

(b) Rad(X) = s2[(fn), X].
(c) X is Kf.-convex.
Moreover Kf.(X) ≤ bf.(X) · t2(f., X).
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Proof.
(a) Put

yθ =
1

2n/2

n∑
k=1

θkxk, θ = (θ1, . . . , θn) ∈ {−1, 1}n.

Then we have

‖
n∑

k=1

xkrk‖2 =
( ∑

θ

‖yθ‖2
)1/2

and
n∑

k=1

〈xk, x
∗〉2 =

∑
θ

〈yθ, x
∗〉2, ∀x∗ ∈ X∗.

We write (yθ) = (y1, . . . , y2n). Since the above equality holds and X is (fn)-
contractive, we can write

‖
n∑

k=1

xkfk‖2 ≤ bf.(X)‖
2n∑

k=1

ykfk‖2.

Since X is of type 2, it is also of (fn)-type 2 (see Remark 2.2 (b)), we also
have

‖
2n∑

k=1

ykfk‖2 ≤ t2(f.,X)
( 2n∑

k=1

‖yk‖2
)1/2

= t2(f.,X)‖
n∑

k=1

xkrk‖2.

These two inequalites imply (a).
(b) It follows from (a) and Remark 2.2 (a).
(c) It is sufficient to show that for any simple function ξ ∈ L2(Ω, X) we

have
‖Rf.

n ξ‖ ≤ bf.(X) · t2((fn), X)‖ξ‖2. (2.7)

Given a simple function ξ, we can find m ∈ N and x1, . . . , xm ∈ X such that

‖ξ‖2 =
( m∑

k=1

‖xk‖2
)1/2

and

E〈ξ, x∗〉2 =
m∑

k=1

〈xk, x
∗〉2, ∀x∗ ∈ X∗.

Denote now yk = Eξfk, k = 1, . . . , n. Observe that

n∑
k=1

〈yk, x
∗〉2 ≤ E〈ξ, x∗〉2 =

m∑
k=1

〈xk, x
∗〉2, ∀x∗ ∈ X∗
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Using now (fn)-contractivity of X, we have

‖Rf.
n ξ‖ = ‖

n∑
k=1

ykfk‖2 ≤ bf.(X)‖
m∑

k=1

xkfk‖2.

Since X is of (fn)-type 2, we have also

‖
m∑

k=1

xkfk‖2 ≤ t2((fn), X)
( m∑

k=1

‖xk‖2
)1/2

= t2(f.,X)‖ξ‖2.

These two inequalities imply (2.7) and (c) is proved.�

Remark 2.11. It follows from Proposition 2.1 (respec.Proposition 2.2) and
Proposition 2.8 (c) that if X is a Banach space of γn-type 2 (respect. rn-type
2)then X is K-convex.

Moreover Kγ.(X) ≤ t2(γn, X) (respec. K(X) ≤ t2(rn, X)).

3 Duality Results for the Sequence Spaces

Let X be a Banach space and let E be a vector subspace of XN. Denote by
E× the Köthe’s dual of E, i.e. E× is the set of all sequences (x∗n) ∈ (X∗)N

such that
∑

n |x∗n(xn)| <∞, ∀(xn) ∈ E.
Let us assume that E is a vector space containing the set XN

0 of all
sequences with finite support. Then for any fixed (x∗n) ∈ E× let us denote
by l(x∗

n) the linear functional on E defined by the relation

(xn) −→ l(x∗
n)(xn) =

∑
n

x∗n(xn), (xn) ∈ E.

It is clear that if two sequences (x∗n) and (y∗n) in E× verify l(x∗
n) = l(y∗

n),
then x∗n = y∗n ∀n ∈ N. Hence whenever XN

0 ⊂ E and (x∗n) ∈ E×, we shall
identify (x∗n) with the linear functional l(x∗

n)

Lemma 3.1 Let X be a Banach space, (xn) ∈ b2[(fn);X] and (x∗n) ∈ b2[(fn);X∗].
Then: ∞∑

k=1

|x∗k(xk)| ≤ sup
n

‖
n∑

k=1

xkfk‖2 sup
n

‖
n∑

k=1

x∗kfk‖2. (3.1)

Proof. Denote αk = sign(x∗k(xk)) for any natural k. Then by (2.2) we have
that (αnxn) ∈ b2[(fn);X] and

sup
n

∥∥∥ n∑
k=1

αkxkfk

∥∥∥
2
≤ sup

n

∥∥∥ n∑
k=1

xkfk

∥∥∥
2
.
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Fix a natural number n and put ξn =
∑n

k=1 αkxkfk and ηn =
∑n

k=1 x
∗
kfk.

Then
n∑

k=1

|x∗k(xk)| =
n∑

k=1

αkx
∗
k(xk) = E〈ξn, ηn〉 ≤ ‖ξn‖2‖ηn‖2 ≤

≤ sup
n

‖
n∑

k=1

xkfk‖2 sup
n

‖
n∑

k=1

x∗kfk‖2.

Since n was arbitrary this inequality implies the assertion.�

Proposition 3.1 Let X be a Banach space. Then
(a) b2[(fn);X∗] ⊂ (b2[(fn);X])× ⊂ (b2[(fn);X])∗.
Moreover, for any (x∗n) ∈ b2[(fn);X∗] we have

‖lx∗
.
‖ ≤ |||(x∗n)|||(fn). (3.2)

(b) (s2[(fn);X])× = (s2[(fn);X])∗.

Proof. (a) The first inclusion and (3.2) follows from Lemma 3.1 and (3.1)
respectively.

To see the second inclusion, let us fix (x∗n) ∈ (b2[(fn);X])×. We need to
show that the linear functional l(x∗

n) is continuous on b2[(fn);X]. Now for
any natural number n the functional ln on b2[(fn);X] defined by

(xk) −→ ln(xk) =
n∑

k=1

x∗k(xk)

is obviously continuous. Since the sequence (ln) converges to l(x∗
n) at any point

of b2[(fn);X] then Banach-Steinhaus theorem gives that l(x∗
n) is continuous.

(b) The inclusion (s2[(fn);X])× ⊂ (s2[(fn);X])∗ can be shown as above.
Fix now a continuous linear map l : s2[(fn);X] −→ R and let us find

(x∗n) ∈ (s2[(fn);X])× such that l = l(x∗
n). Take a natural number n and

consider the mapping jn : X −→ s2[(fn);X] defined by the rule: x −→
(0, ..., x, 0, ...), where x is on n-th place. Evidently jn is an isometric linear
operator. Therefore x∗n = ljn ∈ X∗.

Let us first show that (x∗n) ∈ (s2[(fn);X])×. Take arbitrary (xn) ∈
s2[(fn);X] and fix n ∈ N. Then if αk = sign(x∗k(xk)) and yk = αkxk we
have

n∑
k=1

|x∗k(xk)| =
n∑

k=1

x∗k(yk) = l(
n∑

k=1

jk(yk)).

Hence, using (2.2),

n∑
k=1

|x∗k(xk)| ≤ ‖l‖‖
n∑

k=1

ykfk‖2 ≤ ‖l‖‖
n∑

k=1

xkfk‖2 ≤ ‖l‖|||(xn)|||(fn).
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Consequently
∑

k |x∗k(xk)| <∞ and so (x∗n) ∈ (s2[(fn);X])×.
Finally, since the sequence (x1, ..., xn, 0, ...), n ∈ N tends to (xn) in the

topology of s2[(fn);X] and l is continuous, we obtain

l(xn) = lim
n
l(x1, ..., xn, 0, ...) = lim

n

n∑
k=1

x∗k(xk).

Therefore l = l(x∗
n).�

Lemma 3.2 Let X be a Kf.-convex Banach space, l ∈ (s2[(fn);X])∗. Then
there exists (x∗n) ∈ b2[(fn);X∗], such that l = l(x∗

n) and

sup
n

‖
n∑

k=1

x∗kfk‖2 ≤ Kf.(X)‖l‖. (3.3)

Proof. By Proposition 3.1 (b) there exists (x∗n) ∈ (s2[(fn);X])× such that
l = l(x∗

n). The proof will be finished if we show that (x∗n) ∈ b2[(fn);X∗] and
(3.3) holds.

Step 1. Fix n ∈ N and consider ln : s2[(fn);X] −→ R defined by the
sequence (x∗1, ..., x

∗
n, 0, ...). Then using the contraction principle, it is easy to

show that
‖ln‖ ≤ ‖l‖ ∀n ∈ N. (3.4)

Step 2. Put ηn =
∑n

k=1 x
∗
kfk and take r, 0 < r < 1. Then, since ηn ∈

L2(Ω;X∗) ⊂ (L2(Ω;X))∗, we can find ξn ∈ L2(Ω;X), ‖ξn‖2 = 1, such that

r‖ηn‖2 < E(ξn, ηn) =
n∑

k=1

〈Eξnfk, x
∗
k〉 . (3.5)

Now, since X is Kf.-convex, by Proposition 2.4

(Eξnf1,Eξnf2, ...) ∈ s2[(fn);X]

and ∥∥∥ ∑
k

(Eξnfk)fk

∥∥∥
2
≤ Kf.(X)‖ξn‖2 = Kf.(X).

Using this and (3.5) we can write as follows

r‖ηn‖2 ≤
n∑

k=1

〈Eξnfk, x
∗
k〉 = ln(Eξnf1,Eξnf2, ...).

Now we can use (3.4) and (3.5) and write

r‖ηn‖2 ≤ Kf.(X)‖l‖,
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The last inequality, since n and r were arbitrary implies (x∗n) ∈ b2[(fn);X∗]
and (3.3) hods.�

Our first duality result can be formulated as follows.

Theorem 3.1 Let X be a Banach space. The following assertions are equiv-
alent:

(i) X is Kf.-convex.
(ii) T : b2[(fn);X∗] −→ (s2[(fn);X])∗ defined by the equality T (x∗n) = l(x∗

n)

is a Banach-space-isomorphism, with ‖T‖ = 1.
Moreover, (i) implies that ‖T−1‖ ≤ Kf.(X) and (ii) implies that Kf.(X) ≤

‖T−1‖.

Proof. (i) ⇒ (ii). By Proposition 3.1 (a) we have that T is a continuous
linear operator with ‖T‖ ≤ 1. Lemma 3.2 implies that T is onto and ‖T−1‖ ≤
Kf.(X).

(ii) ⇒ (i). Fix arbitrarily ξ ∈ L2(Ω;X) with ‖ξ‖2 = 1. and write xn =
Eξfn, n ∈ N. According to Proposition 2.4 it is sufficient to show that
(xn) ∈ b2[(fn);X]. Actually we shall show that

sup
n

∥∥∥ n∑
k=1

xkfk

∥∥∥
2
≤ ‖T−1‖. (3.6)

Fix n ∈ N. By the Hahn-Banach theorem there exists l ∈ (s2[(fn);X])∗ such
that ‖l‖ = 1 and ∥∥∥ n∑

k=1

xkfk

∥∥∥
2

= l(x1, ..., xn, 0, ...).

According to the assumption l = T (x∗n) for some (x∗n) ∈ b2[(fn);X∗], hence

sup
n

∥∥∥ n∑
k=1

x∗kfk

∥∥∥
2
≤ ‖T−1‖.

Note that

∥∥∥ n∑
k=1

xkfk

∥∥∥
2

=
n∑

k=1

x∗k(xk) = E〈ξ,
n∑

k=1

x∗kfk〉 ≤
∥∥∥ n∑

k=1

x∗kfk

∥∥∥
2
≤ ‖T−1‖.

This, since n was arbitrary, implies (3.6) and the theorem is proved.�

Corollary 3.1 Let X be a Banach space. The following are equivalent:
(i) X is Kf.-convex
(ii) (s2[(fn);X])∗ = s2[(fn);X∗]
(iii) (S2[(fn);X])∗ = S2[(fn);X∗]
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Proof. (i)⇒ (ii). By Theorem 3.1 we can write (s2[(fn);X])∗ = b2[(fn);X∗].
According to Propositions 2.5 (b) and 2.7 (b) we have b2[(fn);X∗] = s2[(fn);X∗]
and the implication is proved.

(ii) ⇒ (i) By Proposition 3.1 we always have b2[(fn);X∗] ⊂ (s2[(fn);X])∗.
This and (ii) imply that s2[(fn);X∗] = b2[(fn);X∗] and by Theorem 3.1 X is
Kf.-convex.

(ii) ⇔ (iii) It is obvious.�
Remark 3.1. The implication (i)⇒(iii) of Corollary 3.1 for (fn) = (rn) was
pointed out in [?]. The same implication for (fn) = (γn) and for the separable
Banach space having type 2 was obtained in [?].

4 Duality Results for Almost Summing Op-

erators

In this section H will denote an infinite dimensional separable Hilbert space,
X will be a Banach space. L(Y1, Y2) denotes the space of all continuous linear
operators between the Banach spaces Y1 and Y2. Np(Y1, Y2) is the space of
all p-nuclear operators and νp denotes p-nuclear norm (see [?], p. 112). We
put also N(H) = N1(H,H).

It is well-known that for any w ∈ N(H) and any orthonormal bases (en) in
H the series

∑
n(wen|en) is convergent, its sum does not depend on particular

choice of (en) and it is denoted by trw. The number trw is called the trace
of w and the inequality |trw| ≤ ν1(w) holds.

Let us denote also

Πdual
(fn)(X,H) = {v ∈ L(X,H) : v∗ ∈ Π(fn)(H,X

∗)}

and
Rdual

(fn)(X,H) = {v ∈ L(X,H) : v∗ ∈ R(fn)(H,X
∗)}.

We shall endow Πdual
(fn)(X,H) and Rdual

(fn)(X,H) with the norm

‖v‖dual
(fn) = ‖v∗‖(fn), v ∈ Πdual

(fn)(X,H).

Evidently Rdual
(fn)(X,H) ⊂ Πdual

(fn)(X,H), and if c0 ⊂ X∗, then Remark 2.1 gives

Πdual
(fn)(X,H) = Rdual

(fn)(X,H).

Lemma 4.1 Let X be a Banach space, u ∈ Π(fn)(H,X) and v ∈ Πdual
(fn)(X,H).

Then vu is nuclear and

ν1(vu) ≤ ‖u‖(fn)‖v∗‖(fn). (4.1)
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Proof. It is needed to see that vu ∈ N(H) and (4.1) holds . For this it is
enough to show that for any two orthonormal basis (e

′
n) and (e

′′
n) of H we

have ∑
n

|(vue′n|e
′′
n)| ≤ ‖u‖(fn)‖v∗‖(fn)

(see [?], p. 118). Evidently we have (ue′n) ∈ b2[(fn);X] and (v∗e
′′
n) ∈

b2[(fn);X∗]. So, by Lemma 3.1 we have∑
n

|(vue′n|e
′′
n)| =

∑
n

|〈ue′n, v∗e
′′
n〉| ≤

≤ sup
n

∥∥∥ n∑
k=1

ue
′
kfk

∥∥∥
2
sup

n

∥∥∥ n∑
k=1

v∗e
′′
kfk

∥∥∥
2
≤ ‖u‖(fn)‖v∗‖(fn).

From this (4.1) easily follows.�

Lemma 4.2 Let X be a Kf.-convex Banach space and F ∈ (R(fn)(H,X))∗.
Then there is v ∈ Πdual

(fn)(X,H) such that F (u) = tr(vu), ∀u ∈ R(fn)(H,X).

Moreover ‖v∗‖(fn) ≤ bf.(X) · bf.(X
∗) ·Kf.(X) · ‖F‖.

Proof. Fix an orthonormal basis (en) of H, consider the operator

A : R(fn)(H,X) → s2[(fn), X]

defined by the relation Au = (ue1, ue2, . . .). Since X is Kf.-convex, then by
Proposition 2.7, X is (fn)-contractive. This implies, by Theorem 2.2, that
A is an isomorphism between corresponding spaces such that ‖A‖ ≤ 1 and
‖A−1‖ ≤ bf.(X).

Consider l = F ◦ A−1, then l ∈ (s2[(fn), X])∗. So, by Lemma 3.2, there
exists (xn) ∈ b2[(fn), X∗] such that l = l(x∗

n) and

sup
n

‖
n∑

k=1

x∗kfk‖2 ≤ Kf.(X)‖l‖ ≤ Kf.(X)‖F‖‖A−1‖ ≤ c1K
f.(X)‖F‖.

Define now another operator v : X → H by the equality

vx =
∑
k

x∗k(x)ek.

Evidently v∗ek = x∗k for any k. Since now by Proposition 2.5 (b) X∗ is Kf.-
convex, by Proposition 2.7 (c) it is also (fn)-contractive, what allows us to
use again Theorem 2.2 to conclude that v∗ ∈ Π(fn)(H,X

∗) and

‖v∗‖(fn) ≤ bf.(X
∗) · sup

n
‖

n∑
k=1

x∗kfk‖2.
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Consequently v ∈ Πdual
(fn)(X,H). Now is easy to see that F (u) = tr(vu) for

any u and
‖v∗‖(fn) ≤ bf.(X)bf.(X

∗)Kf.(X)‖F‖,
and the lemma is proved.�

Theorem 4.1 Let X be a Banach space. The following are equivalent
(i) X is Kf.-convex
(ii) (R(fn)(H,X))∗ = Πdual

(fn)(X,H) (with equivalent norms).

Proof. (i) ⇒ (ii). This follows at once from Lemma 4.1 and Lemma 4.2.
(ii)⇒(i). By Theorem 3.1 is enough to show that (ii) implies the equality

(s2[(fn);X])∗ = b2[(fn);X∗]. (4.2)

The inclusion (s2[(fn);X])∗ ⊃ b2[(fn);X∗] is valid for all Banach spaces ac-
cording to Proposition 3.1 (a).

Take now l ∈ (s2[(fn);X])∗ and let us find (x∗n) ∈ b2[(fn);X∗] such that
l = l(x∗

n). Fix any orthonormal basis (en) of H. Observe that the equality

F (u) = l(ue1, ue2, . . . , uen, . . .), u ∈ R(fn)(H,X)

defines an element in (R(fn)(H,X))∗. From the assumption there is v ∈
Πdual

(fn)(H,X) such that

F (u) = tr(vu) =
∑
n

〈uen, v
∗en〉, ∀u ∈ R(fn)(H,X).

Put x∗n = v∗en, ∀n ∈ N. Since v∗ ∈ Π(fn)(H;X∗) we have (x∗n) ∈
b2[(fn);X∗]. Let us see that l = lx∗ .

Fix arbitrary (xn) ∈ s2[(fn);X] and let us show that l(xn) = l(x∗
n)(xn).

According to the above equality we can write

l(ue1, . . . , uen, . . .) = lx∗
.
(ue1, . . . , uen, . . .), ∀u ∈ R(fn)(H,X). (4.3)

Consider for a fixed n ∈ N a finite rank operator un : H → X defined
as follows: uek = xk, for k ≤ n and uek = 0 for k > n. We have that
un ∈ R(fn)(H,X). Consequently, the equality (4.8) holds for un. Using this,
the fact that the sequence (x1, . . . , xn, 0, . . .), n = 1, . . . converges to (xn) in
s2[(fn), X] and the continuity on s2[(fn), X] of the functionals l and lx∗

.
, we

get l(xn) = lx∗
.
(xn), and the proof is finished.�

Corollary 4.1 Let X be a Banach space. The following are equivalent:
(i) X is Kf.-convex.
(ii) (R(fn)(H,X))∗ = Rdual

(fn)(X,H).
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Proof. (i)⇒(ii) Follows from Theorem 4.1, Proposition 2.5 and Remark 2.1.
(ii)⇒(i) The condition (ii) together with Proposition 4.1 (a) implies that

(R(fn)(H,X))∗ = Πdual
(fn)(X,H). So, by Theorem 4.1, X is Kf.-convex. �

Corollary 4.2 Let X be a Banach space. The following are equivalent:
(i) X is K-convex.
(ii) (Πas(H,X))∗ = Πdual

(rn) (X,H).

(iii) (R(γn)(H,X))∗ = Πdual
(γn)(X,H).

(iv) X is Kγ.-convex.

Proof. (i)⇔(ii) and (iii)⇔(iv) by Theorem 4.1 applied for (rn) and (γn).
(ii)⇒(iii) We have that X and X∗ are K-convex, therefore they do not

contain c0, this implies that Πas(H,X) = Π(rn)(H,X) which coincides with
Π(rn)(H,X) = Π(γn)(H,X) (by Theorem 2.1).

On the other hand, we have Π(γn)(H,X) = R(γn)(H,X). So Πas(H,X) =
R(γn)(H,X). And so (R(γn)(H,X))∗ = Πdual

(rn) (X,H). Now let us show that

Πdual
(rn) (X,H) = Πdual

(γn)(X,H).

The inclusion Πdual
(rn) (X,H) ⊃ Πdual

(γn)(X,H) is clear.

For the other inclusion let us take v ∈ Πdual
(rn) (X,H), then v∗ ∈ Π(rn)(H,X

∗)

and v∗ ∈ Π(γn)(H,X
∗) by Theorem 2.1, consequently v∗ ∈ Πdual

(γn)(X,H).
(iii)⇒(ii) Is true by similar reason, and the corollary is proved.�

Remark 4.1. It is known that if a Banach space X is a GL-space (see [?]
for definition and properties) and X∗ has a finite cotype, then Πdual

as (X,H) =
Π1(X,H). If X is K-convex, X∗ is also K-convex, and so has a finite cotype.
From this observations and from Corollary 4.1 it follows that if X is a K-
convex GL-space, then (Πas(H,X))∗ = Π1(X,H).

Proposition 4.1 Let X be a Banach space. The following assertions are
equivalent.

(i) X is of cotype 2.
(ii) (Πas(H,X))∗ = Π2(X,H).

Proof. (i)⇒ (ii) Since X is of cotype 2 we have

Πas(H,X) = Π2(H,X) (4.4)

and for any u ∈ Πas(H,X)

c(r., X)π2(u) ≤ πas(u) ≤ π2(u)

where c(r., X) is the cotype 2 constant of X (see Remark 2.5 (a), (b)).
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On the other hand, for any Banach space X, we have

Π2(H,X) = N2(H,X) (4.5)

and for all u ∈ Π2(H,X), π2(u) = ν2(u).
It is known that the equality

(N2(H,X))∗ = Π2(X,H) (4.6)

holds isometrically (see [?], p. 448). From (4.6), (4.5), and (4.4) follows
the statement (ii).

(ii)⇒(i). Let us show that X has the Gaussian cotype 2. Take arbitrarily
(xn) ∈ s2[(γn);X]. It is needed to show that (xn) ∈ lstrong

2 (X). Fix an
orthonormal basis (en) of H. Consider the operator u ∈ L(H,X) such that
uen = xn for all n ∈ N. By Proposition 2.3 u ∈ R(γn)(H,X), hence u ∈
Πas(H,X).

Take now a sequence (x∗n) ∈ lstrong
2 (X∗) and consider the operator v :

X → H defined by the equality

vx =
∑
n

x∗n(x)en, ∀x ∈ X.

It is easy to see that v ∈ Π2(X,H). This, according with (ii), implies that
the operator vu is nuclear; hence,∑

n

|(vuen|en)| =
∑
n

|〈uen, v
∗en〉| =

∑
n

|〈xn, x
∗
n〉| <∞.

Since (x∗n) ∈ lstrong
2 (X∗) was arbitrary, the last relation implies that (xn) ∈

lstrong
2 (X). Therefore X is of Gaussian cotype 2 and then X is, at it is known,
of Rademacher cotype 2.�
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