K-CONVEXITY AND DUALITY FOR ALMOST SUMMING OPERATORS

O. BLASCO; V. TARIELADZE and R. VIDAL *

Setember, 1999

Abstract

For a fixed sequence f. $=\left(f_{n}\right)$ of independent identically distributed symmetric random variables with $\mathbf{E} f_{1}^{2}=1$, we introduce the notion of K^{f}.-convex Banach space and the notions $\left(f_{n}\right)$-bounding and $\left(f_{n}\right)$-converging operators acting between Banach spaces. It is shown that the dual of the space of $\left(f_{n}\right)$-converging operators between a Hilbert space and a K^{f} - convex Banach space admits a precise description in terms of trace duality. The obtained results recover similar formulations for almost summing and γ-Radonifying operators.

1 Introduction

Given two Banach spaces X and Y we shall be dealing with the class of operators $u: X \rightarrow Y$ which map sequences $\left(x_{n}\right)$ in $l_{2}^{\text {weak }}(X)$ into series $\sum u\left(x_{n}\right) f_{n}$ which converge in $L_{2}(\Omega ; Y)$, where $\left(f_{n}\right)$ is a sequence of independent identically distributed symmetric random variables with $\mathbf{E} f_{1}^{2}=1$. We shall call these operators $\left(f_{n}\right)$-converging operators and the class of all $\left(f_{n}\right)$-converging operators will be denoted by $\mathfrak{R}_{\left(f_{n}\right)}(X, Y)$. In the case $\left(f_{n}\right)$ being the Rademacher sequence $\left(r_{n}\right)$ they are called almost summing operators and denoted by $\Pi_{a s}(X, Y)$ (see [?]) and for $\left(f_{n}\right)$ being the standard gaussian sequences $\left(\gamma_{n}\right)$ they are called γ-Radonifying operators and denoted by $\Re_{\gamma}(X, Y)$.

Our aim is to describe the dual of the $\mathfrak{R}_{\left(f_{n}\right)}(H, X)$ for an infinite dimensional separable Hilbert space H. Previous results for finite dimensional Hilbert space and $\left(\gamma_{n}\right)$ were achieved in [?]. Motivated from her results we

[^0]are introducing the space $\mathfrak{R}_{\left(f_{n}\right)}^{\text {dual }}(X, H)$ given by those continuous linear operators $v: X \longrightarrow H$ whose adjoint $v^{*} \in \mathfrak{R}_{\left(f_{n}\right)}\left(H, X^{*}\right)$. We are showing that for an arbitrary $u \in \mathfrak{R}_{\left(f_{n}\right)}(H, X)$ and $v \in \mathfrak{R}_{\left(f_{n}\right)}^{\text {dual }}(X, H)$, the operator $v u: H \longrightarrow H$ is nuclear and the linear functional $u \longrightarrow \operatorname{tr}(v u)$ is continuous on $\mathfrak{R}_{\left(f_{n}\right)}(H, X)$. In this way $\mathfrak{R}_{\left(f_{n}\right)}^{\text {dual }}(X, H)$ can be identified with a subspace of $\left(\mathfrak{R}_{\left(f_{n}\right)}(H, X)\right)^{*}$.

We shall be able to give a complete characterisation of the dual in terms of the trace duality only for K^{f}.-convex spaces X (see definition below). Namely, we are showing that the equality $\left(\mathfrak{R}_{\left(f_{n}\right)}(H, X)\right)^{*}=\mathfrak{R}_{\left(f_{n}\right)}^{\text {dual }}(X, H)$ holds isomorphically in the sense of trace duality if and only if X is $K^{f .}$. convex.

As a corollary of our results we get that it is equivalent that X is a K convex Banach space to the fact $\left(\Pi_{a s}(H, X)\right)^{*}=\Pi_{a s}^{\text {dual }}(X, H)$ (cf. [?], p. 280) or to the fact $\left(\mathfrak{R}_{\gamma}(H, X)\right)^{*}=\mathfrak{R}_{\gamma}^{\text {dual }}(X, H)$.

We are not using the general theory of conjugate operators ideals. Our arguments are based upon the study of the dual of the space $s_{2}\left[\left(f_{n}\right), X\right]$, which is given by sequences $\left(x_{n}\right)$ such that $\sum x_{n} f_{n}$ is convergent in $L^{2}(\Omega, X)$. This dual space can be represented as $b_{2}\left[\left(f_{n}\right), X^{*}\right]$, the space of sequences $\left(x_{n}^{*}\right)$ in the dual X^{*} such that the series $\sum x_{n}^{*} f_{n}$ has bounded partial sums in $L^{2}\left(\Omega, X^{*}\right)$, only in the case that X is K^{f}.-convex.

In particular we shall show that for any $\left(x_{n}\right) \in \operatorname{Rad}(X)$ and $\left(x_{n}^{*}\right) \in$ $\operatorname{Rad}\left(X^{*}\right)$ we have $\sum\left|x_{n}^{*}\left(x_{n}\right)\right|<\infty$ and the linear functional $\left(x_{n}\right) \longrightarrow \sum x_{n}^{*}\left(x_{n}\right)$ is continuous on $\operatorname{Rad}(X)$. Again the equality $(\operatorname{Rad}(X))^{*}=\operatorname{Rad}\left(X^{*}\right)$ holds if and only if X is K-convex. The equality $(\operatorname{Rad}(X))^{*}=\operatorname{Rad}\left(X^{*}\right)$ for the separable Banach spaces having type 2 was obtained in [?] and it was already pointed out in [?] for the general case.

The paper is divided into three sections. In the first one we are recalling the facts that will be used in the sequel and introduce a new notion of $\left(f_{n}\right)$ contractive Banach space (see definition below), that plays a particular role because it allows to connect the vector-valued sequence spaces with the spaces of operators which are $\left(f_{n}\right)$-bounding. The second section is devoted to analyse the duality for sequence spaces and in the last section we prove duality results for the spaces of $\left(f_{n}\right)$-converging operators between Hilbert and Banach spaces.

2 Notation and Auxiliary Results

2.1 Random vector series and $\left(f_{n}\right)$-contractivity.

For a given Banach space X the notations $l_{p}^{s \text { stong }}(X)$ and $l_{p}^{\text {weak }}(X), 0<$ $p<\infty$ have the same meaning as in [?]. If $(\Omega, \mathfrak{A}, P)$ is a probability space and X is a Banach space then $L_{p}(\Omega, \mathfrak{A}, P ; X)$ or shortly $L_{p}(\Omega ; X)$ denote the ordinary space of X-valued strongly measurable functions $\xi: \Omega \longrightarrow X$, such that $\|\xi\|_{p}:=\left(\int_{\Omega}\|\xi(\omega)\|^{p} d P(\omega)\right)^{1 / p}<\infty$.

For a scalar or a vector-valued integrable function $f, \mathbf{E} f$ will denote the integral $\int_{\Omega} f d P$.

Throughout the paper $\left(f_{n}\right)$ will stand for a sequence of independent identically distributed symmetric random variables on $(\Omega, \mathfrak{A}, P)$ such that $\mathbf{E} f_{1}^{2}=1$.

Let us recall the following notations from [?] (p. 316)

$$
\begin{gathered}
b_{2}\left[\left(f_{n}\right) ; X\right]=\left\{\left(x_{n}\right) \in X^{\mathbb{N}}: \sup _{n}\left\|\sum_{k=1}^{n} f_{k} x_{k}\right\|_{2}<\infty\right\}, \\
s_{2}\left[\left(f_{n}\right) ; X\right]=\left\{\left(x_{n}\right) \in X^{\mathbb{N}}: \sum x_{n} f_{n} \text { is convergent in } L_{2}(\Omega ; X)\right\}, \\
S_{2}\left[\left(f_{n}\right) ; X\right]=\left\{\sum x_{n} f_{n}:\left(x_{n}\right) \in s_{2}\left[\left(f_{n}\right) ; X\right]\right\} .
\end{gathered}
$$

Notice that $b_{2}\left[\left(f_{n}\right) ; X\right]$ is a Banach space with respect to the norm

$$
\left\|\left(x_{n}\right)\right\|_{\left(f_{n}\right)}=\sup _{n}\left\|\sum_{k=1}^{n} f_{k} x_{k}\right\|_{2}=\lim _{n}\left\|\sum_{k=1}^{n} f_{k} x_{k}\right\|_{2}
$$

The space $s_{2}\left[\left(f_{n}\right) ; X\right]$ is a closed subspace of $b_{2}\left[\left(f_{n}\right) ; X\right]$ and

$$
\left\|\left(x_{n}\right)\right\|_{\left(f_{n}\right)}=\left\|\sum_{n} x_{n} f_{n}\right\|_{2}, \quad\left(x_{n}\right) \in s_{2}\left[\left(f_{n}\right) ; X\right],
$$

and also $S_{2}\left[\left(f_{n}\right) ; X\right]$ is a closed subspace of $L_{2}(\Omega ; X)$. Evidently $s_{2}\left[\left(f_{n}\right) ; X\right]$ and $S_{2}\left[\left(f_{n}\right) ; X\right]$ are isometric.

The cases that have been very deeply studied correspond to $\left(f_{n}\right)$ being either the sequence $\left(r_{n}\right)$ of Rademacher functions on $[0,1]$ with the Lebesgue measure or the sequence $\left(\gamma_{n}\right)$ of independent standard Gaussian random variables on a probability space $(\Omega, \mathfrak{A}, P)$. We shall denote the space $s_{2}\left[\left(r_{n}\right) ; X\right]$ by $\operatorname{Rad}(X)$, although in the literature the notation $\operatorname{Rad}(X)$ is sometimes used for the space $S_{2}\left[\left(r_{n}\right) ; X\right]$.

Remark 2.1. In general the sets $b_{2}\left[\left(f_{n}\right) ; X\right]$ and $s_{2}\left[\left(f_{n}\right) ; X\right]$ are different; Actually (see [?], p. 347-348) $b_{2}\left[\left(f_{n}\right) ; X\right]=s_{2}\left[\left(f_{n}\right) ; X\right]$ if and only if X does not contain a subspace isomorphic to c_{0}.

Fix two numbers $p, q, 1<p \leq 2 \leq q<\infty$. We recall that a Banach space X is said to have $\left(f_{n}\right)$-type p, resp. $\left(f_{n}\right)$-cotype q if

$$
l_{p}^{\text {strong }}(X) \subset s_{2}\left[\left(f_{n}\right) ; X\right],
$$

resp. if

$$
s_{2}\left[\left(f_{n}\right) ; X\right] \subset l_{q}^{\text {strong }}(X)
$$

If X has $\left(f_{n}\right)$-type p (resp. $\left(f_{n}\right)$-cotype $\left.q\right)$, then the norm of inclusion operator $l_{p}^{\text {strong }}(X) \subset s_{2}\left[\left(f_{n}\right) ; X\right]$ (resp. $\left.s_{2}\left[\left(f_{n}\right) ; X\right] \subset l_{q}^{\text {strong }}(X)\right)$ is denoted by $t_{p}(f ., X)$, (resp. $\left.c_{q}(f, X)\right)$ and is called the type p constant, (resp. cotype q constant of X).

The spaces of $\left(r_{n}\right)$-type p, (resp. $\left(r_{n}\right)$-cotype $\left.q\right)$ are named simply type p (resp. cotype q).

Remark 2.2. (a) It is known that

$$
\begin{equation*}
\left\|\sum_{k=1}^{n} r_{k} x_{k}\right\|_{2} \leq c_{1}\left\|\sum_{k=1}^{n} f_{k} x_{k}\right\|_{2} \tag{2.1}
\end{equation*}
$$

for all $x_{1}, x_{2}, \ldots, x_{n} \in X$ and $n \in \mathbb{N}$, where $c_{1}=\left(\mathbf{E}\left|f_{1}\right|\right)^{-1}$ (see [?], pp. 323-324). Therefore

$$
b_{2}\left[\left(f_{n}\right) ; X\right] \subset b_{2}\left[\left(r_{n}\right) ; X\right]
$$

and

$$
s_{2}\left[\left(f_{n}\right) ; X\right] \subset \operatorname{Rad}(X)
$$

(b) It follows from (a) that if X is of $\left(f_{n}\right)$-type p, then X is type p and $t_{p}\left(r_{\text {. }}, X\right) \leq c_{1} t_{p}(f, X)$. Conversely, if X is type p, then X is also $\left(f_{n}\right)$-type p and $t_{p}(f, X) \leq t_{p}(r ., X)$. (In fact, fix $n \in \mathbb{N}, x_{1}, \ldots, x_{n} \in X, t \in[0,1]$. Since $\left(f_{n}\right)$ is i.i.d. symmetric sequence, we can write

$$
\left\|\sum_{k=1}^{n} x_{k} f_{k}\right\|_{2}^{2}=\mathbf{E}\left\|\sum_{k=1}^{n} x_{k} f_{k}\right\|^{2}=\mathbf{E}\left\|\sum_{k=1}^{n} x_{k} f_{k} r_{k}(t)\right\|^{2}, \forall t \in[0,1]
$$

Integrating with respect to t, using Fubini's theorem and Minkowski's inequality, we obtain

$$
\begin{gathered}
\left\|\sum_{k=1}^{n} x_{k} f_{k}\right\|_{2}^{2}=\mathbf{E} \int_{0}^{1}\left\|\sum_{k=1}^{n} x_{k} f_{k} r_{k}(t)\right\|^{2} d t \leq \\
\left.\leq t_{p}^{2}\left(r_{n}, X\right) \mathbf{E}\left(\sum_{k=1}^{n}\left\|x_{k}\right\|^{p}\left|f_{k}\right|^{p}\right)^{2 / p} \leq t_{p}^{2}\left(r_{n}, X\right)\left(\sum_{k=1}^{n}\left\|x_{k}\right\|^{p}\right)^{2 / p} .\right)
\end{gathered}
$$

(c) Again using (a) we have that if X has cotype q, then X has $\left(f_{n}\right)$-cotype q and $c_{q}(f ., X) \leq c_{q}(r ., X)$. The question of validity converse statement is more delicate (see (e) below).

Suppose X has $\left(f_{n}\right)$-cotype q. Suppose additionally that $\mathbf{E}\left|f_{1}\right|^{r}<\infty, \forall r>$ 0 . Observe that then X does not contain l_{∞}^{n} uniformly (this is not difficult to check). Using this and (d) (see below) we can conclude that then X has cotype q and $c_{q}\left(r_{\text {. }}, X\right) \leq C_{f_{1}}(X) c_{q}(f, X)$.
(d) When a Banach space X does not contain l_{∞}^{n} uniformly and $\mathbf{E}\left|f_{1}\right|^{r}<$ ∞ for all $r, 0<r<\infty$, then there is a constant $C_{f_{1}}(X)$ such that

$$
\left\|\sum_{k=1}^{n} f_{k} x_{k}\right\|_{2} \leq C_{f_{1}}(X)\left\|\sum_{k=1}^{n} r_{k} x_{k}\right\|_{2}
$$

for all $x_{1}, x_{2}, \ldots, x_{n} \in X$ and $n \in \mathbb{N}$. This is an important result of [?] (see Cor. 1.3 and Remark 1.5 (d) of that paper).

Remark 2.3. Let us recall that from the Contraction Principle (see [?], page 301) we have that

$$
\begin{equation*}
\left\|\sum_{k=1}^{n} \alpha_{k} x_{k} f_{k}\right\|_{2} \leq \max _{1 \leq k \leq n}\left|\alpha_{k}\right|\left\|\mid \sum_{k=1}^{n} f_{k} x_{k}\right\|_{2} \tag{2.2}
\end{equation*}
$$

for all $\alpha_{1}, \alpha_{2}, \ldots, \alpha_{n} \in \mathbb{R}, x_{1}, x_{2}, \ldots, x_{n} \in X$ and $n \in \mathbb{N}$.
Therefore it follows that if $\left(x_{n}\right) \in b_{2}\left[\left(f_{n}\right) ; X\right]$ (respect. $\left(x_{n}\right) \in s_{2}\left[\left(f_{n}\right) ; X\right]$) and $\left(\alpha_{n}\right) \in l^{\infty}$ then $\left(\alpha_{n} x_{n}\right) \in b_{2}\left[\left(f_{n}\right) ; X\right]$ (respect. $\left.\left(\alpha_{n} x_{n}\right) \in s_{2}\left[\left(f_{n}\right) ; X\right]\right)$.

We shall need the following stronger contractivity property.
Definition 2.1 A Banach space X is $\left(f_{n}\right)$-contractive if there exists a constant $c>0$ such that for any $\left(x_{n}\right) \in b_{2}\left[\left(f_{n}\right) ; X\right]$ and any sequence $\left(y_{n}\right)$ in X verifying

$$
\sum\left|\left\langle y_{n}, x^{*}\right\rangle\right|^{2} \leq \sum\left|\left\langle x_{n}, x^{*}\right\rangle\right|^{2}, \forall x^{*} \in X^{*},
$$

we have that $\left(y_{n}\right) \in b_{2}\left[\left(f_{n}\right) ; X\right]$ and

$$
\left\|\left(y_{n}\right)\right\|_{\left(f_{n}\right)} \leq c\| \|\left(x_{n}\right) \|_{\left(f_{n}\right)} .
$$

The infimum of all constants c for which the last inequality holds is called the $\left(f_{n}\right)$-contractivity constant of X and it will be denoted $b_{f .}(X)$.

This new notion will be very relevant for our purposes. It is justified by the following two assertions, first of which is well known (see, e.g., [?], Th. 8)

Proposition 2.1 Any Banach space is $\left(\gamma_{n}\right)$-contractive and $b_{\gamma} .(X)=1$.

Proposition 2.2 (see [?]) Let X be a Banach space. The following are equivalent:
(i) X does not contain l_{∞}^{n} uniformly.
(ii) X is $\left(r_{n}\right)$-contractive.
(iii) X is $\left(f_{n}\right)$-contractive for any $\left(f_{n}\right)$ such that $\mathbf{E}\left|f_{1}\right|^{p}<\infty$ for all $p, 0<p<\infty$.

Moreover, (i) implies that $b_{r .}(X) \leq C_{\gamma_{1}}(X)$, where $C_{\gamma_{1}}(X)$ is the constant from Remark 2.2 (b).

2.2 Converging and bounding operators.

Let us now recall some definitions and notation on operators to be used later on. Let X, Y be Banach spaces. Let us say that a continuous linear operator $u: X \longrightarrow Y$ is $\left(f_{n}\right)$-bounding (respectively $\left(f_{n}\right)$-converging) if for any $\left(x_{n}\right) \in l_{2}^{\text {weak }}(X)$ we have $\left(u x_{n}\right) \in b_{2}\left[\left(f_{n}\right) ; Y\right]$ (respectively $\left(u x_{n}\right) \in$ $\left.s_{2}\left[\left(f_{n}\right) ; Y\right)\right]$. Denote by $\Pi_{\left(f_{n}\right)}(X, Y)$ (respectively by $\left.\mathfrak{R}_{\left(f_{n}\right)}(X, Y)\right)$ the set of all $\left(f_{n}\right)$-bounding (respectively of all $\left(f_{n}\right)$-converging) operators $u: X \longrightarrow Y$.

In the standard way it can be shown, that a linear operator $u: X \longrightarrow Y$ is $\left(f_{n}\right)$-bounding if and only if it is $\left(f_{n}\right)$-summing, i.e., there is a constant $c>0$ such that the inequality

$$
\left\|\sum_{k=1}^{n} u x_{k} f_{k}\right\|_{2} \leq c \sup _{\left\|x^{*}\right\| \leq 1}\left(\sum_{k=1}^{n}\left|x^{*}\left(x_{k}\right)\right|^{2}\right)^{1 / 2}
$$

holds for all $n \in \mathbb{N}$ and $x_{1}, \ldots, x_{n} \in X$. If $u \in \Pi_{\left(f_{n}\right)}(X, Y)$ then the infimum of the constants c for which the above inequality holds shall be denoted by $\|u\|_{\left(f_{n}\right)}$ and called the $\left(f_{n}\right)$-bounding norm of u.

It can be shown that $\left(\Pi_{\left(f_{n}\right)}(X, Y),\| \|_{\left(f_{n}\right)}\right)$ is a Banach space and $\Re_{\left(f_{n}\right)}(X, Y)$ is a closed subspace of it.

In [?] $\left(r_{n}\right)$-converging operators are called almost summing and the corresponding space is denoted by $\Pi_{a s}(X, Y)$; the norm $\|u\|_{\left(r_{n}\right)}$ is denoted there as $\pi_{a s}(u)$. Therefore in our notations $\Pi_{a s}(X, Y)$ is $\Re_{\left(r_{n}\right)}(X, Y)$.

The $\left(\gamma_{n}\right)$-bounding operators with the name of γ-summing operators were introduced in [?]; the notion was discovered independently in [?]. The $\left(\gamma_{n}\right)-$ converging operators sometimes are called γ-Radonifying operators. Already in [?] is remarked that $\Pi_{\left(\gamma_{n}\right)}\left(H, c_{0}\right) \neq \mathfrak{R}_{\left(\gamma_{n}\right)}\left(H, c_{0}\right)$.

Remark 2.4. Notice, that in [?] it is stated incorrectly, that $\Pi_{a s}(X, Y)=$ $\Pi_{\left(r_{n}\right)}(X, Y)$; in fact it can be shown that if H is an infinite dimensional Hilbert space, then for a Banach space Y the equality $\Pi_{a s}(H, Y)=\Pi_{\left(r_{n}\right)}(H, Y)$ holds if and only if Y does not contain a subspace isomorphic to c_{0} (see [?]).

Notice also that the notion of $\left(f_{n}\right)$-summing operators, where $\left(f_{n}\right)$ is an arbitrary orthonormal sequence, is introduced and studied in [?] and [?].

It follows from Remark 2.2 that, in general,

$$
\begin{equation*}
\Pi_{\left(f_{n}\right)}(X, Y) \subset \Pi_{\left(r_{n}\right)}(X, Y) . \tag{2.3}
\end{equation*}
$$

The following result, obtained in [?], will be important in further considerations. We formulate it in our notations.

Theorem 2.1 (See [?], p. 240, theorem 12.12). Let X, Y be Banach spaces. Then $\Pi_{\left(r_{n}\right)}(X, Y)=\Pi_{\left(\gamma_{n}\right)}(X, Y)$ and

$$
\sqrt{2 / \pi} \pi_{a s}(u) \leq\|u\|_{\left(\gamma_{n}\right)} \leq \pi_{a s}(u)
$$

for any $u \in \Pi_{\left(r_{n}\right)}(X, Y)$.
Let us collect some easy relationships between $\left(f_{n}\right)$-summing operators and other well-known classes of operators.
Remark 2.5. Denoting $\Pi_{p}(X, Y)$ and $\Pi_{p, q}(X, Y)$ the space of p-summing operators and (p, q)-summing operators. An application of Pietch's domination theorem allows us to get the following observations:
(a) $\Pi_{2}(X, Y) \subset \Pi_{\left(f_{n}\right)}(X, Y)$.

Moreover $\|u\|_{\left(f_{n}\right)} \leq \pi_{2}(u)$ for all $u \in \Pi_{2}(X, Y)$.
(b) If Y is of cotype $q \geq 2$ then $\Pi_{\left(f_{n}\right)}(X, Y) \subset \Pi_{q, 2}(X, Y)$.

Moreover $\pi_{q}(u) \leq\left(\mathbf{E}\left|f_{1}\right|\right)^{-1}\|u\|_{\left(f_{n}\right)} c_{q}\left(r_{\text {. }}, Y\right)$ for all $u \in \Pi_{\left(f_{n}\right)}(X, Y)$ where $c_{q}(r, Y)$ is the cotype q-constant of Y.
(c) If H is an infinite dimensional separable Hilbert space and
$\Pi_{\left(f_{n}\right)}(X, Y) \subset \Pi_{2}(X, Y)$, then Y is of cotype 2. (In fact, by remark 2.2 (a) we have also $\Pi_{\left(r_{n}\right)}(X, Y) \subset \Pi_{2}(X, Y)$, this and Theorem 2.1 imply $\Pi_{\left(\gamma_{n}\right)}(X, Y) \subset \Pi_{2}(X, Y)$. The last inclusion implies that Y is of cotype 2 (see [?])).
(d) If we assume $\left(f_{n}\right)$ is such that $\mathbf{E}\left|f_{1}\right|^{p}<\infty$ for some $p>2$ then $\Pi_{p}(X, Y) \subset \Pi_{\left(f_{n}\right)}(X, Y)$ for all $u \in \Pi_{p}(X, Y)$.

Moreover $\|u\|_{\left(f_{n}\right)} \leq \pi_{p}(u)\left\|f_{1}\right\|_{p} B_{p}$ where B_{p} is the constant appearing in Kintchine's inequality.

When dealing with the particular case X being a separable Hilbert space much easier descriptions of $\Pi_{\left(f_{n}\right)}(H, Y)$ can be obtained, at least for some
spaces Y. To formulate the corresponding result we need some more notations.

Let X be a Banach space and $\left(e_{n}\right)$ be an orthonormal bases in H. Denote by $\Pi_{\left(f_{n}\right)}^{\left(e_{n}\right)}(H, X)$, (respectively $\mathfrak{R}_{\left(f_{n}\right)}^{\left(e_{n}\right)}(H, X)$), the set of continuous linear operators $u: H \rightarrow X$ such that $\left(u e_{n}\right) \in b_{2}\left[\left(f_{n}\right), X\right]$, (respectively $\left.\left(u e_{n}\right) \in s_{2}\left[\left(f_{n}\right), X\right]\right)$. Evidently these set are vector subspaces of $L(H, X)$. The functional $\left\|\left\|\|_{\left(f_{n}\right)}^{\left(e_{n}\right)}\right.\right.$ defined by the equality

$$
\|u\|_{\left(f_{n}\right)}^{\left(e_{n}\right)}=\left\|\left(u e_{n}\right)\right\|_{\left(f_{n}\right)}
$$

is a norm on $\Pi_{\left(f_{n}\right)}^{\left(e_{n}\right)}(H, X), \operatorname{and} \Pi_{\left(f_{n}\right)}^{\left(e_{n}\right)}(H, X)$ is a Banach space with this norm and also $\mathfrak{R}_{\left(f_{n}\right)}^{\left(e_{n}\right)}(H, X)$ a closed subspace of it.

Notice that $\Re_{\left(f_{n}\right)}(H, X) \subset \mathfrak{R}_{\left(f_{n}\right)}^{\left(e_{n}\right)}(H, X), \Pi_{\left(f_{n}\right)}(H, X) \subset \Pi_{\left(f_{n}\right)}^{\left(e_{n}\right)}(H, X)$ and corresponding inclusion maps have norms one.

We have the following well-known characterisation of $\left(\gamma_{n}\right)$-bounding and $\left(\gamma_{n}\right)$-converging operators.

Proposition 2.3 Let H be a separable Hilbert space, X be a Banach space and $\left(e_{n}\right)$ be an orthonormal bases of H. Then following assertions are valid.
(a) $\Pi_{\left(\gamma_{n}\right)}(H, X)=\Pi_{\left(\gamma_{n}\right)}^{\left(e_{n}\right)}(H, X)$ and the equality

$$
\|u\|_{\left(\gamma_{n}\right)}=\sup _{n}\left\|\sum_{k=1}^{n} \gamma_{k} u e_{k}\right\|_{2}=\lim _{n}\left\|\sum_{k=1}^{n} \gamma_{k} u e_{k}\right\|_{2}
$$

holds for any $u \in \Pi_{\left(\gamma_{n}\right)}(H, X)$.
(b) $\mathfrak{R}_{\left(\gamma_{n}\right)}(H, X)=\mathfrak{R}_{\left(\gamma_{n}\right)}^{\left(e_{n}\right)}(H, X)$ and the equality

$$
\begin{equation*}
\|u\|_{\left(\gamma_{n}\right)}=\left\|\sum \gamma_{k} u e_{k}\right\|_{2} \tag{2.4}
\end{equation*}
$$

holds for any $u \in \mathfrak{R}_{\left(\gamma_{n}\right)}(H, X)$.

Remark 2.6. In page 82 of [?] the norm $\|u\|_{\left(\gamma_{n}\right)}$ denoted as $l(u)$ and it is stated incorrectly that the equality (2.4) holds for all $u \in L_{\gamma}(H, X):=$ $\Pi_{\left(\gamma_{n}\right)}(H, X)$.

Remark 2.7. It is interesting to note that if we replace in Proposition 2.3 $\left(\gamma_{n}\right)$ by $\left(r_{n}\right)$, then the corresponding conclusions (without the equalities for norms) remain valid if and only if X is of finite (Rademacher) cotype (see [?] theorem 1.7).

Remark 2.8. If X has cotype 2 then X is $\left(f_{n}\right)$-contractive for any sequence $\left(f_{n}\right)$.

Indeed, let us take $\left(x_{n}\right) \in b_{2}\left[\left(f_{n}\right) ; X\right]$ and $\left(y_{n}\right) \in l_{2}^{\text {weak }}(X)$ such that

$$
\sum\left|\left\langle y_{n}, x^{*}\right\rangle\right|^{2} \leq \sum\left|\left\langle x_{n}, x^{*}\right\rangle\right|^{2}, \forall x^{*} \in X^{*}
$$

We need to show that $\left(y_{n}\right) \in b_{2}\left[\left(f_{n}\right) ; X\right]$ and

$$
\left\|\left(y_{n}\right)\right\|_{\left(f_{n}\right)} \leq C\left\|\left(x_{n}\right)\right\|_{\left(f_{n}\right)}
$$

for certain constant $C>0$.
Since $\left(x_{n}\right) \in b_{2}\left[\left(f_{n}\right) ; X\right]$, then Remark 2.2 (a) shows that $\left(x_{n}\right) \in b_{2}\left[\left(r_{n}\right) ; X\right]$.
Let us fix a Hilbert space H and an orthonormal bases $\left(e_{n}\right)$ and consider the operator $u: H \rightarrow X$ given by $u\left(e_{n}\right)=x_{n}$. Since Remark 2.7 gives that $\Pi_{\left(r_{n}\right)}(H, X)=\Pi_{\left(r_{n}\right)}^{\left(e_{n}\right)}(H, X)$ we have that $u \in \Pi_{\left(r_{n}\right)}(H, X)$.

In particular (see Remark 2.5 (c)) $u \in \Pi_{2}(H, X)$. On the other hand if $v: H \rightarrow X$ is given by $v\left(e_{n}\right)=y_{n}$, then there exists $w: H \rightarrow H$ such that $v=u w$. Hence we get that $v \in \Pi_{2}(H, X)$ and therefore (see Remark 2.5 (a)) we have that $v \in \Pi_{\left(f_{n}\right)}(H, X)$ what, in particular, shows that $\left(y_{n}\right) \in$ $b_{2}\left[\left(f_{n}\right) ; X\right]$.

In general the following assertion is true:
Theorem 2.2 Let X be a Banach space, H be a separable Hilbert space and $\left(e_{n}\right)$ a fixed orthonormal basis of H. The following are equivalent:
(i) X is $\left(f_{n}\right)$-contractive.
(ii) $\Pi_{\left(f_{n}\right)}(H, X)=\Pi_{\left(f_{n}\right)}^{\left(e_{n}\right)}(H, X)$ and there is a constant c_{2} such that

$$
\|u\|_{\left(f_{n}\right)} \leq c_{2} \sup _{n}\left\|\sum_{k=1}^{n} f_{k} u e_{k}\right\|_{2}=c_{2} \lim _{n}\left\|\sum_{k=1}^{n} f_{k} u e_{k}\right\|_{2}, \forall u \in \Pi_{\left(f_{n}\right)}(H, X) .
$$

Moreover, (i) implies that in (ii) we can put $c_{2}=b_{f .}$. X) and (ii) implies that $b_{f .}(X) \leq c_{2}$.

Proof. (i) \Rightarrow (ii). It is enough to prove that

$$
\Pi_{\left(f_{n}\right)}^{\left(e_{n}\right)}(H, X) \subset \Pi_{\left(f_{n}\right)}(H, X)
$$

Take arbitrarily $u \in \Pi_{\left(f_{n}\right)}^{\left(e_{n}\right)}(H, X)$. Let us show that $u \in \Pi_{\left(f_{n}\right)}(H, X)$. Take $\left(h_{n}\right) \in l_{2}^{w e a k}(H)$ such that $\left\|\left(h_{n}\right)\right\|_{2}^{w}=1$ and denote by $B: H \rightarrow H$ the norm one operator for which $B^{*} e_{n}=h_{n}$ for all $n \in \mathbb{N}$, that is

$$
B h=\sum\left(h \mid h_{n}\right) e_{n} .
$$

Observe now that if $y_{n}=u h_{n}=u B^{*} e_{n}$ then we have

$$
\sum\left|\left\langle y_{n}, x^{*}\right\rangle\right|^{2}=\left\|B u^{*} x^{*}\right\|^{2} \leq\left\|u^{*} x^{*}\right\|^{2}=\sum\left|\left\langle u e_{n}, x^{*}\right\rangle\right|^{2}
$$

for all $x^{*} \in X^{*}$. Therefore, since $\left(u e_{n}\right) \in b_{2}\left[\left(f_{n}\right) ; X\right]$ and X is $\left(f_{n}\right)$-contractive, it follows that $\left(y_{n}\right) \in b_{2}\left[\left(f_{n}\right) ; X\right]$ and

$$
\left\|\left(u h_{n}\right)\right\|_{\left(f_{n}\right)} \leq b_{f .}(X)\left\|\left(u e_{n}\right)\right\|_{\left(f_{n}\right)} .
$$

Consequently

$$
\|u\|_{\left(f_{n}\right)} \leq b_{f .}(X)\|u\|_{\left(f_{n}\right)}^{\left(e_{n}\right)} .
$$

(ii) $\Rightarrow(i)$. Take $\left(x_{n}\right) \in b_{2}\left[\left(f_{n}\right) ; X\right]$ and $\left(y_{n}\right) \in l_{2}^{\text {weak }}(X)$ such that

$$
\begin{equation*}
\sum\left|\left\langle y_{n}, x^{*}\right\rangle\right|^{2} \leq \sum\left|\left\langle x_{n}, x^{*}\right\rangle\right|^{2}, \forall x^{*} \in X^{*} . \tag{2.5}
\end{equation*}
$$

We need to show that $\left(y_{n}\right) \in b_{2}\left[\left(f_{n}\right) ; X\right]$ and

$$
\left\|\left(y_{n}\right)\right\|_{\left(f_{n}\right)} \leq c_{2}\left\|\left(x_{n}\right)\right\|_{\left(f_{n}\right)} .
$$

Since $\left(x_{n}\right) \in b_{2}\left[\left(f_{n}\right) ; X\right]$ there is $u \in \Pi_{\left(f_{n}\right)}^{\left(e_{n}\right)}(H, X)$ such that $u e_{n}=x_{n}, \forall n \in \mathbb{N}$.
According to (ii) we have $u \in \Pi_{\left(f_{n}\right)}(H, X)$. Therefore it is sufficient to find $\left(h_{n}\right) \in l_{2}^{\text {weak }}(H)$ such that $u h_{n}=y_{n}, \forall n \in \mathbb{N}$. For this we shall use (2.5). There is a continuous linear operator $v: H \rightarrow X$ such that $v e_{n}=y_{n}, \forall n \in \mathbb{N}$. So we have

$$
v^{*} x^{*}=\sum_{n}\left\langle y_{n}, x^{*}\right\rangle e_{n}, \forall x^{*} \in X^{*}
$$

Observe that

$$
\left\|v^{*} x^{*}\right\|^{2}=\sum_{n}\left|\left\langle y_{n}, x^{*}\right\rangle\right|^{2} \leq \sum_{n}\left|\left\langle x_{n}, x^{*}\right\rangle\right|^{2}=\left\|u^{*} x^{*}\right\|^{2}, \forall x^{*} \in X^{*}
$$

The last inequality implies there exists a continuous linear operator $B: H \rightarrow$ H such that $\|B\| \leq 1$ and $B u^{*}=v^{*}$. This implies that $v=u B^{*}$. Denote $h_{n}=B^{*} e_{n}, \forall n \in \mathbb{N}$. Then evidently $\left(h_{n}\right) \in l_{2}^{\text {weak }}(H),\left\|\left(h_{n}\right)\right\|_{2}^{w} \leq 1$ and

$$
u h_{n}=u B^{*} e_{n}=v e_{n}=y_{n}, \forall n \in \mathbb{N}
$$

Therefore $\left(y_{n}\right) \in b_{2}\left[\left(f_{n}\right) ; X\right]$. Also we can write
$\left\|\left\|\left(y_{n}\right)\right\|_{\left(f_{n}\right)}=\right\|\left(u h_{n}\right)\left\|_{\left(f_{n}\right)} \leq\right\| u\left\|_{\left(f_{n}\right)} \leq c_{2}\right\| u\left\|_{\left(f_{n}\right)}^{\left(e_{n}\right)}=c_{2}\right\|\left\|\left(u e_{n}\right)\right\|_{\left(f_{n}\right)}=c_{2}\left\|\left(x_{n}\right)\right\| \|_{\left(f_{n}\right)}$.
So we obtain that

$$
\left\|\left(y_{n}\right)\right\|_{\left(f_{n}\right)} \leq c_{2}\left\|\left(x_{n}\right)\right\|_{\left(f_{n}\right)} .
$$

Consequently $\left(f_{n}\right)$-contractivity constant of X is less or equal than c_{2}.

Corollary 2.1 Suppose X is $\left(f_{n}\right)$-contractive Banach space, H be a separable Hilbert space and $\left(e_{n}\right)$ a fixed orthonormal basis of H. Then
(a) For any $u \in \mathfrak{R}_{\left(f_{n}\right)}(H ; X)$ we have $\|u\|_{\left(f_{n}\right)} \leq b_{f .}(X)\left\|\sum_{k} u e_{k} f_{k}\right\|_{2}$.
(b) If X does not contains a subspace isomorphic to c_{0}, then $\mathfrak{R}_{\left(f_{n}\right)}(H ; X)=$ $\mathfrak{R}_{\left(f_{n}\right)}^{\left(e_{n}\right)}(H ; X)$.

Proof. (a) Since $u \in \mathfrak{R}_{\left(f_{n}\right)}(H ; X)$ the series $\sum_{k} u e_{k} f_{k}$ is convergent, so we can apply the inequality from Theorem 2.2.
(b) By Theorem 2.2 we have $\Pi_{\left(f_{n}\right)}(H ; X)=\Pi_{\left(f_{n}\right)}^{\left(e_{n}\right)}(H ; X)$.

Since by our assuption X does not contains a subspace isomorphic to c_{0}, we have also $\mathfrak{R}_{\left(f_{n}\right)}(H ; X)=\Pi_{\left(f_{n}\right)}(H ; X)$ and $\mathfrak{R}_{\left(f_{n}\right)}^{\left(e_{n}\right)}(H ; X)=\Pi_{\left(f_{n}\right)}^{\left(e_{n}\right)}(H ; X)$. So this implies the assertion.
$2.3 K^{f .}$ - convex spaces.
Let us introduce now the notion of K^{f}-convexity of a Banach space X. We use the method of [?]. Fix a natural number n and consider the operator

$$
R_{n}^{f .}: L_{2}(\Omega ; X) \longrightarrow S_{2}\left[\left(f_{n}\right) ; X\right]
$$

defined by the equality

$$
R_{n}^{f} \xi=\sum_{k=1}^{n}\left(\mathbf{E} \xi f_{k}\right) f_{k} ; \quad \xi \in L_{2}(\Omega ; X) .
$$

Set, $K_{n}^{f} \cdot(X)=\left\|R_{n}^{f}\right\|$ and define the $K^{f .}$-convexity constant, $K^{f .}(X)$ by

$$
K^{f .}(X)=\sup _{n} K_{n}^{f}(X)
$$

Definition 2.2 A Banach space X is called $K^{f .}$-convex, if $K^{f .}(X)<\infty$.
Recall that a Banach space is called K-convex if it is K^{r}.-convex.
Let us formulate different characterisations of $K^{f .}$-convexity, whose elementary proofs are left to the reader.

Proposition 2.4 Let X be a Banach space. The following assertions are equivalent:
(i) X is $K^{f .}$-convex.
(ii) For any $\xi \in L_{2}(\Omega ; X)$ we have

$$
\left(\mathbf{E} \xi f_{n}\right) \in b_{2}\left[\left(f_{n}\right) ; X\right] .
$$

(iii) For any $\xi \in L_{2}(\Omega ; X)$ we have

$$
\left(\mathbf{E} \xi f_{n}\right) \in s_{2}\left[\left(f_{n}\right) ; X\right] .
$$

(iv) For any $\xi \in L_{2}(\Omega ; X)$ we have $\left(\mathbf{E} \xi f_{n}\right) \in s_{2}\left[\left(f_{n}\right) ; X\right]$ and the operator $\xi \longrightarrow \sum_{n}\left(\mathbf{E} \xi f_{n}\right) f_{n}$ is a continuous linear projection of $L_{2}(\Omega ; X)$ onto $S_{2}\left[\left(f_{n}\right) ; X\right]$ (i.e. $S_{2}\left[\left(f_{n}\right) ; X\right]$ is complemented in $L_{2}(\Omega ; X)$).

Proposition 2.5 Let X be a Banach space. Then:
(a) For any fixed natural number n we have $K_{n}^{f}(X)=K_{n}^{f}\left(X^{*}\right)$.
(b) X is $K^{f .}$-convex if and only if X^{*} is $K^{f .}$-convex and $K^{f .}(X)=$ $K^{f .}\left(X^{*}\right)$.

Proof.
(a) Let $\xi^{*} \in L^{2}\left(\Omega, X^{*}\right), \phi \in L^{2}(\Omega, X)$ and $n \in \mathbb{N}$. Note that

$$
\int_{\Omega}\left\langle\sum_{k=1}^{n} \mathbf{E}\left(\xi^{*} f_{k}\right) f_{k}(w), \phi(w)\right\rangle d P(w)=\int_{\Omega}\left\langle\xi^{*}(w), \sum_{k=1}^{n} \mathbf{E}\left(\phi f_{k}\right) f_{k}(w)\right\rangle d P(w) .
$$

This clearly gives that

$$
\left|\int_{\Omega}\left\langle\sum_{k=1}^{n} \mathbf{E}\left(\xi^{*} f_{k}\right) f_{k}(w), \phi(w)\right\rangle d P(w)\right| \leq\left\|\xi^{*}\right\|_{2} K_{n}^{f}(X)\|\phi\|_{2} .
$$

Hence $\left\|\sum_{k=1}^{n} \mathbf{E}\left(\xi^{*} f_{k}\right) f_{k}\right\|_{2} \leq\left\|\xi^{*}\right\|_{2} K_{n}^{f}(X)$.
Therefore

$$
\begin{equation*}
K_{n}^{f .}\left(X^{*}\right) \leq K_{n}^{f}(X) \tag{2.6}
\end{equation*}
$$

The converse follows from (2.6) and the embedding $X \subset X^{* *}$.
(b) Follows from (a).

Proposition 2.6 Let X be a Banach space and $\left(g_{n}\right)_{n \in \mathbb{N}}$ be an another sequence of independent identically distributed symmetric random variables such that $\mathbf{E} g_{1}^{2}=1$. Supose further that there are constants C_{1} and C_{2} such that for any $n \in \mathbb{N}, x_{1}, x_{2}, \ldots, x_{n} \in X$ and $x_{1}^{*}, x_{2}^{*}, \ldots, x_{n}^{*} \in X^{*}$

$$
\left\|\sum_{k=1}^{n} x_{k} g_{k}\right\|_{2} \leq C_{1} \| \sum_{k=1}^{n} x_{k} f_{k}, \text { and }\left\|\sum_{k=1}^{n} x_{k}^{*} g_{k}\right\|_{2} \leq C_{2}\left\|\sum_{k=1}^{n} x_{k}^{*} f_{k}\right\|_{2} \text {. }
$$

Then the following statement are valid:
(a) For any natural number n we have $K_{n}^{g}(X) \leq C_{1} C_{2} K_{n}^{f} \cdot(X)$.
(b) If X is $K^{f .}$-convex then X is $K^{g .}$-convex, and $K^{g .}(X) \leq C_{1} C_{2} K^{f .}(X)$.
(c) For any natural number n we have $K_{n}^{r} \cdot(X) \leq c_{1}^{2} K_{n}^{f .}(X)$.
(d) If X is $K^{f .}$-convex then X is K-convex, and $K^{r} \cdot(X) \leq c_{1}^{2} K^{f .}(X)$, where $c_{1}=\left(\mathbf{E}\left(\left|f_{1}\right|\right)\right)^{-1}$.

Proof. (a) This is, up to notations, a particular case of Lemma 12.6 in [?].
(b) Follows from (a).
(c) Follows from (a) and Remark 2.2 (a).
(d) Follows from (c).

Remark 2.9 Consider the following assertions concerning a Banach space X :
(i) X is K-convex.
(ii) X does not contain l_{1}^{n} uniformly.
(iii) X does not contain l_{∞}^{n} uniformly.

It is not difficult to see that $(i) \Rightarrow(i i) \Rightarrow($ iii $)$ (see [?], p. 260). This already implies that the spaces $c_{0}, l_{1}, L_{1}[0,1]$ are not K-convex. From this also follows that if X is K-convex Banach space then X does not contain a subspace isomorphic to c_{0}. An important result of G. Pisier asserts that the implication $(i i) \Rightarrow(i)$ also is valid (see [?], p. 260). We shall not make use of this implication in the sequel. It is not difficult to show that any type 2 Banach space is K-convex (see Proposition 2.8 (c)).

Corollary 2.2 (a) If X is a K-convex Banach space then X is $K^{g .}$-convex for any sequence (g_{n}) be such that $\mathbf{E}\left|g_{1}\right|^{p}<\infty$ for any $p, 0<p<\infty$.

Moreover $K^{g .}(X) \leq C_{g_{1}}(X) C_{g_{1}}\left(X^{*}\right) K^{r} .(X)$, where $C_{g_{1}}(X)$ and $C_{g_{1}}\left(X^{*}\right)$ are constants from Remark 2.2 (b).
(b) In particular X is K^{γ}-convex if and only if X is K-convex.

Proof. (a) By Proposition $2.5 X$ and X^{*} are both K-convex. Hence Remark 2.9 gives that X and X^{*} do not contain l_{∞}^{n} uniformly. Now Remark 2.2 (b) allows to have the assumptions of Propositions 2.6 satisfied for $\left(f_{n}\right)=\left(r_{n}\right)$ and $\left(g_{n}\right)$ and then (a) follows from Proposition 2.6 (b) .
(b) Use part (a) and Proposition 2.6 (d).

Notice that Corollary 2.2 is known for $\left(g_{n}\right)=\left(\gamma_{n}\right)$, see [?], p. 88, where a better estimate $K^{\gamma} \cdot(X) \leq K^{r} \cdot(X)$ is obtained.

Proposition 2.7 Let X be a Banach space. Then
(a) For any $n \in \mathbb{N}$ and $y_{1}, \ldots, y_{n} \in X$

$$
\left\|\sum_{k=1}^{n} y_{k} f_{k}\right\|_{2} \leq\left(\mathbf{E}\left|f_{1}\right|\right)^{-1} \cdot K_{n}^{f}(X)\left\|\sum_{k=1}^{n} y_{k} r_{k}\right\|_{2} .
$$

(b) If X is $K^{f .}$-convex then $\operatorname{Rad}(X)=s_{2}\left[\left(f_{n}\right), X\right]=b_{2}\left[\left(f_{n}\right), X\right]$.
(c) If X is $K^{f .}$-convex, then X is $\left(f_{n}\right)$-contractive.

Moreover $b_{f .}(X) \leq\left(\mathbf{E}\left|f_{1}\right|\right)^{-2} \cdot K^{f .}(X) \cdot C_{\gamma_{1}}(X)$ where $C_{\gamma_{1}}(X)$ is the constant in Remark 2.2 (b).

Proof. (a) Given $\xi^{*} \in L^{2}\left(\Omega, X^{*}\right)$ and $n \in \mathbb{N}$ we can write

$$
\begin{gathered}
\left|\int_{\Omega}\left\langle\xi^{*}(w), \sum_{k=1}^{n} y_{k} f_{k}(w)\right\rangle d P(w)\right|=\left|\sum_{k=1}^{n}\left\langle\mathbf{E}\left(\xi^{*} f_{k}\right), y_{k}\right\rangle\right| \\
=\left|\int_{0}^{1}<\sum_{k=1}^{n} \mathbf{E}\left(\xi^{*} f_{k}\right) r_{k}(t), \sum_{k=1}^{n} y_{k} r_{k}(t)>d t\right| \\
\leq\left\|\sum_{k=1}^{n} \mathbf{E}\left(\xi^{*} f_{k}\right) r_{k}\right\|_{2}\left\|\sum_{k=1}^{n} y_{k} r_{k}\right\|_{2} .
\end{gathered}
$$

From this and Remark 2.2 (a) we obtain

$$
\left|\int_{\Omega}\left\langle\xi^{*}(w), \sum_{k=1}^{n} y_{k} f_{k}(w)\right\rangle d P(w)\right| \leq\left(\mathbf{E}\left|f_{1}\right|\right)^{-1} \cdot K^{f .}(X)\left\|\sum_{k=1}^{n} y_{k} r_{k}\right\|_{2} .
$$

As ξ^{*} was arbitrary, the last inequality implies (a).
(b) It follows from (a) and Remark 2.2 (a) that $\operatorname{Rad}(X)=s_{2}\left[\left(f_{n}\right), X\right]$. Now use Proposition 2.6 (b) together with Remarks 2.7 and 2.1 to get $s_{2}\left[\left(f_{n}\right), X\right]=b_{2}\left[\left(f_{n}\right), X\right]$.
(c) Let us take $\left(x_{n}\right) \in b_{2}\left[\left(f_{n}\right) ; X\right]$ and a sequence $\left(y_{n}\right)$ in X satisfying

$$
\sum\left|\left\langle y_{n}, x^{*}\right\rangle\right|^{2} \leq \sum\left|\left\langle x_{n}, x^{*}\right\rangle\right|^{2}
$$

for all $x^{*} \in X^{*}$.
Note first that using (a) and Remark 2.2 (a) we can write

$$
\sup _{n}\left\|\sum_{k=1}^{n} y_{k} f_{k}\right\|_{2} \leq\left(\mathbf{E}\left|f_{1}\right|\right)^{-1} \cdot K^{f}(X) \sup _{n}\left\|\sum_{k=1}^{n} y_{k} r_{k}\right\|_{2}
$$

Since X is $K^{f .}$-convex, according to Remark 2.9 it does not contain l_{∞}^{n} uniformly, so by Proposition 2.2, X is $\left(r_{n}\right)$-contractive with constant $C_{\gamma_{1}}(X)$. This implies

$$
\sup _{n}\left\|\sum_{k=1}^{n} y_{k} r_{k}\right\|_{2} \leq C_{\gamma_{1}}(X) \sup _{n}\left\|\sum_{k=1}^{n} x_{k} r_{k}\right\|_{2} .
$$

Now using Remark 2.2 (a) again we have

$$
\sup _{n}\left\|\sum_{k=1}^{n} y_{k} r_{k}\right\|_{2} \leq\left(\mathbf{E}\left|f_{1}\right|\right)^{-1} \cdot C_{\gamma_{1}}(X) \sup _{n}\left\|\sum_{k=1}^{n} x_{k} f_{k}\right\|_{2}
$$

Consequently,

$$
\sup _{n}\left\|\sum_{k=1}^{n} y_{k} f_{k}\right\|_{2} \leq\left(\mathbf{E}\left|f_{1}\right|\right)^{-2} \cdot K^{f \cdot}(X) \cdot C_{\gamma_{1}}(X) \sup _{n}\left\|\sum_{k=1}^{n} x_{k} f_{k}\right\|_{2}
$$

and (c) is proved.
Regarding the converse of the implication of part (c) in Proposition 2.7, let us observe that c_{o} is $\left(\gamma_{n}\right)$-contractive while it is not K^{γ}-convex or that $L^{1}(\mu)$ is $\left(r_{n}\right)$-contractive according to Proposition 2.2 but it is not K-convex.

Definition 2.3 Let $\left(f_{n}\right)$ be a sequence of independent identically distributed symmetric random variables such that $\mathbf{E} f_{1}^{2}=1$ and let $2<r<\infty$. We shall say that $\left(f_{n}\right)$ is r-regular if

$$
\begin{equation*}
\liminf _{t \rightarrow \infty} t^{r} P\left\{\omega \in \Omega:\left|f_{1}(\omega)\right|>t\right\}>0 \tag{2.8}
\end{equation*}
$$

It is easy to construct r-regular sequences for any r, by using,for instance independent standard Cauchy random variables.
Remark 2.10 It is rather simple to see that the condition (2.8) implies

$$
\begin{equation*}
b_{2}\left[\left(f_{n}\right) ; X\right] \subset l_{r}^{\text {strong }}(X) \tag{2.9}
\end{equation*}
$$

Let us now show that, in general, the notions of K-convex and K^{f} - -convex Banach spaces are different. Note that

Corollary 2.3 Let $2<r<\infty$ and $\left(f_{n}\right)$ be r-regular sequence.
If X is $K^{f .}$-convex, then X is of cotype r.
In particular l_{p} is not $K^{f .}$-convex for $r<p<\infty$, while it is of type 2 and hence is K-convex (see, e. g., Remark 2.11 below).

Proof. Observe that cotype r means $s_{2}\left[\left(r_{n}\right) ; X\right] \subset l_{r}^{\text {strong }}(X)$., then the result follows from (2.9) and by Proposition 2.7 (b).

Let us present some extra assumption to get $K^{f .}$-convexity out of $\left(f_{n}\right)$ contractivity.

Proposition 2.8 Let X be a Banach space which is type 2 and $\left(f_{n}\right)$-contractive. Then the following assertion are valid:
(a) For any $n \in \mathbb{N}$ and $x_{1}, \ldots, x_{n} \in X$

$$
\left\|\sum_{k=1}^{n} x_{k} f_{k}\right\|_{2} \leq b_{f .}(X) \cdot t_{2}(f ., X)\left\|\sum_{k=1}^{n} x_{k} r_{k}\right\|_{2} .
$$

(b) $\operatorname{Rad}(X)=s_{2}\left[\left(f_{n}\right), X\right]$.
(c) X is $K^{f .}$-convex.

Moreover $K^{f .}(X) \leq b_{f .}(X) \cdot t_{2}(f ., X)$.

Proof.
(a) Put

$$
y_{\theta}=\frac{1}{2^{n / 2}} \sum_{k=1}^{n} \theta_{k} x_{k}, \theta=\left(\theta_{1}, \ldots, \theta_{n}\right) \in\{-1,1\}^{n} .
$$

Then we have

$$
\left\|\sum_{k=1}^{n} x_{k} r_{k}\right\|_{2}=\left(\sum_{\theta}\left\|y_{\theta}\right\|^{2}\right)^{1 / 2}
$$

and

$$
\sum_{k=1}^{n}\left\langle x_{k}, x^{*}\right\rangle^{2}=\sum_{\theta}\left\langle y_{\theta}, x^{*}\right\rangle^{2}, \forall x^{*} \in X^{*}
$$

We write $\left(y_{\theta}\right)=\left(y_{1}, \ldots, y_{2^{n}}\right)$. Since the above equality holds and X is $\left(f_{n}\right)$ contractive, we can write

$$
\left\|\sum_{k=1}^{n} x_{k} f_{k}\right\|_{2} \leq b_{f .}(X)\left\|\sum_{k=1}^{2^{n}} y_{k} f_{k}\right\|_{2} .
$$

Since X is of type 2, it is also of $\left(f_{n}\right)$-type 2 (see Remark 2.2 (b)), we also have

$$
\left\|\sum_{k=1}^{2^{n}} y_{k} f_{k}\right\|_{2} \leq t_{2}(f ., X)\left(\sum_{k=1}^{2^{n}}\left\|y_{k}\right\|^{2}\right)^{1 / 2}=t_{2}(f ., X)\left\|\sum_{k=1}^{n} x_{k} r_{k}\right\|_{2} .
$$

These two inequalites imply (a).
(b) It follows from (a) and Remark 2.2 (a).
(c) It is sufficient to show that for any simple function $\xi \in L_{2}(\Omega, X)$ we have

$$
\begin{equation*}
\left\|R_{n}^{f} \xi\right\| \leq b_{f .}(X) \cdot t_{2}\left(\left(f_{n}\right), X\right)\|\xi\|_{2} . \tag{2.7}
\end{equation*}
$$

Given a simple function ξ, we can find $m \in \mathbb{N}$ and $x_{1}, \ldots, x_{m} \in X$ such that

$$
\|\xi\|_{2}=\left(\sum_{k=1}^{m}\left\|x_{k}\right\|^{2}\right)^{1 / 2}
$$

and

$$
\mathbf{E}\left\langle\xi, x^{*}\right\rangle^{2}=\sum_{k=1}^{m}\left\langle x_{k}, x^{*}\right\rangle^{2}, \forall x^{*} \in X^{*} .
$$

Denote now $y_{k}=\mathbf{E} \xi f_{k}, k=1, \ldots, n$. Observe that

$$
\sum_{k=1}^{n}\left\langle y_{k}, x^{*}\right\rangle^{2} \leq \mathbf{E}\left\langle\xi, x^{*}\right\rangle^{2}=\sum_{k=1}^{m}\left\langle x_{k}, x^{*}\right\rangle^{2}, \forall x^{*} \in X^{*}
$$

Using now $\left(f_{n}\right)$-contractivity of X, we have

$$
\left\|R_{n}^{f} \cdot \xi\right\|=\left\|\sum_{k=1}^{n} y_{k} f_{k}\right\|_{2} \leq b_{f .}(X)\left\|\sum_{k=1}^{m} x_{k} f_{k}\right\|_{2} .
$$

Since X is of $\left(f_{n}\right)$-type 2 , we have also

$$
\left\|\sum_{k=1}^{m} x_{k} f_{k}\right\|_{2} \leq t_{2}\left(\left(f_{n}\right), X\right)\left(\sum_{k=1}^{m}\left\|x_{k}\right\|^{2}\right)^{1 / 2}=t_{2}(f ., X)\|\xi\|_{2} .
$$

These two inequalities imply (2.7) and (c) is proved.
Remark 2.11. It follows from Proposition 2.1 (respec.Proposition 2.2) and Proposition 2.8 (c) that if X is a Banach space of γ_{n}-type 2 (respect. r_{n}-type 2)then X is K-convex.

Moreover $K^{\gamma .}(X) \leq t_{2}\left(\gamma_{n}, X\right)\left(\right.$ respec. $K(X) \leq t_{2}\left(r_{n}, X\right)$).

3 Duality Results for the Sequence Spaces

Let X be a Banach space and let E be a vector subspace of $X^{\mathbb{N}}$. Denote by E^{\times}the Köthe's dual of E, i.e. E^{\times}is the set of all sequences $\left(x_{n}^{*}\right) \in\left(X^{*}\right)^{\mathbb{N}}$ such that $\sum_{n}\left|x_{n}^{*}\left(x_{n}\right)\right|<\infty, \quad \forall\left(x_{n}\right) \in E$.

Let us assume that E is a vector space containing the set $X_{0}^{\mathbb{N}}$ of all sequences with finite support. Then for any fixed $\left(x_{n}^{*}\right) \in E^{\times}$let us denote by $l_{\left(x_{n}^{*}\right)}$ the linear functional on E defined by the relation

$$
\left(x_{n}\right) \longrightarrow l_{\left(x_{n}^{*}\right)}\left(x_{n}\right)=\sum_{n} x_{n}^{*}\left(x_{n}\right), \quad\left(x_{n}\right) \in E .
$$

It is clear that if two sequences $\left(x_{n}^{*}\right)$ and $\left(y_{n}^{*}\right)$ in E^{\times}verify $l_{\left(x_{n}^{*}\right)}=l_{\left(y_{n}^{*}\right)}$, then $x_{n}^{*}=y_{n}^{*} \forall n \in \mathbb{N}$. Hence whenever $X_{0}^{\mathbb{N}} \subset E$ and $\left(x_{n}^{*}\right) \in E^{\times}$, we shall identify $\left(x_{n}^{*}\right)$ with the linear functional $l_{\left(x_{n}^{*}\right)}$

Lemma 3.1 Let X be a Banach space, $\left(x_{n}\right) \in b_{2}\left[\left(f_{n}\right) ; X\right]$ and $\left(x_{n}^{*}\right) \in b_{2}\left[\left(f_{n}\right) ; X^{*}\right]$. Then:

$$
\begin{equation*}
\sum_{k=1}^{\infty}\left|x_{k}^{*}\left(x_{k}\right)\right| \leq \sup _{n}\left\|\sum_{k=1}^{n} x_{k} f_{k}\right\|_{2} \sup _{n}\left\|\sum_{k=1}^{n} x_{k}^{*} f_{k}\right\|_{2} . \tag{3.1}
\end{equation*}
$$

Proof. Denote $\alpha_{k}=\operatorname{sign}\left(x_{k}^{*}\left(x_{k}\right)\right)$ for any natural k. Then by (2.2) we have that $\left(\alpha_{n} x_{n}\right) \in b_{2}\left[\left(f_{n}\right) ; X\right]$ and

$$
\sup _{n}\left\|\sum_{k=1}^{n} \alpha_{k} x_{k} f_{k}\right\|_{2} \leq \sup _{n}\left\|\sum_{k=1}^{n} x_{k} f_{k}\right\|_{2}
$$

Fix a natural number n and put $\xi_{n}=\sum_{k=1}^{n} \alpha_{k} x_{k} f_{k}$ and $\eta_{n}=\sum_{k=1}^{n} x_{k}^{*} f_{k}$. Then

$$
\begin{gathered}
\sum_{k=1}^{n}\left|x_{k}^{*}\left(x_{k}\right)\right|=\sum_{k=1}^{n} \alpha_{k} x_{k}^{*}\left(x_{k}\right)=\mathbf{E}\left\langle\xi_{n}, \eta_{n}\right\rangle \leq\left\|\xi_{n}\right\|_{2}\left\|\eta_{n}\right\|_{2} \leq \\
\leq \sup _{n}\left\|\sum_{k=1}^{n} x_{k} f_{k}\right\|_{2} \sup _{n}\left\|\sum_{k=1}^{n} x_{k}^{*} f_{k}\right\|_{2} .
\end{gathered}
$$

Since n was arbitrary this inequality implies the assertion
Proposition 3.1 Let X be a Banach space. Then
(a) $b_{2}\left[\left(f_{n}\right) ; X^{*}\right] \subset\left(b_{2}\left[\left(f_{n}\right) ; X\right]\right)^{\times} \subset\left(b_{2}\left[\left(f_{n}\right) ; X\right]\right)^{*}$.

Moreover, for any $\left(x_{n}^{*}\right) \in b_{2}\left[\left(f_{n}\right) ; X^{*}\right]$ we have

$$
\begin{equation*}
\left\|l_{x_{0}^{*}}\right\| \leq\left\|\left(x_{n}^{*}\right)\right\|_{\left(f_{n}\right)} . \tag{3.2}
\end{equation*}
$$

(b) $\left(s_{2}\left[\left(f_{n}\right) ; X\right]\right)^{\times}=\left(s_{2}\left[\left(f_{n}\right) ; X\right]\right)^{*}$.

Proof. (a) The first inclusion and (3.2) follows from Lemma 3.1 and (3.1) respectively.

To see the second inclusion, let us fix $\left(x_{n}^{*}\right) \in\left(b_{2}\left[\left(f_{n}\right) ; X\right]\right)^{\times}$. We need to show that the linear functional $l_{\left(x_{n}^{*}\right)}$ is continuous on $b_{2}\left[\left(f_{n}\right) ; X\right]$. Now for any natural number n the functional l_{n} on $b_{2}\left[\left(f_{n}\right) ; X\right]$ defined by

$$
\left(x_{k}\right) \longrightarrow l_{n}\left(x_{k}\right)=\sum_{k=1}^{n} x_{k}^{*}\left(x_{k}\right)
$$

is obviously continuous. Since the sequence $\left(l_{n}\right)$ converges to $l_{\left(x_{n}^{*}\right)}$ at any point of $b_{2}\left[\left(f_{n}\right) ; X\right]$ then Banach-Steinhaus theorem gives that $l_{\left(x_{n}^{*}\right)}$ is continuous.
(b) The inclusion $\left(s_{2}\left[\left(f_{n}\right) ; X\right]\right)^{\times} \subset\left(s_{2}\left[\left(f_{n}\right) ; X\right]\right)^{*}$ can be shown as above.

Fix now a continuous linear map $l: s_{2}\left[\left(f_{n}\right) ; X\right] \longrightarrow \mathbb{R}$ and let us find $\left(x_{n}^{*}\right) \in\left(s_{2}\left[\left(f_{n}\right) ; X\right]\right)^{\times}$such that $l=l_{\left(x_{n}^{*}\right)}$. Take a natural number n and consider the mapping $j_{n}: X \longrightarrow s_{2}\left[\left(f_{n}\right) ; X\right]$ defined by the rule: $x \longrightarrow$ $(0, \ldots, x, 0, \ldots)$, where x is on n-th place. Evidently j_{n} is an isometric linear operator. Therefore $x_{n}^{*}=l j_{n} \in X^{*}$.

Let us first show that $\left(x_{n}^{*}\right) \in\left(s_{2}\left[\left(f_{n}\right) ; X\right]\right)^{\times}$. Take arbitrary $\left(x_{n}\right) \in$ $s_{2}\left[\left(f_{n}\right) ; X\right]$ and fix $n \in \mathbb{N}$. Then if $\alpha_{k}=\operatorname{sign}\left(x_{k}^{*}\left(x_{k}\right)\right)$ and $y_{k}=\alpha_{k} x_{k}$ we have

$$
\sum_{k=1}^{n}\left|x_{k}^{*}\left(x_{k}\right)\right|=\sum_{k=1}^{n} x_{k}^{*}\left(y_{k}\right)=l\left(\sum_{k=1}^{n} j_{k}\left(y_{k}\right)\right) .
$$

Hence, using (2.2),

$$
\sum_{k=1}^{n}\left|x_{k}^{*}\left(x_{k}\right)\right| \leq\|l\|\left\|\sum_{k=1}^{n} y_{k} f_{k}\right\|_{2} \leq\|l\|\left\|\sum_{k=1}^{n} x_{k} f_{k}\right\|_{2} \leq\|l\|\| \|\left(x_{n}\right)\| \|_{\left(f_{n}\right)} .
$$

Consequently $\sum_{k}\left|x_{k}^{*}\left(x_{k}\right)\right|<\infty$ and so $\left(x_{n}^{*}\right) \in\left(s_{2}\left[\left(f_{n}\right) ; X\right]\right)^{\times}$.
Finally, since the sequence $\left(x_{1}, \ldots, x_{n}, 0, \ldots\right), n \in \mathbb{N}$ tends to $\left(x_{n}\right)$ in the topology of $s_{2}\left[\left(f_{n}\right) ; X\right]$ and l is continuous, we obtain

$$
l\left(x_{n}\right)=\lim _{n} l\left(x_{1}, \ldots, x_{n}, 0, \ldots\right)=\lim _{n} \sum_{k=1}^{n} x_{k}^{*}\left(x_{k}\right) .
$$

Therefore $l=l_{\left(x_{n}^{*}\right)}$
Lemma 3.2 Let X be a $K^{f .}$-convex Banach space, $l \in\left(s_{2}\left[\left(f_{n}\right) ; X\right]\right)^{*}$. Then there exists $\left(x_{n}^{*}\right) \in b_{2}\left[\left(f_{n}\right) ; X^{*}\right]$, such that $l=l_{\left(x_{n}^{*}\right)}$ and

$$
\begin{equation*}
\sup _{n}\left\|\sum_{k=1}^{n} x_{k}^{*} f_{k}\right\|_{2} \leq K^{f .}(X)\|l\| . \tag{3.3}
\end{equation*}
$$

Proof. By Proposition 3.1 (b) there exists $\left(x_{n}^{*}\right) \in\left(s_{2}\left[\left(f_{n}\right) ; X\right]\right)^{\times}$such that $l=l_{\left(x_{n}^{*}\right)}$. The proof will be finished if we show that $\left(x_{n}^{*}\right) \in b_{2}\left[\left(f_{n}\right) ; X^{*}\right]$ and (3.3) holds.

Step 1. Fix $n \in \mathbb{N}$ and consider $l_{n}: s_{2}\left[\left(f_{n}\right) ; X\right] \longrightarrow \mathbb{R}$ defined by the sequence $\left(x_{1}^{*}, \ldots, x_{n}^{*}, 0, \ldots\right)$. Then using the contraction principle, it is easy to show that

$$
\begin{equation*}
\left\|l_{n}\right\| \leq\|l\| \quad \forall n \in \mathbb{N} . \tag{3.4}
\end{equation*}
$$

Step 2. Put $\eta_{n}=\sum_{k=1}^{n} x_{k}^{*} f_{k}$ and take $r, 0<r<1$. Then, since $\eta_{n} \in$ $L_{2}\left(\Omega ; X^{*}\right) \subset\left(L_{2}(\Omega ; X)\right)^{*}$, we can find $\xi_{n} \in L_{2}(\Omega ; X),\left\|\xi_{n}\right\|_{2}=1$, such that

$$
\begin{equation*}
r\left\|\eta_{n}\right\|_{2}<\mathbf{E}\left(\xi_{n}, \eta_{n}\right)=\sum_{k=1}^{n}\left\langle\mathbf{E} \xi_{n} f_{k}, x_{k}^{*}\right\rangle . \tag{3.5}
\end{equation*}
$$

Now, since X is $K^{f .}$-convex, by Proposition 2.4

$$
\left(\mathbf{E} \xi_{n} f_{1}, \mathbf{E} \xi_{n} f_{2}, \ldots\right) \in s_{2}\left[\left(f_{n}\right) ; X\right]
$$

and

$$
\left\|\sum_{k}\left(\mathbf{E} \xi_{n} f_{k}\right) f_{k}\right\|_{2} \leq K^{f .}(X)\left\|\xi_{n}\right\|_{2}=K^{f .}(X) .
$$

Using this and (3.5) we can write as follows

$$
r\left\|\eta_{n}\right\|_{2} \leq \sum_{k=1}^{n}\left\langle\mathbf{E} \xi_{n} f_{k}, x_{k}^{*}\right\rangle=l_{n}\left(\mathbf{E} \xi_{n} f_{1}, \mathbf{E} \xi_{n} f_{2}, \ldots\right)
$$

Now we can use (3.4) and (3.5) and write

$$
r\left\|\eta_{n}\right\|_{2} \leq K^{f .}(X)\|l\|,
$$

The last inequality, since n and r were arbitrary implies $\left(x_{n}^{*}\right) \in b_{2}\left[\left(f_{n}\right) ; X^{*}\right]$ and (3.3) hods.

Our first duality result can be formulated as follows.
Theorem 3.1 Let X be a Banach space. The following assertions are equivalent:
(i) X is $K^{f .}$-convex.
(ii) $T: b_{2}\left[\left(f_{n}\right) ; X^{*}\right] \longrightarrow\left(s_{2}\left[\left(f_{n}\right) ; X\right]\right)^{*}$ defined by the equality $T\left(x_{n}^{*}\right)=l_{\left(x_{n}^{*}\right)}$ is a Banach-space-isomorphism, with $\|T\|=1$.

Moreover, (i) implies that $\left\|T^{-1}\right\| \leq K^{f .}(X)$ and (ii) implies that $K^{f .}(X) \leq$ $\left\|T^{-1}\right\|$.

Proof. (i) \Rightarrow (ii). By Proposition 3.1 (a) we have that T is a continuous linear operator with $\|T\| \leq 1$. Lemma 3.2 implies that T is onto and $\left\|T^{-1}\right\| \leq$ $K^{f .}(X)$.
(ii) \Rightarrow (i). Fix arbitrarily $\xi \in L_{2}(\Omega ; X)$ with $\|\xi\|_{2}=1$. and write $x_{n}=$ $\mathbf{E} \xi f_{n}, n \in \mathbb{N}$. According to Proposition 2.4 it is sufficient to show that $\left(x_{n}\right) \in b_{2}\left[\left(f_{n}\right) ; X\right]$. Actually we shall show that

$$
\begin{equation*}
\sup _{n}\left\|\sum_{k=1}^{n} x_{k} f_{k}\right\|_{2} \leq\left\|T^{-1}\right\| \tag{3.6}
\end{equation*}
$$

Fix $n \in \mathbb{N}$. By the Hahn-Banach theorem there exists $l \in\left(s_{2}\left[\left(f_{n}\right) ; X\right]\right)^{*}$ such that $\|l\|=1$ and

$$
\left\|\sum_{k=1}^{n} x_{k} f_{k}\right\|_{2}=l\left(x_{1}, \ldots, x_{n}, 0, \ldots\right)
$$

According to the assumption $l=T\left(x_{n}^{*}\right)$ for some $\left(x_{n}^{*}\right) \in b_{2}\left[\left(f_{n}\right) ; X^{*}\right]$, hence

$$
\sup _{n}\left\|\sum_{k=1}^{n} x_{k}^{*} f_{k}\right\|_{2} \leq\left\|T^{-1}\right\|
$$

Note that

$$
\left\|\sum_{k=1}^{n} x_{k} f_{k}\right\|_{2}=\sum_{k=1}^{n} x_{k}^{*}\left(x_{k}\right)=\mathbf{E}\left\langle\xi, \sum_{k=1}^{n} x_{k}^{*} f_{k}\right\rangle \leq\left\|\sum_{k=1}^{n} x_{k}^{*} f_{k}\right\|_{2} \leq\left\|T^{-1}\right\| .
$$

This, since n was arbitrary, implies (3.6) and the theorem is proved.
Corollary 3.1 Let X be a Banach space. The following are equivalent:
(i) X is $K^{f .}$-convex
(ii) $\left(s_{2}\left[\left(f_{n}\right) ; X\right]\right)^{*}=s_{2}\left[\left(f_{n}\right) ; X^{*}\right]$
(iii) $\left(S_{2}\left[\left(f_{n}\right) ; X\right]\right)^{*}=S_{2}\left[\left(f_{n}\right) ; X^{*}\right]$

Proof. (i) \Rightarrow (ii). By Theorem 3.1 we can write $\left(s_{2}\left[\left(f_{n}\right) ; X\right]\right)^{*}=b_{2}\left[\left(f_{n}\right) ; X^{*}\right]$. According to Propositions $2.5(\mathrm{~b})$ and $2.7(\mathrm{~b})$ we have $b_{2}\left[\left(f_{n}\right) ; X^{*}\right]=s_{2}\left[\left(f_{n}\right) ; X^{*}\right]$ and the implication is proved.
(ii) \Rightarrow (i) By Proposition 3.1 we always have $b_{2}\left[\left(f_{n}\right) ; X^{*}\right] \subset\left(s_{2}\left[\left(f_{n}\right) ; X\right]\right)^{*}$. This and (ii) imply that $s_{2}\left[\left(f_{n}\right) ; X^{*}\right]=b_{2}\left[\left(f_{n}\right) ; X^{*}\right]$ and by Theorem 3.1 X is K^{f}-convex.
(ii) \Leftrightarrow (iii) It is obvious.

Remark 3.1. The implication (i) \Rightarrow (iii) of Corollary 3.1 for $\left(f_{n}\right)=\left(r_{n}\right)$ was pointed out in [?]. The same implication for $\left(f_{n}\right)=\left(\gamma_{n}\right)$ and for the separable Banach space having type 2 was obtained in [?].

4 Duality Results for Almost Summing Operators

In this section H will denote an infinite dimensional separable Hilbert space, X will be a Banach space. $L\left(Y_{1}, Y_{2}\right)$ denotes the space of all continuous linear operators between the Banach spaces Y_{1} and $Y_{2} . \mathfrak{N}_{p}\left(Y_{1}, Y_{2}\right)$ is the space of all p-nuclear operators and ν_{p} denotes p-nuclear norm (see [?], p. 112). We put also $\mathfrak{N}(H)=\mathfrak{N}_{1}(H, H)$.

It is well-known that for any $w \in \mathfrak{N}(H)$ and any orthonormal bases $\left(e_{n}\right)$ in H the series $\sum_{n}\left(w e_{n} \mid e_{n}\right)$ is convergent, its sum does not depend on particular choice of $\left(e_{n}\right)$ and it is denoted by trw. The number trw is called the trace of w and the inequality $|t r w| \leq \nu_{1}(w)$ holds.

Let us denote also

$$
\Pi_{\left(f_{n}\right)}^{\text {dual }}(X, H)=\left\{v \in L(X, H): v^{*} \in \Pi_{\left(f_{n}\right)}\left(H, X^{*}\right)\right\}
$$

and

$$
\mathfrak{R}_{\left(f_{n}\right)}^{d u a l}(X, H)=\left\{v \in L(X, H): v^{*} \in \mathfrak{R}_{\left(f_{n}\right)}\left(H, X^{*}\right)\right\} .
$$

We shall endow $\Pi_{\left(f_{n}\right)}^{\text {dual }}(X, H)$ and $\Re_{\left(f_{n}\right)}^{\text {dual }}(X, H)$ with the norm

$$
\|v\|_{\left(f_{n}\right)}^{\text {dual }}=\left\|v^{*}\right\|_{\left(f_{n}\right)}, \quad v \in \Pi_{\left(f_{n}\right)}^{\text {dual }}(X, H) .
$$

Evidently $\Re_{\left(f_{n}\right)}^{\text {dual }}(X, H) \subset \Pi_{\left(f_{n}\right)}^{\text {dual }}(X, H)$, and if $c_{0} \not \subset X^{*}$, then Remark 2.1 gives $\Pi_{\left(f_{n}\right)}^{\text {dual }}(X, H)=\Re_{\left(f_{n}\right)}^{\text {dual }}(X, H)$.

Lemma 4.1 Let X be a Banach space, $u \in \Pi_{\left(f_{n}\right)}(H, X)$ and $v \in \Pi_{\left(f_{n}\right)}^{\text {dual }}(X, H)$. Then vu is nuclear and

$$
\begin{equation*}
\nu_{1}(v u) \leq\|u\|_{\left(f_{n}\right)}\left\|v^{*}\right\|_{\left(f_{n}\right)} . \tag{4.1}
\end{equation*}
$$

Proof. It is needed to see that $v u \in \mathfrak{N}(H)$ and (4.1) holds. For this it is enough to show that for any two orthonormal basis $\left(e_{n}^{\prime}\right)$ and $\left(e_{n}^{\prime \prime}\right)$ of H we have

$$
\sum_{n}\left|\left(v u e_{n}^{\prime} \mid e_{n}^{\prime \prime}\right)\right| \leq\|u\|_{\left(f_{n}\right)}\left\|v^{*}\right\|_{\left(f_{n}\right)}
$$

(see [?], p. 118). Evidently we have $\left(u e_{n}^{\prime}\right) \in b_{2}\left[\left(f_{n}\right) ; X\right]$ and $\left(v^{*} e_{n}^{\prime \prime}\right) \in$ $b_{2}\left[\left(f_{n}\right) ; X^{*}\right]$. So, by Lemma 3.1 we have

$$
\begin{gathered}
\sum_{n}\left|\left(v u e_{n}^{\prime} \mid e_{n}^{\prime \prime}\right)\right|=\sum_{n}\left|\left\langle u e_{n}^{\prime}, v^{*} e_{n}^{\prime \prime}\right\rangle\right| \leq \\
\leq \sup _{n}\left\|\sum_{k=1}^{n} u e_{k}^{\prime} f_{k}\right\|_{2} \sup _{n}\left\|\sum_{k=1}^{n} v^{*} e_{k}^{\prime \prime} f_{k}\right\|_{2} \leq\|u\|_{\left(f_{n}\right)}\left\|v^{*}\right\|_{\left(f_{n}\right)} .
\end{gathered}
$$

From this (4.1) easily follows.
Lemma 4.2 Let X be a $K^{f .}$-convex Banach space and $F \in\left(\mathfrak{R}_{\left(f_{n}\right)}(H, X)\right)^{*}$. Then there is $v \in \Pi_{\left(f_{n}\right)}^{\text {dual }}(X, H)$ such that $F(u)=\operatorname{tr}(v u), \forall u \in \mathfrak{R}_{\left(f_{n}\right)}(H, X)$.

Moreover $\left\|v^{*}\right\|_{\left(f_{n}\right)} \leq b_{f .}(X) \cdot b_{f .}\left(X^{*}\right) \cdot K^{f .}(X) \cdot\|F\|$.
Proof. Fix an orthonormal basis $\left(e_{n}\right)$ of H, consider the operator

$$
A: \mathfrak{R}_{\left(f_{n}\right)}(H, X) \rightarrow s_{2}\left[\left(f_{n}\right), X\right]
$$

defined by the relation $A u=\left(u e_{1}, u e_{2}, \ldots\right)$. Since X is $K^{f .}$-convex, then by Proposition 2.7, X is $\left(f_{n}\right)$-contractive. This implies, by Theorem 2.2, that A is an isomorphism between corresponding spaces such that $\|A\| \leq 1$ and $\left\|A^{-1}\right\| \leq b_{f .}(X)$.

Consider $l=F \circ A^{-1}$, then $l \in\left(s_{2}\left[\left(f_{n}\right), X\right]\right)^{*}$. So, by Lemma 3.2, there exists $\left(x_{n}\right) \in b_{2}\left[\left(f_{n}\right), X^{*}\right]$ such that $l=l_{\left(x_{n}^{*}\right)}$ and

$$
\sup _{n}\left\|\sum_{k=1}^{n} x_{k}^{*} f_{k}\right\|_{2} \leq K^{f .}(X)\|l\| \leq K^{f \cdot}(X)\|F\|\left\|A^{-1}\right\| \leq c_{1} K^{f .}(X)\|F\|
$$

Define now another operator $v: X \rightarrow H$ by the equality

$$
v x=\sum_{k} x_{k}^{*}(x) e_{k} .
$$

Evidently $v^{*} e_{k}=x_{k}^{*}$ for any k. Since now by Proposition 2.5 (b) X^{*} is $K^{f .}$. convex, by Proposition 2.7 (c) it is also $\left(f_{n}\right)$-contractive, what allows us to use again Theorem 2.2 to conclude that $v^{*} \in \Pi_{\left(f_{n}\right)}\left(H, X^{*}\right)$ and

$$
\left\|v^{*}\right\|_{\left(f_{n}\right)} \leq b_{f .}\left(X^{*}\right) \cdot \sup _{n}\left\|\sum_{k=1}^{n} x_{k}^{*} f_{k}\right\|_{2} .
$$

Consequently $v \in \Pi_{\left(f_{n}\right)}^{\text {dual }}(X, H)$. Now is easy to see that $F(u)=\operatorname{tr}(v u)$ for any u and

$$
\left\|v^{*}\right\|_{\left(f_{n}\right)} \leq b_{f .}(X) b_{f .}\left(X^{*}\right) K^{f .}(X)\|F\|,
$$

and the lemma is proved.
Theorem 4.1 Let X be a Banach space. The following are equivalent
(i) X is K^{f}.-convex
(ii) $\left(\mathfrak{R}_{\left(f_{n}\right)}(H, X)\right)^{*}=\Pi_{\left(f_{n}\right)}^{\text {dual }}(X, H)$ (with equivalent norms).

Proof. (i) \Rightarrow (ii). This follows at once from Lemma 4.1 and Lemma 4.2.
$($ ii $) \Rightarrow(\mathrm{i})$. By Theorem 3.1 is enough to show that (ii) implies the equality

$$
\begin{equation*}
\left(s_{2}\left[\left(f_{n}\right) ; X\right]\right)^{*}=b_{2}\left[\left(f_{n}\right) ; X^{*}\right] \tag{4.2}
\end{equation*}
$$

The inclusion $\left(s_{2}\left[\left(f_{n}\right) ; X\right]\right)^{*} \supset b_{2}\left[\left(f_{n}\right) ; X^{*}\right]$ is valid for all Banach spaces according to Proposition 3.1 (a).

Take now $l \in\left(s_{2}\left[\left(f_{n}\right) ; X\right]\right)^{*}$ and let us find $\left(x_{n}^{*}\right) \in b_{2}\left[\left(f_{n}\right) ; X^{*}\right]$ such that $l=l_{\left(x_{n}^{*}\right)}$. Fix any orthonormal basis $\left(e_{n}\right)$ of H. Observe that the equality

$$
F(u)=l\left(u e_{1}, u e_{2}, \ldots, u e_{n}, \ldots\right), u \in \mathfrak{R}_{\left(f_{n}\right)}(H, X)
$$

defines an element in $\left(\mathfrak{R}_{\left(f_{n}\right)}(H, X)\right)^{*}$. From the assumption there is $v \in$ $\Pi_{\left(f_{n}\right)}^{\text {dual }}(H, X)$ such that

$$
F(u)=\operatorname{tr}(v u)=\sum_{n}\left\langle u e_{n}, v^{*} e_{n}\right\rangle, \forall u \in \mathfrak{R}_{\left(f_{n}\right)}(H, X) .
$$

Put $x_{n}^{*}=v^{*} e_{n}, \forall n \in \mathbb{N}$. Since $v^{*} \in \Pi_{\left(f_{n}\right)}\left(H ; X^{*}\right)$ we have $\left(x_{n}^{*}\right) \in$ $b_{2}\left[\left(f_{n}\right) ; X^{*}\right]$. Let us see that $l=l_{x^{*}}$.

Fix arbitrary $\left(x_{n}\right) \in s_{2}\left[\left(f_{n}\right) ; X\right]$ and let us show that $l\left(x_{n}\right)=l_{\left(x_{n}^{*}\right)}\left(x_{n}\right)$. According to the above equality we can write

$$
\begin{equation*}
l\left(u e_{1}, \ldots, u e_{n}, \ldots\right)=l_{x_{*}^{*}}\left(u e_{1}, \ldots, u e_{n}, \ldots\right), \forall u \in \mathfrak{R}_{\left(f_{n}\right)}(H, X) . \tag{4.3}
\end{equation*}
$$

Consider for a fixed $n \in \mathbb{N}$ a finite rank operator $u_{n}: H \rightarrow X$ defined as follows: $u e_{k}=x_{k}$, for $k \leq n$ and $u e_{k}=0$ for $k>n$. We have that $u_{n} \in \Re_{\left(f_{n}\right)}(H, X)$. Consequently, the equality (4.8) holds for u_{n}. Using this, the fact that the sequence $\left(x_{1}, \ldots, x_{n}, 0, \ldots\right), n=1, \ldots$ converges to $\left(x_{n}\right)$ in $s_{2}\left[\left(f_{n}\right), X\right]$ and the continuity on $s_{2}\left[\left(f_{n}\right), X\right]$ of the functionals l and $l_{x^{*}}$, we get $l\left(x_{n}\right)=l_{x^{*}}\left(x_{n}\right)$, and the proof is finished.

Corollary 4.1 Let X be a Banach space. The following are equivalent:
(i) X is $K^{f .}$-convex.
(ii) $\left(\mathfrak{R}_{\left(f_{n}\right)}(H, X)\right)^{*}=\mathfrak{R}_{\left(f_{n}\right)}^{\text {dual }}(X, H)$.

Proof. (i) \Rightarrow (ii) Follows from Theorem 4.1, Proposition 2.5 and Remark 2.1.
(ii) \Rightarrow (i) The condition (ii) together with Proposition 4.1 (a) implies that $\left(\mathfrak{R}_{\left(f_{n}\right)}(H, X)\right)^{*}=\Pi_{\left(f_{n}\right)}^{\text {dual }}(X, H)$. So, by Theorem 4.1, X is $K^{f . \text {-convex. }}$

Corollary 4.2 Let X be a Banach space. The following are equivalent:
(i) X is K-convex.
(ii) $\left(\Pi_{a s}(H, X)\right)^{*}=\Pi_{\left(r_{n}\right)}^{d u a l}(X, H)$.
(iii) $\left(\mathfrak{R}_{\left(\gamma_{n}\right)}(H, X)\right)^{*}=\Pi_{\left(\gamma_{n}\right)}^{\text {dual }}(X, H)$.
(iv) X is K^{γ}. convex.

Proof. (i) \Leftrightarrow (ii) and (iii) \Leftrightarrow (iv) by Theorem 4.1 applied for $\left(r_{n}\right)$ and $\left(\gamma_{n}\right)$.
(ii) \Rightarrow (iii) We have that X and X^{*} are K-convex, therefore they do not contain c_{0}, this implies that $\Pi_{a s}(H, X)=\Pi_{\left(r_{n}\right)}(H, X)$ which coincides with $\Pi_{\left(r_{n}\right)}(H, X)=\Pi_{\left(\gamma_{n}\right)}(H, X)$ (by Theorem 2.1).

On the other hand, we have $\Pi_{\left(\gamma_{n}\right)}(H, X)=\mathfrak{R}_{\left(\gamma_{n}\right)}(H, X)$. So $\Pi_{a s}(H, X)=$ $\mathfrak{R}_{\left(\gamma_{n}\right)}(H, X)$. And so $\left(\mathfrak{R}_{\left(\gamma_{n}\right)}(H, X)\right)^{*}=\Pi_{\left(r_{n}\right)}^{\text {dual }}(X, H)$. Now let us show that $\Pi_{\left(r_{n}\right)}^{\text {dual }}(X, H)=\Pi_{\left(\gamma_{n}\right)}^{\text {dual }}(X, H)$.

The inclusion $\prod_{\left(r_{n}\right)}^{\text {dual }}(X, H) \supset \prod_{\left(\gamma_{n}\right)}^{\text {dual }}(X, H)$ is clear.
For the other inclusion let us take $v \in \Pi_{\left(r_{n}\right)}^{\text {dual }}(X, H)$, then $v^{*} \in \Pi_{\left(r_{n}\right)}\left(H, X^{*}\right)$ and $v^{*} \in \Pi_{\left(\gamma_{n}\right)}\left(H, X^{*}\right)$ by Theorem 2.1, consequently $v^{*} \in \Pi_{\left(\gamma_{n}\right)}^{\text {dual }}(X, H)$.
(iii) \Rightarrow (ii) Is true by similar reason, and the corollary is proved.

Remark 4.1. It is known that if a Banach space X is a $G L$-space (see [?] for definition and properties) and X^{*} has a finite cotype, then $\Pi_{a s}^{\text {dual }}(X, H)=$ $\Pi_{1}(X, H)$. If X is K-convex, X^{*} is also K-convex, and so has a finite cotype. From this observations and from Corollary 4.1 it follows that if X is a K convex $G L$-space, then $\left(\Pi_{a s}(H, X)\right)^{*}=\Pi_{1}(X, H)$.

Proposition 4.1 Let X be a Banach space. The following assertions are equivalent.
(i) X is of cotype 2.
(ii) $\left(\Pi_{a s}(H, X)\right)^{*}=\Pi_{2}(X, H)$.

Proof. (i) \Rightarrow (ii) Since X is of cotype 2 we have

$$
\begin{equation*}
\Pi_{a s}(H, X)=\Pi_{2}(H, X) \tag{4.4}
\end{equation*}
$$

and for any $u \in \Pi_{a s}(H, X)$

$$
c\left(r_{.}, X\right) \pi_{2}(u) \leq \pi_{a s}(u) \leq \pi_{2}(u)
$$

where $c(r, X)$ is the cotype 2 constant of X (see Remark 2.5 (a), (b)).

On the other hand, for any Banach space X, we have

$$
\begin{equation*}
\Pi_{2}(H, X)=\mathfrak{N}_{2}(H, X) \tag{4.5}
\end{equation*}
$$

and for all $u \in \Pi_{2}(H, X), \pi_{2}(u)=\nu_{2}(u)$.
It is known that the equality

$$
\begin{equation*}
\left(\mathfrak{N}_{2}(H, X)\right)^{*}=\Pi_{2}(X, H) \tag{4.6}
\end{equation*}
$$

holds isometrically (see [?], p. 448). From (4.6), (4.5), and (4.4) follows the statement (ii).
$($ ii $) \Rightarrow(\mathrm{i})$. Let us show that X has the Gaussian cotype 2. Take arbitrarily $\left(x_{n}\right) \in s_{2}\left[\left(\gamma_{n}\right) ; X\right]$. It is needed to show that $\left(x_{n}\right) \in l_{2}^{\text {strong }}(X)$. Fix an orthonormal basis $\left(e_{n}\right)$ of H. Consider the operator $u \in L(H, X)$ such that $u e_{n}=x_{n}$ for all $n \in \mathbb{N}$. By Proposition $2.3 u \in \mathfrak{R}_{\left(\gamma_{n}\right)}(H, X)$, hence $u \in$ $\Pi_{a s}(H, X)$.

Take now a sequence $\left(x_{n}^{*}\right) \in l_{2}^{\text {strong }}\left(X^{*}\right)$ and consider the operator v : $X \rightarrow H$ defined by the equality

$$
v x=\sum_{n} x_{n}^{*}(x) e_{n}, \quad \forall x \in X .
$$

It is easy to see that $v \in \Pi_{2}(X, H)$. This, according with (ii), implies that the operator $v u$ is nuclear; hence,

$$
\sum_{n}\left|\left(v u e_{n} \mid e_{n}\right)\right|=\sum_{n}\left|\left\langle u e_{n}, v^{*} e_{n}\right\rangle\right|=\sum_{n}\left|\left\langle x_{n}, x_{n}^{*}\right\rangle\right|<\infty .
$$

Since $\left(x_{n}^{*}\right) \in l_{2}^{\text {strong }}\left(X^{*}\right)$ was arbitrary, the last relation implies that $\left(x_{n}\right) \in$ $l_{2}^{\text {strong }}(X)$. Therefore X is of Gaussian cotype 2 and then X is, at it is known, of Rademacher cotype 2.

References

[1] Baur F. Banach Operators Ideals Generated by Orthonormal Systems. Inaugural-Dissertation Zurich 1997.
[2] Chobanyan S.A., Tarieladze V.I. Gaussian Characterizations of Certain Banach Spaces. J. Mult. Anal. 7(1977), 183-203.
[3] Diestel J., Jarchow H., Tonge A. Absolutely Summing Operators. Cambridge University Press (1995).
[4] Figiel T., Tomczak-Jaegermann N. Projections onto Hilbertian Subspaces of Banach Spaces. Israel J. Math. 33(1979), 155-171.
[5] Gohberg I.C., Krein M.G. Introduction to the Theory of Linear Non selfadjoint Operators in Hilbert Space. Translations A.M.S. 18, 1969.
[6] Jarchow H. Locally Convex Spaces. B.G. Teubner Stuttgart 1.994.
[7] Linde W., Pietsch A. Mappings Gaussian Cylindrical Measures in Banach Spaces. Theory Probability Appl. 19(1974), 445-460.
[8] Maurey B., Pisier G. Serie de Variables Aléatoires Vectorielles Indepéndantes et Propietés Géometriques des Espaces de Banach. Studia Math. T. LVIII. (1976) 45-90.
[9] Pietsch A., Wenzel J. Orthonormal Systems and Banach Space Geometry. Cambridge University Press (1998).
[10] Pisier G. On the duality Between Type and Cotype. Lecture Notes in Math. 939 (1981).
[11] Pisier G. Semigroupes Holomorphes et K-convexite. Seminaire D'Analyse Functiounelle, 1980-1981. Exposè No II. (28 November 1980).
[12] Nguyen Duy Tien, Tarieladze V.I., Vidal R. On Summing and Related Operators Acting From a Hilbert Space. Bull. Polish Acad. Sci. 1998, Vol.46, no. 4.
[13] Nguyen Duy Tien, Vidal R. Almost Summing Operators in Banach Spaces. Preprint, 1996.
[14] Nguyen Duy Tien, Vidal R. Comparison Theorems for Random series in Banach spaces. Preprint, 1996.
[15] Tomczak-Jaegermann N. Banach-Mazur Distance and Finite Dimensional Operators Ideals. Longman Scientific Technical 1989.
[16] Vakhania N.N., Tarieladze V.I., Chobanyan S.A. Probability Distributions on Banach Spaces. D. Reidel, 1987.

[^0]: *The first author has been partially supported by the Spanish Grant Proyecto D.G.Y.C.I.T PB95-0261

