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Abstract

For a fixed sequence f = (f,) of independent identically distrib-
uted symmetric random variables with EfZ = 1, we introduce the
notion of K/ -convex Banach space and the notions (f,)-bounding
and (fy)-converging operators acting between Banach spaces. It is
shown that the dual of the space of (f,,)-converging operators between
a Hilbert space and a K/ -convex Banach space admits a precise de-
scription in terms of trace duality. The obtained results recover similar
formulations for almost summing and «-Radonifying operators.

1 Introduction

Given two Banach spaces X and Y we shall be dealing with the class of
operators u : X — Y which map sequences (z,) in [¥*®*(X) into series
S u(xy,)f, which converge in Lo(Q;Y),where (f,) is a sequence of inde-
pendent identically distributed symmetric random variables with Ef? = 1.
We shall call these operators (f,)-converging operators and the class of all
(fn)-converging operators will be denoted by PR, (X,Y). In the case (f,)
being the Rademacher sequence (r,) they are called almost summing op-
erators and denoted by I,s(X,Y") (see [?]) and for (f,,) being the standard
gaussian sequences (7,,) they are called y-Radonifying operators and denoted
by R, (X,Y).

Our aim is to describe the dual of the Ry, )(H,X) for an infinite di-
mensional separable Hilbert space H. Previous results for finite dimensional
Hilbert space and (7, ) were achieved in [?]. Motivated from her results we
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are introducing the space %??f)l(X , H) given by those continuous linear op-
erators v : X — H whose adjoint v* € Ry, )(H,X*). We are showing
that for an arbitrary u € R, (H, X) and v € 9‘{?}‘:)1()(, H), the operator
vu : H — H is nuclear and the linear functional u — tr(vu) is continuous
on Ry, (H,X). In this way D‘i?}f)l(X, H) can be identified with a subspace
of (R, (H,X))".

We shall be able to give a complete characterisation of the dual in terms
of the trace duality only for K/-convex spaces X (see definition below).
Namely, we are showing that the equality (R,)(H, X))" = R{4(X, H)
holds isomorphically in the sense of trace duality if and only if X is K/-
convex.

As a corollary of our results we get that it is equivalent that X is a K-
convex Banach space to the fact (I1,s(H, X))" = 1% (X H) (cf. [?], p. 280)
or to the fact (R,(H,X))" = R¥(X, H).

We are not using the general theory of conjugate operators ideals. Our
arguments are based upon the study of the dual of the space so[(fn), X],
which is given by sequences (z,,) such that 3z, f,, is convergent in L?(Q, X).
This dual space can be represented as by[(f,), X*], the space of sequences
() in the dual X* such that the series 3z f,, has bounded partial sums in
L%*(Q, X*), only in the case that X is K/-convex.

In particular we shall show that for any (z,) € Rad(X) and (z¥) €
Rad(X*) we have Y |z} (z,,)| < oo and the linear functional (z,,) — > 7 (x,)
is continuous on Rad(X). Again the equality (Rad(X))" = Rad(X*) holds
if and only if X is K-convex. The equality (Rad(X))" = Rad(X*) for the
separable Banach spaces having type 2 was obtained in [?] and it was already
pointed out in [?] for the general case.

The paper is divided into three sections. In the first one we are recalling
the facts that will be used in the sequel and introduce a new notion of (f;,)-
contractive Banach space (see definition below), that plays a particular role
because it allows to connect the vector-valued sequence spaces with the spaces
of operators which are (f,)-bounding. The second section is devoted to
analyse the duality for sequence spaces and in the last section we prove
duality results for the spaces of (f,)-converging operators between Hilbert
and Banach spaces.



2 Notation and Auxiliary Results

2.1 Random vector series and ( f,,)-contractivity.

For a given Banach space X the notations [57"(X) and [¥**(X), 0 <
p < oo have the same meaning as in [?]. If (Q,%, P) is a probability space
and X is a Banach space then L,(£2,%, P; X) or shortly L,(€2; X') denote the
ordinary space of X-valued strongly measurable functions £ : 2 — X, such
that [I€]l, == (o [€@)IPAP()F < oo.

For a scalar or a vector-valued integrable function f, Ef will denote the
integral [, fdP.

Throughout the paper ( f,,) will stand for a sequence of independent identi-
cally distributed symmetric random variables on (2,2, P) such that Ef? = 1.

Let us recall the following notations from [?] (p. 316)

b2[(f): X] = { () € X" sup | g: frwr, < o0},

so[(fn); X] = {(xn) € X":> x,f, is convergent in LQ(Q;X)}7

S2[(fn)7X] = {anfn : (In> S 32[(fn)7X]}
Notice that bo[(f,,); X] is a Banach space with respect to the norm

@)l = sup | 3 fucea, = tim | 32 S,
T k=1 k=1
The space s3[(f,); X] is a closed subspace of by[(f,); X| and
@l = || wnfal,,  (20) € sal(£a); X],

and also Ss[(f,); X] is a closed subspace of Ly(Q; X). Evidently so[(f,); X]
and Sy[(f,); X| are isometric.

The cases that have been very deeply studied correspond to (f,) being
either the sequence (r,,) of Rademacher functions on [0, 1] with the Lebesgue
measure or the sequence (7,) of independent standard Gaussian random vari-
ables on a probability space (2,2, P). We shall denote the space s5[(7,,); X]
by Rad(X), although in the literature the notation Rad(X) is sometimes
used for the space Sy[(r,); X].

Remark 2.1. In general the sets by[(f,); X] and s3[(f,); X] are different;
Actually (see [?], p. 347-348) bs[(fn); X] = s2[(fn); X] if and only if X does

not contain a subspace isomorphic to cg.
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Fix two numbers p,q, 1 < p <2 < g < oo. We recall that a Banach space
X is said to have (f,)-type p, resp. (f,)-cotype q if

LX) C sa(fn); X,

resp. if
s2[(fn); X] C 19X,

(
If X has (fn)-type p (resp. (f)-cotype q), then the norm of inclusion op-
erator [57"9(X) C so[(fn); X] (vesp. so[(fn); X] C I57"9(X)) is denoted by
to(f,X), (resp. ¢,(f,X)) and is called the type p constant, (resp. cotype ¢
constant of X).
The spaces of (r,)-type p, (resp. (r,)-cotype q) are named simply type p
(resp. cotype q).

Remark 2.2. (a) It is known that
1> mewlle < el Y frwnll (2.1)
k=1 k=1

for all 21,2s,...,2, € X and n € N, where ¢, = (E|fy|)”" (see [?], pp.
323-324). Therefore

ba[(fn); X] C b2[(1); X].

and
s2[(fn); X] C Rad(X).

(b) It follows from (a) that if X is of (f,)-type p, then X is type p and
to(r, X) < cit,(f,X). Conversely, if X is type p, then X is also (f,)-type
pand t,(f,X) < t,(r,X). (In fact, ix n € N, zy,...,2, € X, t € [0,1].
Since (f,,) is i.i.d. symmetric sequence, we can write

1> zwfillz = Bl D wefill* = Ellvakfm (O, vt € [0,1]
k=1 k=1

Integrating with respect to t, using Fubini’s theorem and Minkowski’s
inequality, we obtain

13 whlly =B [ 13 aufirs 0t <

n

2
< tp(rn, X) Zl\xkll”lfklp) "<t X Z il [P)*/7)

k=1 k=1



(c) Again using (a) we have that if X has cotype ¢, thenX has(f,)-cotype
q and ¢,(f,X) < ¢,(r,X). The question of validity converse statement is
more delicate (see (e) below).

Suppose X has (f,,)-cotype q. Suppose additionally that E|f;|"” < oo, Vr >
0. Observe that then X does not contain 7 uniformly (this is not difficult
to check). Using this and (d) (see below) we can conclude that then X has
cotype q and c,(r, X) < Cp, (X)c,(f, X).

(d) When a Banach space X does not contain [, uniformly and E|f;|" <
oo for all r, 0 < r < oo, then there is a constant C/, (X) such that

1> fewrlle < Cr (XD rearl]2
=1 =

for all z1,29,...,2, € X and n € N. This is an important result of [?] (see
Cor. 1.3 and Remark 1.5 (d) of that paper).

Remark 2.3. Let us recall that from the Contraction Principle (see [?],
page 301) we have that

n n
1Y awrfilla < mazicp<nlarll] D frrll2 (2.2)
k=1 k=1

for all aq, g, ...,a, € R, 21, 29,...,2, € X and n € N.
Therefore it follows that if (x,,) € ba[(fn); X] (respect. (z,) € s2[(fn); X])
and (o) € [*° then (a,x,) € ba[(fn); X]| (respect. (anx,) € s2[(fn); X]).
We shall need the following stronger contractivity property.

Definition 2.1 A Banach space X is (f,)-contractive if there exists a con-
stant ¢ > 0 such that for any (x,) € bo[(fn); X] and any sequence (y,) in X
verifying

> [yn, )P < D0 [am, 27) %, Vo™ € X7,

we have that (y,) € ba[(fn); X] and

€ lry < el ()

The infimum of all constants ¢ for which the last inequality holds is called
the (f,)-contractivity constant of X and it will be denoted by (X).

(fn) °

This new notion will be very relevant for our purposes. It is justified by
the following two assertions, first of which is well known (see, e.g., [?], Th.

8)

Proposition 2.1 Any Banach space is (v,)-contractive and b, (X) = 1.
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Proposition 2.2 (see [?7]) Let X be a Banach space. The following are
equivalent:

(i) X does not contain I, uniformly.

(ii) X is (r,)-contractive.

(1)) X is (fn)-contractive for any (f,) such that E|fi]? < oo for all
p, 0 <p<oo.

Moreover, (i) implies that b, (X) < C., (X), where C.,, (X) is the constant
from Remark 2.2 (b).

2.2 Converging and bounding operators.

Let us now recall some definitions and notation on operators to be used
later on. Let X, Y be Banach spaces. Let us say that a continuous lin-
ear operator u : X — Y is (f,)-bounding (respectively (f,)-converging) if
for any (z,) € 1¥°*(X) we have (uz,) € bo[(fn); Y] (respectively (ux,) €
55[(fn);Y)]). Denote by Ilis,)(X,Y) (respectively by Ry, (X,Y)) the set of
all (f,)-bounding (respectively of all (f,,)-converging) operators u : X — Y.

In the standard way it can be shown, that a linear operator v : X — Y
is (f,)-bounding if and only if it is (f,,)-summing, i.e., there is a constant
¢ > 0 such that the inequality

n n 1/2

| > urefi], < e sup (Z !flﬁ*(mk)P)
k=1 lz*[[<1 \k=1

holds for all n € N and zy,..., 2, € X. If u € II(5,)(X,Y) then the infimum

of the constants ¢ for which the above inequality holds shall be denoted by

||lu||(#,) and called the (f,)-bounding norm of w.

It can be shown that (IT;,(X,Y), || [|(s.)) is a Banach space and R, (X, Y)
is a closed subspace of it.

In [?] (r,)-converging operators are called almost summing and the cor-
responding space is denoted by I1,4(X,Y’); the norm ||u||(,) is denoted there
as Tqs(u). Therefore in our notations I (X, Y) is R, (X, Y).

The (7,)-bounding operators with the name of v-summing operators were
introduced in [?]; the notion was discovered independently in [?]. The (v, )-

converging operators sometimes are called y-Radonifying operators. Already
in [?] is remarked that Il )(H, co) # Ry, (H, co).

Remark 2.4. Notice, that in [?] it is stated incorrectly, that I1,,(X,Y) =
() (X,Y); in fact it can be shown that if H is an infinite dimensional Hilbert
space, then for a Banach space Y the equality I1,,(H,Y") = Il (H,Y") holds
if and only if Y does not contain a subspace isomorphic to ¢q (see [?]).
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Notice also that the notion of (f,)-summing operators, where (f,) is an
arbitrary orthonormal sequence, is introduced and studied in [?] and [?].
It follows from Remark 2.2 that, in general,

H(fn) (X, Y) C H(rn)<X, Y) (23)

The following result, obtained in [?], will be important in further consid-
erations. We formulate it in our notations.

Theorem 2.1 (See [?], p. 240, theorem 12.12). Let X, Y be Banach spaces.
Then I, )(X,Y) =, (X,Y) and

2/mas () < [l o) < Tas(u)
for any v € 11, (X, Y).

Let us collect some easy relationships between ( f,)-summing operators
and other well-known classes of operators.
Remark 2.5. Denoting IL,(X,Y’) and IL, ,(X,Y") the space of p-summing
operators and (p, ¢)-summing operators. An application of Pietch’s domina-
tion theorem allows us to get the following observations:

() Iy(X,Y) C I (X, Y).
Moreover ||ul|(s,) < m2(u) for all v € TI (X, Y).

(b) If Y is of cotype ¢ > 2 then II(;,)(X,Y) C I, 2(X,Y).
Moreover mq(u) < (E|fi]) 7 ull(fcq(r,Y) for all w € I, (X,Y) where
cq(r.,Y) is the cotype g-constant of Y.

(c) If H is an infinite dimensional separable Hilbert space and

i) (X,Y) C I(X,Y), then Y is of cotype 2. (In fact, by remark
2.2 (a) we have also Il )(X,Y) C IIy(X,Y), this and Theorem 2.1 imply
I, (X,Y) C IIh(X,Y). The last inclusion implies that Y is of cotype 2

(see [7])).

(d) If we assume (f,,) is such that E|fi[P < oo for some p > 2 then
IL,(X,Y) C I, (X,Y) for all u € IL,(X,Y).

Moreover |ul|(s,) < mp(u)|| fi|lpBp where B, is the constant appearing in
Kintchine’s inequality.

When dealing with the particular case X being a separable Hilbert space
much easier descriptions of I, (H,Y’) can be obtained, at least for some



spaces Y. To formulate the corresponding result we need some more nota-
tions.

Let X be a Banach space and (e,) be an orthonormal bases in H. De-
note by H(e"i(H X), (respectively 9‘{(6”)([{ X)),the set of continuous lin-
ear operators u : H — X such that (uen) € bol(fn), X], ( respectively
(uen) € s2[(fn), X]). Evidently these set are vector subspaces of L(H,X).
The functional || H(en defined by the equality

Il 1§52 = [l (uen) s

is a norm on HE;:%(H, X),andHE?Z%(H, X)) is a Banach space with this norm
and also SRE;Z;(H , X) a closed subspace of it.

Notice that Ry, (H, X) C R (H, X), Ty, (H, X) € 0{)(H, X) and
corresponding inclusion maps have norms one.

We have the following well-known characterisation of (,)-bounding and
(7n)-converging operators.

Proposition 2.3 Let H be a separable Hilbert space, X be a Banach space
and (ey,) be an orthonormal bases of H. Then following assertions are valid.

(a) Iy, (H,X) = Hgiz))(H,X) and the equality

n n
[[w]|(y,) = sup H > VkUGkHQ = lim H > VkuekHz
k=1 k=1

holds for any u € Il (H, X).
(b)R,(H, X) = R (H, X) and the equality

gy = |2 veen (2.4)

holds for any u € R,,)(H, X).

Remark 2.6. In page 82 of [?] the norm |jul|(,,) denoted as I(u) and it
is stated incorrectly that the equality (2.4) holds for all u € L,(H,X) :=
Iy, (H, X).

Remark 2.7. It is interesting to note that if we replace in Proposition 2.3
(7n) by (7), then the corresponding conclusions (without the equalities for
norms) remain valid if and only if X is of finite (Rademacher) cotype (see
[?] theorem 1.7).



Remark 2.8. If X has cotype 2 then X is (f,,)-contractive for any sequence

(fn)-
Indeed, let us take (x,,) € by[(f,); X] and (y,) € I¥°*(X) such that

> Wy ) < Y [, 2%, Vo € X
We need to show that (y,) € bo[(f,); X] and

)iy < CllCEa)lllcsay

for certain constant C' > 0.

Since (x,,) € ba[(fn); X], then Remark 2.2 (a) shows that (z,,) € by[(1,,); X].

Let us fix a Hilbert space H and an orthonormal bases (e,) and consider
the operator u : H — X given by u(e,) = z,. Since Remark 2.7 gives that
M) (H, X) =TI (H, X) we have that u € I1(,,)(H, X).

In particular (see Remark 2.5 (¢)) u € II3(H, X). On the other hand if
v: H — X is given by v(e,) = yn, then there exists w : H — H such that
v = uw. Hence we get that v € IIo(H, X) and therefore (see Remark 2.5

a)) we have that v € II H, X) what, in particular, shows that (y,) €
(fn)
bQ[(fn);‘{]‘ LR

In general the following assertion is true:

Theorem 2.2 Let X be a Banach space, H be a separable Hilbert space and
(en) a fizred orthonormal basis of H. The following are equivalent:
(i) X is (f,)-contractive.

(i) gy (H, X) = HE;:%(H, X) and there is a constant cy such that

[l < c2sup | ];”: fruex|, = calim | kf: fruer|,, Vu € Iy, (H, X).
=1 1

Moreover, (i) implies that in (i1) we can put co = by (X) and (i) implies that
bf. (X) S Co.

Proof. (i)=-(ii). It is enough to prove that
1) (H, X) € Iy, (H, X).

Take arbitrarily u € HE;:;(H, X). Let us show that u € Il;,)(H, X). Take

(hy,) € 1¥°*(H) such that ||(h,)||¥ =1 and denote by B : H — H the norm
one operator for which B*e, = h,, for all n € N, that is

Bh =" (h|hy)en.

9



Observe now that if y,, = uh,, = uB*e,, then we have

>y a)* = [|Bua”|* < [lua™[]* = 3 [{ue,, 27)*

for all 2* € X*. Therefore, since (ue,,) € bo[(f); X] and X is (f,,)-contractive,
it follows that (y,) € b2[(f); X] and

Cwhn)ll 7y < b7 (XD (uen)llls)-

Consequently
[ullgy < b GOl
(i1) = (i). Take (z,,) € bo[(fn); X] and (y,,) € 1¥°?*(X) such that

> Ny, a2 <D [, 2, Va* € X*. (2.5)
We need to show that (y,) € bo[(f,); X] and

)l 7y < c2ll @)l -

Since (z,,) € ba[(fn); X] thereisu € Hgf %(H, X) such that ue,, = z,, Vn € N.

According to (ii) we have u € I, (H,X). Therefore it is sufficient to
find (h,,) € [¥°®*(H) such that uh,, = y,, ¥n € N. For this we shall use (2.5).
There is a continuous linear operator v : H — X such that ve, = y,,, Vn € N.
So we have

V= (Y, Ve, Vot € X

n

Observe that

" ||2 Z| Yn, X |2<Z| ZEn, | = ||U*l’*||2 Vz* e X*

The last inequality implies there exists a continuous linear operator B : H —
H such that ||B]| < 1 and Bu* = v*. This implies that v = uB*. Denote
h, = B*e,, ¥n € N. Then evidently (h,) € I¥°®*(H), ||(h,)||¥ <1 and

uh, = uB*e, =ve, =vy,, Vn € N
Therefore (yn) € bo[(fr); X]. Also we can write

)iy = M)y < Nl sy < eallullG = call (wen)lligy = c2ll@a)ll -

So we obtain that
)iy < c2lll(@n)lll(sa)-

Consequently ( f,,)-contractivity constant of X is less or equal than ¢;. B
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Corollary 2.1 Suppose X is (f,)-contractive Banach space, H be a separa-
ble Hilbert space and (e,) a fixed orthonormal basis of H. Then

(a) For any u € Ry, (H; X) we have ||ul|s,) < bp.(X)|| Xn uer frll2-

(b) If X does not contains a subspace isomorphic to co, then Ry, (H; X) =

(en) .
R (H; X).

Proof. (a) Since u € Ry, (H; X) the series >°; uey fi, is convergent, so we
can apply the inequality from Theorem 2.2.

(b) By Theorem 2.2 we have Il (H; X) = HE;Z%(H;X).

Since by our assuption X does not contains a subspace isomorphic to cg,
we have also Rz, (H; X) = Iy, (H; X) and R (H; X) = 07 (H; X). So
this implies the assertion.ll

2.8 K'--conver spaces.

Let us introduce now the notion of K7 -convexity of a Banach space X.
We use the method of [?]. Fix a natural number n and consider the operator

RI: Ly X) — Sa[(fn); X]

defined by the equality
R:€ =Y (BEfi)fis € € Lo(Q X).
k=1

Set, K/ (X) = ||R)|| and define the K/ -convexity constant, K/ (X) by

K (X) = sup K/ (X).

Definition 2.2 A Banach space X is called K7 -conver, if K/-(X) < oo.
Recall that a Banach space is called K-convex if it is K" -convex.

Let us formulate different characterisations of K/-convexity, whose ele-
mentary proofs are left to the reader.

Proposition 2.4 Let X be a Banach space. The following assertions are
equivalent:

(i) X is K'--conver.

(ii) For any & € Ly(Q); X) we have

(ngn) € b2[<fn)§X]'
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(11i) For any & € Lo(2; X) we have

(E&fn) € s2[(fn); X.

(iv) For any £ € Lo(2; X) we have (EEf,) € so[(fn); X| and the oper-
ator & — Y (EE ) fn is a continuous linear projection of Lo(§2; X) onto
Sol(fn); X (i-e. Sa[(fn); X] is complemented in Lo(€2; X)).

Proposition 2.5 Let X be a Banach space. Then:

(a) For any fized natural number n we have KJ-(X) = K1 (X*).

(b) X is K/ -convex if and only if X* is K/ -conver and K/ (X) =
KT (X™).

Proof.
(a) Let &* € L*(Q, X*), ¢ € L*(©, X) and n € N. Note that

/ Z (€ i) flw), o)) dP(w) = [ (€ (), S Blof) fu(w))dP(w).

k=1

This clearly gives that

(3 B B, 6P < € KE ()0l

Hence || 33, E(€* fio) frlla < I€¥]125 (X).
Therefore

K (X*) < KL (X). (2.6)

The converse follows from (2.6) and the embedding X C X**.
(b) Follows from (a).H

Proposition 2.6 Let X be a Banach space and (gn)nen be an another se-
quence of independent identically distributed symmetric random variables
such that Eg? = 1. Supose further that there are constants Cy and Cy such
that for anyn € N, x1,29,...,2, € X and x7,25,..., 2, € X*

n n n n
1Y argrlle < CUll D @ife, and || Y ahgrlls < Call D @ frllo-
k=1 k=1 k=1 k=1

Then the following statement are valid:
(a) For any natural number n we have K9 (X) < C1Co K (X).
(b) If X is K/ -convex then X is K9 -convez, and K% (X) < C;Co K7 (X).
(¢) For any natural number n we have K" (X) < 2K/ (X).
(d) If X is K/ -convex then X is K-convex, and K™(X) < 2K’ (X),
where ¢, = (B(|f1]) ™"
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Proof. (a) This is, up to notations, a particular case of Lemma 12.6 in [?].
(b) Follows from (a).
(c) Follows from (a) and Remark 2.2 (a).
(d) Follows from (c).H

Remark 2.9 Consider the following assertions concerning a Banach space
X:

(i) X is K-convex.

(ii) X does not contain [} uniformly.

(iii) X does not contain /2 uniformly.

It is not difficult to see that (i) = (i) = (¢ii) (see [?], p. 260). This
already implies that the spaces co, l1, L1]0,1] are not K-convex. From this
also follows that if X is K-convex Banach space then X does not contain a
subspace isomorphic to ¢y. An important result of G. Pisier asserts that the
implication (i7) = (7) also is valid (see [?], p. 260). We shall not make use
of this implication in the sequel. It is not difficult to show that any type 2
Banach space is K-convex (see Proposition 2.8 (c)).

Corollary 2.2 (a) If X is a K-convexr Banach space then X is K9 -convex
for any sequence (g,) be such that E|g,|P < oo for any p, 0 < p < oc.
Moreover K9 (X) < Cy, (X)Cy, (X*)K™(X), where Cy (X) and Cy, (X™)
are constants from Remark 2.2 (b).
(b) In particular X is K" -convex if and only if X is K-convez.

Proof. (a) By Proposition 2.5 X and X* are both K-convex. Hence Remark
2.9 gives that X and X* do not contain {2 uniformly. Now Remark 2.2 (b)
allows to have the assumptions of Propositions 2.6 satisfied for (f,,) = (74,)
and (g,) and then (a) follows from Proposition 2.6 ( b) .

(b) Use part (a) and Proposition 2.6 (d).H

Notice that Corollary 2.2 is known for (g,) = (7), see [?], p. 88, where
a better estimate K7 (X) < K" (X) is obtained.

Proposition 2.7 Let X be a Banach space. Then
(a) For anyn € N and y1,...,y, € X

1D yefellz < (BIADT - KON Y yrrallo-
k=1 k=1
(b) If X is K/ -convex then Rad(X) = so[(fn), X]| = ba[(fn), X].
(c) If X is K/ -conver, then X is (f,)-contractive.
Moreover by (X) < (E|f1])7% - K¥(X) - C,,(X) where C,,(X) is the con-
stant in Remark 2.2 (b).
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Proof. (a) Given &* € L*(Q, X*) and n € N we can write

|/Q<€*(w)viykfk( i (& fr),

1 n
:|/<
0 %
n

<D EE fi)rllzl Zykmlb
=

E(&" fr)ri(t Zym > dt|
1

From this and Remark 2.2 (a) we obtain

€0, X P )] < (BAN™ KOO Y werl

As & was arbitrary, the last inequality implies (a).
(b) It follows from (a) and Remark 2.2 (a) that Rad(X) = so[(fn), X].
Now use Proposition 2.6 (b) together with Remarks 2.7 and 2.1 to get

s2[(fn), X] = ba[(fn), X].
(c) Let us take (z,) € ba[(f.); X] and a sequence (y,,) in X satisfying

2y, )P < 0 N, 27

for all z* € X™.
Note first that using (a) and Remark 2.2 (a) we can write

SUPHZykka2 (Blfi)~" K/ (X) SUPHZykaHz

k=1

Since X is K/ -convex, according to Remark 2.9 it does not contain [ uni-
formly, so by Proposition 2.2, X is (r,)-contractive with constant C., (X).
This implies

SUPHZykrkﬂz Ch (X SUPH kamHz

k=1 k=1

Now using Remark 2.2 (a) again we have

SUP||Z?Jka||2 E|ANT CL(X Sup||Z$kfk||2

k=1

Consequently,
sup || Zykfk:H2 (E[fi])7 - K7 (X) - Oy (X) sup || 3 e fillz
n n k=1
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and (c) is proved.l

Regarding the converse of the implication of part (c) in Proposition 2.7,
let us observe that ¢, is (7, )-contractive while it is not K7-convex or that
L*(p) is (r,)-contractive according to Proposition 2.2 but it is not K- convex.

Definition 2.3 Let (f,,) be a sequence of independent identically distributed
symmetric random variables such that Ef? =1 and let 2 < r < oo. We shall
say that (f,) is r-reqular if

litmglftrp{w e Q: |fi(w)| >t} >0. (2.8)

It is easy to construct r-regular sequences for any r, by using,for instance
independent standard Cauchy random variables.
Remark 2.10 It is rather simple to see that the condition (2.8) implies

ba[(fn); X] C [ (X). (2.9)

Let us now show that, in general, the notions of K-convex and K/ -convex
Banach spaces are different. Note that

Corollary 2.3 Let 2 <r < oo and (f,) be r-reqular sequence.

If X is K7 -convex, then X is of cotype r.

In particular 1, is not K/ -convex for r < p < oo, while it is of type 2 and
hence is K-convex (see, e. g., Remark 2.11 below).

Proof. Observe that cotype r means s3[(r,,); X] C I57°"9(X)., then the result
follows from (2.9) and by Proposition 2.7 (b). B

Let us present some extra assumption to get K f ~-convexity out of (f,)-
contractivity.

Proposition 2.8 Let X be a Banach space which is type 2 and ( f,,)-contractive.

Then the following assertion are valid:
(a) For anyn € N and zy,...,x, € X

1> wrfillz < br.(X) - ta( £, XN D warslle.
k=1 j=1

(b) Rad(X) = s5[(fn), X].
(c) X is K/ -conver.
Moreover K- (X) < by (X) -to(f, X).

15



Proof.

(a) Put
1 2 .
Yo = 2n/2 Zekxl“ 0 = (917' 79n) € {—171}
Then we have
= 1/2
I3 wwrelle = (32 lwoll”)
k=1 0
and .
Z Lk, L Z(ye,w*>2, Vo* e X*.
k=1 /]

We write (yg) = (Y1, .., Yy2n). Since the above equality holds and X is (f,)-
contractive, we can write

n 2n
1> @ filla < br. (O yrefill-
k=1 k=1

Since X is of type 2, it is also of (f,)-type 2 (see Remark 2.2 (b)), we also
have

| Zykfk!b < ta(f, X) (Z 1Yl ) = ta(f., X)II X wwralle.
k=1

These two inequalites imply (a).

(b) It follows from (a) and Remark 2.2 (a).

(c) It is sufficient to show that for any simple function £ € Lo(2, X) we
have

IRFEN < 0p.(X) - ta((fu), X)IE] 2. (2.7)

Given a simple function &, we can find m € N and x4, ..., 2, € X such that

U 1/2
Illz = (3 l=kl?)
k=1
and

m
Z T, x)*, Vo' e X7,
k=1

Denote now y, = Efx, k= 1,...,n. Observe that

n m

>y a")? S BT =D (ag,27)?, Vot € X7

k=1 k=1

16



Using now ( f,)-contractivity of X, we have

IREEN = 1l - wrfulla < br. (XD @ filla-
k=1 k=1
Since X is of (f,,)-type 2, we have also

||zxkfk||2<t2 (fu), X (znxkn) = ta(f-, X)€]|2-

These two inequalities imply (2.7) and (c) is proved.l

Remark 2.11. It follows from Proposition 2.1 (respec.Proposition 2.2) and
Proposition 2.8 (c¢) that if X is a Banach space of 7,-type 2 (respect. r,-type
2)then X is K-convex.

Moreover K7 (X) < ta(7n, X) (respec. K(X) < to(rp, X)).

3 Duality Results for the Sequence Spaces

Let X be a Banach space and let E be a vector subspace of X~. Denote by
E* the Kothe’s dual of E, i.e. EX is the set of all sequences (z%) € (X*)"
such that Y, |z} (x,)| < 00, V(z,) € E.

Let us assume that F is a vector space containing the set X' of all
sequences with finite support. Then for any fixed (z) € E* let us denote
by l(;x) the linear functional on E defined by the relation

(@) — lagy (20) = D an(wn),  (wn) € E.

*

It is clear that if two sequences () and (y;) in E* verify [y = lie),
then ¥ = y* Vn € N. Hence whenever X' C F and (z%) € E*, we shall
identify () with the linear functional [,

Lemma 3.1 Let X be a Banach space, (x,,) € bo[(fn); X]| and (z) € ba[(fn): X
Then:

o ler(ae)| < sup || D arfillasup | Y 2 flla- (3.1)
k=1 k=1 k=1

Proof. Denote oy = sign(zy(zg)) for any natural k. Then by (2.2) we have
that (anx,) € ba[(fn); X] and

n n
sup H Z Oékiﬂk:ka2 < sup H Z fl?kkaQ-
k=1 k=1

17



Fix a natural number n and put &, = >} apaifr and n, = >0, % fi-
Then

2 lrk(wn)l = > cnai(zi) = B, mn) < [&nllallnall2 <
k=1 k=1

n n
<sup || Yz frllasup || Y @y fille-
n k=1 n k=1

Since n was arbitrary this inequality implies the assertion.l

Proposition 3.1 Let X be a Banach space. Then

(a) bo[(fn); X*] C (b2[(fn); X])™ C (ba[(fa); X])"
Moreover, for any (x}) € bo[(fn); X*] we have

@) (£a)- (3.2)

(b) (s2((fa); X)™ = (saf(fa); X])".

Proof. (a) The first inclusion and (3.2) follows from Lemma 3.1 and (3.1)
respectively.
To see the second inclusion, let us fix () € (b2[(fn); X])*. We need to

show that the linear functional [, is continuous on by[(f,); X]. Now for
any natural number n the functional [,, on by[(f,); X] defined by

is obviously continuous. Since the sequence (ln) converges to [(,x) at any point
of bo[(fn); X| then Banach-Steinhaus theorem gives that /(.- is continuous.

(b) The inclusion (so[(fn); X])* C (s2[(fn); X])* can be shown as above.

Fix now a continuous linear map [ : s3[(f,); X] — R and let us find
(z7) € (s2[(fn); X)) such that I = [,x). Take a natural number n and
consider the mapping 7, : X — so[(fn); X| defined by the rule: z —
(0,...,2,0,...), where x is on n-th place. Evidently j, is an isometric linear
operator. Therefore 27 =13, € X*.

Let us first show that (2%) € (so[(fn); X])*. Take arbitrary (z,) €

X]
sol(fn); X] and fix n € N. Then if oy, = sign(zi(zg)) and yr = gz we

have .
Z|Ik (7 |—ZIk (yr) —lz

Hence, using (2.2),

Z i (zr)| < (1) ZykkaZ < [l Zxkfklb < [l Czn) sy

18



Consequently Y. |} (x1)| < oo and so (x%) € (so](fn); X])™.
Finally, since the sequence (x1,...,2,,0,...), n € N tends to (z,) in the
topology of ss[(f,); X] and [ is continuous, we obtain

l(x,) = lignl(wl, ey Ty 0,.00) = lirrln Z xy(xg).
k=1

Therefore [ = I(,:).H

Lemma 3.2 Let X be a K/ -convex Banach space, | € (s3[(f,); X])*. Then
there exists (x},) € ba[(fn); X*|, such that | = -y and

sup || > @y filla < KH(X)|1]]. (3.3)
k=1

Proof. By Proposition 3.1 (b) there exists (z) € (sa[(f,); X])” such that

n

I = l(zz). The proof will be finished if we show that (z}) € by[(f,); X*] and
(3.3) holds.
Step 1. Fix n € N and consider I, : s3[(f,); X] — R defined by the

sequence (z7,...,x% 0,...). Then using the contraction principle, it is easy to

show that
1< 12| Vn € N. (3.4)

Step 2. Put n, = >;_, 2} fr and take r, 0 < r < 1. Then, since 7, €
Lo(92; X*) C (Lo(Q; X)), we can find &, € La(Q; X), [|€a]l2 = 1, such that

n

k=1

Now, since X is K/-convex, by Proposition 2.4

(E&nf1, Eénfa, .- € s2[(fn); X]

and

| S @ fi) £, < K (XOl&all: = K ().
k
Using this and (3.5) we can write as follows
THnnHQ S Z <E£nfk7xlt> = ln(EgnflaEgan; )
k=1

Now we can use (3.4) and (3.5) and write

rllnall2 < K5 (X,
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The last inequality, since n and r were arbitrary implies (%) € bo[(f5); X*]
and (3.3) hods.l

Our first duality result can be formulated as follows.

Theorem 3.1 Let X be a Banach space. The following assertions are equiv-
alent:

(i) X is K'--conver.

(1) T = ba[(fn); X*] — (s2[(fn); X])" defined by the equality T'(x)) = lzx)
is a Banach-space-isomorphism, with ||T'|| = 1.

Moreover, (i) implies that ||T|| < K7 (X) and (i) implies that K/ (X) <
171

Proof. (i) = (ii). By Proposition 3.1 (a) we have that 7" is a continuous
linear operator with ||T|| < 1. Lemma 3.2 implies that 7' is onto and ||T7!|| <
K’ (X).

(ii) = (i). Fix arbitrarily € € Lo(€Q; X) with [|¢]]2 = 1. and write z,, =
E¢f,, n € N. According to Proposition 2.4 it is sufficient to show that
() € ba[(fn); X]. Actually we shall show that

sup | S i fi, < 1771, (36)
k=1

Fix n € N. By the Hahn-Banach theorem there exists | € (s2[(f,.); X])* such
that ||{|| = 1 and

H > xkkaQ =1, ..., 2,0, ...).
k=1
According to the assumption [ = T'(x}) for some (z7) € bo[(f,); X*], hence
sup | - i fie], < IT7].
T k=1
Note that
H > xkkaQ =D _wi(z) = E(& ) 7 fi) < H > l“kaHQ <77
k=1 k=1 k=1 k=1
This, since n was arbitrary, implies (3.6) and the theorem is proved.H

Corollary 3.1 Let X be a Banach space. The following are equivalent:
(i) X is K7 -convex

(ii) (s2((fn); X])" = s2[(fn); X*]
(iii) (S2[(fn); X])" = S:[(fn); X7]
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Proof. (i)= (ii). By Theorem 3.1 we can write (so[(fn); X])" = ba[(fn); X*].
According to Propositions 2.5 (b) and 2.7 (b) we have by[( f.); X*] = so[(fn); X*]
and the implication is proved.

(ii) = (i) By Proposition 3.1 we always have by[(f,,); X*] C (s2[(fn); X])".
This and (ii) imply that so[(f.); X*] = b2[(fn); X*] and by Theorem 3.1 X is
K/ -convex.

(ii) < (iii) It is obvious.H
Remark 3.1. The implication (i)=-(iii) of Corollary 3.1 for (f,,) = (r,) was
pointed out in [?]. The same implication for (f,,) = (7,) and for the separable
Banach space having type 2 was obtained in [?].

4 Duality Results for Almost Summing Op-
erators

In this section H will denote an infinite dimensional separable Hilbert space,
X will be a Banach space. L(Y7,Y3) denotes the space of all continuous linear
operators between the Banach spaces Y; and Y3. 91,(Y1,Ys) is the space of
all p-nuclear operators and v, denotes p-nuclear norm (see [?], p. 112). We
put also N(H) = Ny (H, H).

It is well-known that for any w € 9(H) and any orthonormal bases (e,,) in
H the series 3, (wey,|e,,) is convergent, its sum does not depend on particular
choice of (e,) and it is denoted by trw. The number trw is called the trace
of w and the inequality |trw| < v;(w) holds.

Let us denote also

Hz(iual(X H) — {U c L(X H) = H(fn)(H,X*)}

and

R4 (X, H) ={v e L(X, H) :v* € Ry, (H, X))}
We shall endow TI{¢ (X, H) and R{;*/(X, H) with the norm

llEEy = 1o, v € TEEN(X, H).

Evidently R{j4 (X, H) C TI{f%(X, H), and if ¢y ¢ X*, then Remark 2.1 gives
LI (X, H) = RGN (X H).

Lemma 4.1 Let X be a Banach space, u € ) (H, X) andv € H‘(i}f)l(X, H).
Then vu 1s nuclear and

vi(vu) < lull g llv* | - (4.1)
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Proof. It is needed to see that vu € 9(H) and (4.1) holds . For this it is
enough to show that for any two orthonormal basis (e,) and (e..) of H we
have

> [wueyle,)l < llullg 0"l

(see [?], p. 118). Evidently we have (ue!,) € by[(f,); X] and (v¥e.) €
ba[(fn); X*|. So, by Lemma 3.1 we have

Z]vuenle ]—Z]ue ve, )| <

(o) 107

< sup | S wep il sup | 3 e il < Nl
k=1 k=1

From this (4.1) easily follows.H

Lemma 4.2 Let X be a K/ -convex Banach space and F € (R, (H,X))".
Then there is v € TI%Y (X, H) such that F(u) = tr(vu), Yu € R, (H, X).
(fn) (fn)
Moreover [o* 1y < by (X) - by (X*) - KF-(X) - | P,

Proof. Fix an orthonormal basis (e,,) of H, consider the operator
AR (H, X) — s59[(fn), X]

defined by the relation Au = (uey, ue,,...). Since X is K/-convex, then by
Proposition 2.7, X is (f,)-contractive. This implies, by Theorem 2.2, that
A is an isomorphism between corresponding spaces such that ||A]| < 1 and
A~ < by ().

Consider | = F o A™!, then [ € (s2[(fn), X])*. So, by Lemma 3.2, there
exists () € bo[(fn), X*] such that [ = [(;.) and

sup | Y i full: < KL (X1 < KON FIAT < en K (X|F].

n k=1

Define now another operator v : X — H by the equality
ve =Y xp(z)ey
k

Evidently v*e, = z} for any k. Since now by Proposition 2.5 (b) X* is K/--
convex, by Proposition 2.7 (c) it is also (f,)-contractive, what allows us to
use again Theorem 2.2 to conclude that v* € Il )(H, X*) and

[0 () < bp(X7) - sup || D 2 fillo-
k=1
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Consequently v € H‘(j}f)l(X, H). Now is easy to see that F(u) = tr(vu) for
any v and

1" ll(g) < b (X (XHEH(X)IF,

and the lemma is proved.Hl

Theorem 4.1 Let X be a Banach space. The following are equivalent
(i) X is K7 -convex
(i) (R (H, X)) = Hfl]?f)l(X, H) (with equivalent norms).

Proof. (i) = (ii). This follows at once from Lemma 4.1 and Lemma 4.2.
(ii)=(i). By Theorem 3.1 is enough to show that (ii) implies the equality

(s2[(fn); XI)™ = ba[(fn); X7]. (4.2)

The inclusion (so[(f); X])" D ba[(fn); X*] is valid for all Banach spaces ac-
cording to Proposition 3.1 (a).

Take now [ € (s2[(f,); X])" and let us find (2%) € by[(fn); X*| such that
| = l(3:). Fix any orthonormal basis (e,) of H. Observe that the equality

F(u) = l(uey,ueq, ..., ue,,...), u € Ry, (H, X)

defines an element in (Rs,)(H, X))". From the assumption there is v €
H?}f)l(H, X)) such that

F(u) = tr(vu) =Y (ue,,v'e,), Yu € Ry, (H, X).
Put = = v*e,, Vn € N. Since v* € Il (H; X*) we have (z}) €
ba[(fn); X*]. Let us see that [ = l,«.
Fix arbitrary (z,) € s2[(fn); X] and let us show that {(x,) = lz:)(zn).
According to the above equality we can write

lue, ..., uep,...) = lp=(uer, ..., uey,...), Yu € Ry, (H, X). (4.3)

Consider for a fixed n € N a finite rank operator u, : H — X defined
as follows: we, = xp, for k < n and we, = 0 for & > n. We have that
U, € Ry, (H, X). Consequently, the equality (4.8) holds for u,. Using this,
the fact that the sequence (z1,...,2,,0,...), n=1,... converges to (x,) in
55[(fn), X] and the continuity on s[(f), X] of the functionals [ and I+, we
get () = lg+(x,), and the proof is finished. M

Corollary 4.1 Let X be a Banach space. The following are equivalent:
(i) X is K'--conver.
(ii) (Rp,) (H, X))" = R4 (X, H).
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Proof. (i)=-(ii) Follows from Theorem 4.1, Proposition 2.5 and Remark 2.1.
(il)=-(i) The condition (ii) together with Proposition 4.1 (a) implies that
(R (H, X)) = H?}L:)I(X, H). So, by Theorem 4.1, X is K/ -convex. B

Corollary 4.2 Let X be a Banach space. The following are equivalent:
(i) X is K-conver.
() (L, X)) = T, H).
(i) (R, (H, X))" = TEH (X, H).
(iv) X is K" -conver.

Proof. (i)« (ii) and (iii)<(iv) by Theorem 4.1 applied for (r,) and (7).

(ii)=-(iii) We have that X and X* are K-convex, therefore they do not
contain cy, this implies that IL,;(H, X) = Il (H, X) which coincides with
) (H, X) =1, (H, X) (by Theorem 2.1).

On the other hand, we have Il (H, X) = R,,)(H, X). So Il,s(H,X) =
Ry, (H, X). And 5o (R, (H, X))" = I (X, H). Now let us show that
i (X, ) = (X, H).

The inclusion T{ (X, H) D TI#%(X, H) is clear.

For the other inclusion let us take v € H?;‘na)l(X, H), thenv* € I, (H, X*)
and v* € Il(,,)(H, X*) by Theorem 2.1, consequently v* € TI{%(X, H).

(iii)=(ii) Is true by similar reason, and the corollary is proved.H

Remark 4.1. It is known that if a Banach space X is a G L-space (see [?]
for definition and properties) and X* has a finite cotype, then 1% X, H) =
I (X, H). If X is K-convex, X* is also K-convex, and so has a finite cotype.
From this observations and from Corollary 4.1 it follows that if X is a K-
convex G L-space, then (IL,;(H, X))" = II1(X, H).

Proposition 4.1 Let X be a Banach space. The following assertions are
equivalent.

(i) X is of cotype 2.
(ii) (Has(H, X))" = I(X, H).
Proof. (i)= (ii) Since X is of cotype 2 we have
Mau(H, X) = Tho(H, X) (4.4)
and for any u € I1,5(H, X)
c(r, X)m(u) < mas(u) < mo(u)

where ¢(r, X) is the cotype 2 constant of X (see Remark 2.5 (a), (b)).
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On the other hand, for any Banach space X, we have

and for all w € IIy(H, X), mo(u) = va(u).
It is known that the equality

(My(H, X)) =TI,(X, H) (4.6)

holds isometrically (see [?], p. 448). From (4.6), (4.5), and (4.4) follows
the statement (ii).

(ii)=(i). Let us show that X has the Gaussian cotype 2. Take arbitrarily
(zn) € s2[(7n); X]. Tt is needed to show that (z,) € 15"""(X). Fix an
orthonormal basis (e,) of H. Consider the operator u € L(H, X) such that
ue, = x, for all n € N. By Proposition 2.3 u € R,,)(H, X), hence u €
Has(H7X)'

Take now a sequence (z%) € [57°™(X*) and consider the operator v :
X — H defined by the equality

vr =Y zi(v)e,, VreX.

It is easy to see that v € IIo(X, H). This, according with (ii), implies that
the operator vu is nuclear; hence,

> lwuenlen)| =D [(uen, ven)| = [, 25)| < .

strong

Since (z7) € 57" (X™*) was arbitrary, the last relation implies that (z,,) €
157" (X). Therefore X is of Gaussian cotype 2 and then X is, at it is known,
of Rademacher cotype 2.1
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