(p,q)-summing sequences

J. L. Arregui

Departamento de Matemáticas, Universidad de Zaragoza, 50009 Zaragoza, Spain

O. Blasco

Departamento de Análisis Matemático, Universidad de Valencia, 46100 Burjassot, Spain

Abstract

A sequence (x_j) in a Banach space X is (p, q)-summing if for any weakly q-summable sequence (x_j^*) in the dual space we get a p-summable sequence of scalars $(x_j^*(x_j))$. We consider the spaces formed by these sequences, relating them to the theory of (p,q)-summing operators. We give a characterization of the case p = 1 in terms of integral operators, and show how these spaces are relevant for a general question on Banach spaces and their duals, in connection with Grothendieck theorem.

Key words: Sequences in Banach spaces, bounded, integral and (p, q)-summing operators, type and cotype, Grothendieck theorem.

1 Definitions and basic results

In all that follows X is a Banach space over the field $\mathbb{K} = \mathbb{C}$ or \mathbb{R} . We shall use the usual terms X^* for the dual space of X, $\mathcal{L}(X, Y)$ for the space of bounded linear operators between two Banach spaces, and B_X and S_X for the unit ball and sphere in X; $X \simeq Y$ means that X and Y are isometrically isomorphic. We write the action of an operator or functional on x merely as ux and x^*x , though we prefer to use $x^*(x)$ or $\langle x^*, x \rangle$ if we think it helps, and we use the tensor form for expressing finite rank operators: $(x^* \otimes y)x = x^*(x)y$. Finally, (e_i) is the canonical basis of the sequence spaces ℓ_p and c_0 , p' denotes the

Preprint submitted to Journ. Math. Anal. and Appl.

Email addresses: arregui@posta.unizar.es (J. L. Arregui), oblasco@uv.es (O. Blasco).

¹ Both authors partially supported by D.G.E.S.I.C. PB98-1426.

conjugate exponent of p, $\alpha^+ = \max\{\alpha, 0\}$ for any real α , and $\|\cdot\|_p$ stands for the usual *p*-norm of a sequence or function.

Definition 1 Let $p, q \in [1, \infty)$. A sequence (x_j) in X is called a (p, q)-summing sequence if there exists a constant $C \ge 0$ for which

$$\left(\sum_{j=1}^{n} |x_j^* x_j|^p\right)^{1/p} \le C \sup\left\{\left(\sum_{j=1}^{n} |x_j^* x|^q\right)^{1/q} : x \in B_X\right\}$$

for any finite collection of vectors x_1^*, \ldots, x_n^* in X^* .

The least such C is the (p,q)-summing norm of (x_j) , denoted by $\pi_{p,q}[x_j]$ or (in case of ambiguity) $\pi_{p,q}[x_j; X]$, and $\ell_{\pi_{p,q}}(X)$ is the space of all (p,q)-summing sequences in X. If p = q we simply write $\pi_p[x_j]$ and $\ell_{\pi_p}(X)$, the space of p-summing sequences in X.

We believe our notations are justified as long as these sequences in $X \subseteq X^{**}$ are multiplier sequences from $\ell_q^w(X^*)$ to ℓ_p , special instances of the more general class of (p,q)-summing sequences of operators (u_j) in $\mathcal{L}(X,Y)$ for two Banach spaces X and Y: those such that $||(u_jx_j)||_{\ell_p(Y)} \leq C||(x_j)||_{\ell_p^w(X)}$ for a constant C. Note that a constant sequence $(u_j = u)$ satisfies this if and only if $u \in \prod_{p,q}(X,Y)$, i.e. u is a (p,q)-summing operator, and the least C equals $\pi_{p,q}(u)$, the (p,q)-summing norm of u (the p-summing norm $\pi_p(u)$ if p = q).

We refer the reader to the forthcoming paper [1] for further results on this more general setting; see also [2] for the particular case p = q, X = Y and $u_j = \alpha_j \operatorname{id}_X$. A quite recent and very good source book on *p*-summing norms and related topics is [3]. Some other good references are [4], [5] and [6].

Remark 1 $(\ell_{\pi_{p,q}}(X), \pi_{p,q})$ is a Banach space. This follows readily once we note that it is closed as a subset of $\mathcal{L}(\ell_q^w(X^*), \ell_p)$.

Remark 2 The obvious modifications in the definition for $p = \infty$ or $q = \infty$ make sense, but then clearly $\ell_{\pi_{p,\infty}}(X) = \ell_p(X)$ and $\ell_{\pi_{\infty,q}}(X) = \ell_{\infty}(X)$.

Remark 3 A standard use of the weak Principle of Local Reflexivity (see [6], p. 73) shows that $(x_j^*) \subset X^*$ is (p, q)-summing if and only if

$$\left(\sum_{j=1}^{n} |x_j^* x_j|^p\right)^{1/p} \le C \sup\left\{\left(\sum_{j=1}^{n} |x^* x_j|^q\right)^{1/q} : x^* \in B_{X^*}\right\},\$$

where C is a constant independent from n and $x_1, \ldots, x_n \in X$.

In particular $\ell_{\pi_{p,q}}(X) = \ell_{\pi_{p,q}}(X^{**}) \cap \ell_{\infty}(X).$

Let us omit as well the simple proofs of the following facts:

Lemma 1 Let $1 \leq p, q < \infty$, $(\alpha_j) \subseteq \mathbb{K}$ and $x \in X$: Then

$$\pi_{p,q}[\alpha_j x] = \|(\alpha_j)\|_r \|x\|,$$

where $1/r = ((1/p) - (1/q))^+$.

Proposition 1 Given $1 \le p, q$, let r such that $(1/r) = ((1/p) - (1/q))^+$. Then

$$\ell_p(X) \subseteq \ell_{\pi_{p,q}}(X) \subseteq \ell_r(X),$$

with continuous inclusions of norm 1.

Actually, if X is finite dimensional then $\ell_{\pi_{p,q}}(X) = \ell_r(X)$.

To verify the last claim, recall that X is finite dimensional if and only if $\ell_q^w(X) = \ell_q(X)$ for any $q \in [1, \infty)$.

Remark 4 Note that $\ell_{\pi_{p,q}}(X) \subset c_0(X)$ if and only if p < q.

Furthermore, any non trivial constant sequence is in $\ell_{\pi_{p,q}}(X)$ if and only if $p \ge q$; this corresponds to the fact that the notion of (p,q)-summing operator only makes sense for $p \ge q$, since otherwise $\pi_{p,q}(u) < \infty$ only if u = 0; in contrast with that, any finite sequence is obviously a (p,q)-summing sequence for any p and q.

Lemma 2 Given $1 \le t \le s < \infty$, let r such that 1/r = (1/t) - (1/s). Then we have, for any $x_1^*, x_2^*, \ldots, x_n^* \in X^*$,

$$\left(\sum_{j=1}^{n} \|x_{j}^{*}\|^{s}\right)^{1/s} = \sup\left\{\left(\sum_{j=1}^{n} |x_{j}^{*}x_{j}|^{t}\right)^{1/t} : \|(x_{j})\|_{\ell_{r}(X)} = 1\right\}.$$

PROOF. For t = 1 this is just the duality $\ell_s(X^*) = (\ell_{s'}(X))^*$.

The general case follows from

$$\left(\sum_{j=1}^{n} |x_{j}^{*}x_{j}|^{t}\right)^{1/t} = \sup\left\{\sum_{j=1}^{n} |\alpha_{j}x_{j}^{*}x_{j}| : \sum_{j=1}^{n} |\alpha_{j}|^{t'} = 1\right\}.$$

Note that $\ell_{s'}(X) = \ell_{t'}\ell_r(X)$, and then

$$\sup\{\sum_{j=1}^{n} |\alpha_{j}x_{j}^{*}x_{j}| : \sum_{j=1}^{n} |\alpha_{j}|^{t'} = 1, ||(x_{j})||_{\ell_{r}(X)} = 1\}$$
$$= \sup\{\sum_{j=1}^{n} |x_{j}^{*}y_{j}| : \sum_{j=1}^{n} ||y_{j}||^{s'} = 1\} = (\sum_{j=1}^{n} ||x_{j}^{*}||^{s})^{1/s}.$$

Theorem 1 If $1 \le p \le q < \infty$, the following are equivalent:

(a) X is finite dimensional.

(b)
$$\ell_{\pi_{p,q}}(X) = \ell_r(X)$$
 for $1/r = (1/p) - (1/q)$.

PROOF. We only have to show that (b) implies (a). By the previous lemma

$$\left(\sum_{k=1}^{n} \|x_{k}^{*}\|^{q}\right)^{1/q} = \sup\left\{\left(\sum_{k=1}^{n} |x_{k}^{*}x_{k}|^{p}\right)^{1/p} : \sum_{k=1}^{n} \|x_{k}\|^{r} = 1\right\}.$$

Therefore $\ell_r(X) \subseteq \ell_{\pi_{p,q}}(X)$ implies $\ell_q^w(X^*) = \ell_q(X^*)$.

We'll see later on that there are infinite dimensional spaces X such that $\ell_{\pi_{p,q}}(X) = \ell_{\infty}(X)$ for certain p > q.

Let us remark now another difference between the cases p < q and $p \ge q$: note first that, in general, the $\pi_{p,q}$ -norm of any sequence is independent from any reordering of its terms:

Proposition 2 Let (x_i) a bounded sequence in X, and let $1 \le p, q$. Then

$$\pi_{p,q}[x_{\sigma(j)}] = \pi_{p,q}[x_j]$$

for any bijection $\sigma \colon \mathbb{N} \to \mathbb{N}$.

The proof follows from the definition and the fact that the p-norm and the weak q-norm are reordering invariant.

When $p \ge q$ we can say more:

Proposition 3 Let (x_j) a bounded sequence in X, and let $1 \le q \le p < \infty$. Then

$$\pi_{p,q}[x_{\sigma(j)}] \le \pi_{p,q}[x_j]$$

for any map $\sigma \colon \mathbb{N} \to \mathbb{N}$.

PROOF. Given $x_1^*, x_2^*, \ldots, x_n^* \in X^*$ we have

$$\begin{split} \left(\sum_{j} |x_{j}^{*}x_{\sigma(j)}|^{p}\right)^{1/p} &= \left(\sum_{k} \left(\sum_{\sigma(j)=k} |x_{j}^{*}x_{k}|^{p}\right)\right)^{1/p} \leq \left(\sum_{k} \left(\sum_{\sigma(j)=k} |x_{j}^{*}x_{k}|^{q}\right)^{p/q}\right)^{1/p} \\ &= \left(\sum_{k} \left|\left(\sum_{\sigma(j)=k} \alpha_{j}x_{j}^{*}\right)x_{k}\right|^{p}\right)\right)^{1/p} \quad (\text{where } (\alpha_{j})_{\sigma(j)=k} \in B_{\ell_{q'}}) \\ &= \left(\sum_{k} |y_{k}^{*}x_{k}|^{p}\right)^{1/p} \quad (\text{with } y_{k}^{*} = \sum_{\sigma(j)=k} \alpha_{j}x_{j}^{*} \in X^{*}) \\ &\leq \pi_{p,q}[x_{j}] \, \|(y_{k}^{*})\|_{\ell_{q}^{w}(X^{*})} = \pi_{p,q}[x_{j}] \sup_{\|(\beta_{k})\|_{q'} \leq 1} \left\|\sum_{k} \beta_{k}y_{k}^{*}\right\| \\ &= \pi_{p,q}[x_{j}] \sup_{\|(\beta_{k})\|_{q'} \leq 1} \left\|\sum_{j} \alpha_{j}\beta_{\sigma(j)}x_{j}^{*}\right\| \\ &\leq \pi_{p,q}[x_{j}] \sup_{\|(\gamma_{j})\|_{q'} \leq 1} \left\|\sum_{k} \gamma_{j}x_{j}^{*}\right\| = \pi_{p,q}[x_{j}] \, \|(x_{j}^{*})\|_{\ell_{q}^{w}(X^{*})} \,. \end{split}$$

The result does not hold if $1 \le p < q$: take σ a constant map.

Proposition 3 implies that all (p, q)-sequences satisfy something apparently stronger than the condition in Definition 1:

Corollary 1 For any $p \ge q \ge 1$, a sequence $(x_j) \subset X$ is (p,q)-summing if and only if there exists a constant C such that

$$\left(\sum_{k=1}^{n} \sup_{j} |x_k^* x_j|^p\right)^{1/p} \le C \sup_{x \in B_X} \left(\sum_{k=1}^{n} |x_k^* x|^q\right)^{1/q}$$

for any $x_1^*, \ldots, x_n^* \in X^*$, and the least such C is $\pi_{p,q}[x_j]$.

2 (1,q)-summing sequences as integral operators

Recall that $u \in \mathcal{L}(X, Y)$ is *p*-integral if the composition $X \xrightarrow{u} Y \xrightarrow{j_Y} Y^{**}$ equals $X \xrightarrow{\beta} L_{\infty}(\mu) \xrightarrow{i_p} L_p(\mu) \xrightarrow{\alpha} Y^{**}$ for some positive measure μ and bounded operators α and β (i_p and j_Y are the respective inclusions).

The *p*-integral norm of *u* is the infimum of all the possible values of $\|\alpha\| \|\beta\|$ in the previous expression. The set of *p*-integral operators (a Banach operator ideal) is denoted by $I_p(X, Y)$. For p = 1 it is denoted simply by I(X, Y), the space of integral operators.

Any *p*-integral operator *u* is also *p*-summing, and $\pi_p(u)$ is not greater than the *p*-integral norm, but the converse is not true in general. Basic results on *p*-integral operators can be seen in [3]. We'll make use of the following fact: $u: X \to Y$ is integral if and only if there exists a constant C > 0 such that

$$|\operatorname{tr}(uv)| \le C \|v\|$$

for any finite rank linear operator $v: Y \to X$, and the least such C is the integral norm of u.

This makes easy to characterize the (1, q)-sequences in terms of integral operators:

Theorem 2 For any $1 \leq q < \infty$, a sequence $(x_j) \subset X$ is (1,q)-summing if and only if it defines an integral operator $u: \ell_q \to X$ by $ue_j = x_j$, and the integral norm of u is then $\pi_{1,q}[x_j]$.

PROOF. Let u an integral operator $\ell_q \to X$ with $ue_j = x_j$ for all j, and let C its integral norm. Given $x_1^*, \ldots x_n^* \in X^*$, let $v = \sum_{j=1}^n x_j^* \otimes \lambda_j e_j$, where $\lambda_j = \operatorname{sgn}(x_j^* x_j)$. Then

$$\sum_{j=1}^{n} |x_{j}^{*}x_{j}| = \sum_{j=1}^{n} \lambda_{j} x_{j}^{*}x_{j} = \operatorname{tr}(uv) \,,$$

so $\sum_{j=1}^{n} |x_{j}^{*}x_{j}| \leq C ||v||$, and ||v|| is just $||(x_{j}^{*})||_{\ell_{q}^{w}(X^{*})}$. Then $\pi_{1,q}[x_{j}] \leq C$.

Conversely, let $(x_j) \in \ell_{\pi_{1,q}}(X)$. Then $(x_j) \in \ell_{q'}(X)$, so $u: e_j \mapsto x_j$ defines a bounded operator in $\mathcal{L}(\ell_q, X)$. Now, if $v = \sum_{j=1}^n x_j^* \otimes \xi_j$ with $\xi_j = (\xi_{jk})_k \in$ ℓ_q then, for $v_k^* = \sum_j \xi_{jk} x_j^* \in X^*$, it turns out that $|\operatorname{tr}(uv)| = \sum_k |v_k^* x_k| \leq$ $\pi_{1,q}[x_k] ||(v_k^*)||_{\ell_q^w(X^*)}$ and $||(v_k^*)||_{\ell_q^w(X^*)} = ||v||$, giving that the integral norm of uis bounded by $\pi_{1,q}[x_j]$.

As an application of Theorem 2, we can identify the sequences in $\ell_{\pi_{1,q}}(L_1(\mu))$, for any σ -finite space μ :

For any Banach lattice X, an operator $u: X \to L_1(\mu)$ is integral if and only if $\int \left(\sup_{x \in B_X} |ux|\right) d\mu < \infty$, its value being the integral norm of u (see Th. 5.19 in [3]). If applied to $X = \ell_q$, Theorem 2 gives the following:

Theorem 3 Let $1 \leq q < \infty$, and let μ a σ -finite measure. Then $(f_j) \in \ell_{\pi_{1,q}}(L_1(\mu))$ if and only if

$$\int \|(f_j(w))\|_{\ell_{q'}}d\mu(w) < \infty \,,$$

and then the integral equals $\pi_{1,q}[f_j]$.

PROOF. Just note that $\sup_{\|(\lambda_j)\|_q=1} \left|\sum_j \lambda_j f_j(w)\right| = \|(f_j(w))\|_{q'}$ for any w in the measure space.

When $1 < q < \infty$ it results that $\ell_{\pi_{1,q}}(L_1(\mu)) \simeq L_1(\mu, \ell_{q'})$. This is true for $q = \infty$, since $\ell_{\pi_{1,\infty}}(L_1(\mu)) = \ell_1(L_1(\mu)) \simeq \mathcal{L}_1(\mu, \ell_1)$.

As for q = 1, recall that we can have $\int \sup_{j} |f_{j}(w)| d\mu(w) < \infty$ with $w \mapsto (f_{j}(w))$ not being a measurable function. For example, for the Rademacher functions r_{j} in ([0,1], dt) we have that $\{(r_{j}(t)) : t \in [0,1]\} = \{-1,1\}^{\mathbb{N}}$ is not esentially separable and then the sequence does not define a function in $L_{1}(dt, \ell_{\infty})$. Anyway $(r_{j}) \in \ell_{\pi_{1}}(L_{1}[0,1])$, as Theorem 3 gives the following for q = 1:

Corollary 2 Let μ a σ -finite measure. Then $(f_j) \in \ell_{\pi_1}(L_1(\mu))$ if and only if there exists another function $f \in L_1(\mu)$ such that, for every j, $|f_j| \leq f \mu$ -a.e.

Another consequence of the interpretation of π_1 -sequences as integral operators is the following:

Corollary 3 Let (x_j) be a bounded sequence in X. Then $(x_j) \in \ell_{\pi_1}(X)$ if and only if there exist a Banach space Y, a sequence $(y_j^*) \in \ell_{\infty}(Y^*)$ and $u \in \Pi_1(X^*, Y)$ such that $x_j = y_j^* \circ u \in X^{**}$ for each j.

PROOF. Let us assume that such u and (y_j^*) do exist. The constant sequence $(u_j = u)$ is a multiplier from $\ell_1^w(X^*)$ to $\ell_1(Y)$, and so it is (y_j^*) from $\ell_1(Y)$ to ℓ_1 , so the composition $(x_j) = (y_j^* \circ u)$ belongs to $\ell_{\pi_1}(X^{**})$.

Conversely, if $(x_j) \in \ell_{\pi_1}(X)$ then Theorem 2 says that $v \colon \ell_1 \to X$ given by $ve_j = x_j$ is an integral operator, and in particular v^* is absolutely summing $(v^* \text{ is integral if } v \text{ is so, and integral operators with values in } \ell_{\infty} \text{ are absolutely summing})$. Then we can take $Y = \ell_{\infty}$, $u = v^*$ and $(y_j^*) = (e_j)$ in $\ell_1 \subset (\ell_{\infty})^*$. Since $e_j(v^*x^*) = x^*(ve_j) = x^*x_j$ for any $x^* \in X^*$ and each j, the result follows.

3 Inclusions among the spaces $\ell_{\pi_{p,q}}(X)$

Let us point out first some elementary embeddings among these spaces.

Proposition 4 Let $1 \leq r, s < \infty$, $1 \leq p_1 \leq p_2$, $1 \leq q_1 \leq q_2$ and $1 \leq p \leq q$.

Then

$$\ell_{\pi_{p_1,s}}(X) \subseteq \ell_{\pi_{p_2,s}}(X) ,$$

$$\ell_{\pi_{r,q_2}}(X) \subseteq \ell_{\pi_{r,q_1}}(X) \text{ and }$$

$$\ell_{\pi_p}(X) \subseteq \ell_{\pi_q}(X) ,$$

with continuous inclusions of norm 1.

In particular, for $1 \leq p, q < \infty$

$$\ell_{\pi_{1,q}}(X) \subseteq \ell_{\pi_1}(X) \subseteq \ell_{\pi_p}(X) \subseteq \ell_{\pi_{p,1}}(X).$$

We can actually show the following more general result:

Theorem 4 Let p, q, r and s such that $1 \le p \le r, 1 \le q, s$ and $(1/q) + (1/r) \le (1/p) + (1/s)$. Then $\ell_{\pi_{p,q}}(X) \subseteq \ell_{\pi_{r,s}}(X)$, with continuous inclusion of norm 1.

PROOF. The case $s \leq q$ follows from the norm 1 inclusions $\ell_s^w(X^*) \subseteq \ell_q^w(X^*)$ and $\ell_p(X) \subseteq \ell_r(X)$. If q < s, then for $r = \infty$ or $s = \infty$ the result is true by Remark 2 and Proposition 1. So we assume that q < s and $r, s < \infty$. Then $1 < r/p, s/q < \infty$; let a and b their conjugate numbers, that is 1 = (1/a) + (p/r) = (1/b) + (q/s).

If $\pi_{p,q}[x_j] \leq C$, for any finite set of vectors x_j^* in X^* we have, for appropriate scalars $\alpha_j \geq 0$ such that $\sum \alpha_j^a = 1$, that

$$\left(\sum_{j} |x_{j}^{*}x_{j}|^{r}\right)^{1/r} = \left(\sum_{j} |x_{j}^{*}(\alpha_{j}^{1/p}x_{j})|^{p}\right)^{1/p} \le C \sup_{\|x^{*}\| \le 1} \left(\sum_{j} \alpha_{j}^{q/p} |x^{*}x_{j}|^{q}\right)^{1/q}.$$

From our assumptions we have that $ap \leq bq$, so that $\sum_{j} \alpha_{j}^{\frac{q}{p}b} \leq 1$, and for any x^{*} Hölder inequality gives $\left(\sum_{j} \alpha_{j}^{q/p} |x^{*}x_{j}|^{q}\right)^{1/q} \leq \left(\sum_{j} |x^{*}x_{j}|^{s}\right)^{1/s}$. This shows that $\pi_{r,s}[x_{j}] \leq C$.

3.1 The role of type and cotype

Recall that $\operatorname{Rad}_p(X)$ is the closure in $L_p([0,1],X)$ of the set of functions of the form $\sum_{j=1}^n r_j x_j$, where $x_j \in X$ and $(r_j)_{j \in \mathbb{N}}$ are the Rademacher functions on [0, 1]. By Kahane–Khintchine inequalities (see [3], page 211) it follows that $\operatorname{Rad}_p(X)$ coincide up to equivalent norms for all $p < \infty$. The space is denoted then $\operatorname{Rad}(X)$. Given $1 \leq p \leq 2$ (respect. $q \geq 2$), a Banach space X is said to have (Rademacher) type p (respect. (Rademacher) cotype q) if $\ell_p(X) \subseteq$ Rad(X) (respect. Rad $(X) \subseteq \ell_q(X)$).

We know by Proposition 1 that, for finite dimensional X, if (1/p) - (1/q) = (1/r) - (1/s) then $\ell_{\pi_{p,q}}(X) = \ell_{\pi_{r,s}}(X)$. In order to find conditions that ensure $\ell_{\pi_{p,q}}(X) = \ell_{\pi_{r,s}}(X)$ if (1/q) + (1/r) = (1/p) + (1/s) we give the following lemma:

Lemma 3 Let $1 < r < \infty$. Then $\ell_1^w(X) = \ell_r \ell_{r'}^w(X)$ if and only if $\mathcal{L}(c_0, X) = \prod_r (c_0, X)$.

PROOF. Assume $\ell_1^w(X) = \ell_r \ell_{r'}^w(X)$ and take $u \in \mathcal{L}(c_0, X)$. If $x_j = u(e_j)$ then $(x_j) \in \ell_1^w(X)$, so we write $x_j = u(e_j) = \alpha_j x'_j$ where $(\alpha_j) \in \ell_r$ and $(x'_j) \in \ell_{r'}^w(X)$. This allows to factorize u = wv, where $v \in \mathcal{L}(c_0, \ell_r)$ is given by $v(e_j) = \alpha_j e_j$ and $w \in \mathcal{L}(\ell_r, X)$ is given by $w(e_j) = x'_j$. It is not difficult to show (see [3], page 41) that $v \in \Pi_r(c_0, \ell_r)$, and then $u \in \Pi_r(c_0, X)$.

Conversely, assume $\mathcal{L}(c_0, X) = \prod_r(c_0, X)$ and let us take $(x_j) \in \ell_1^w(X)$. Consider now the operator $u : c_0 \to X$ defined by $u(e_j) = x_j$. From the assumption $u \in \prod_r(c_0, X)$. Now, since $(e_j) \in \ell_1^w(c_0)$ and $u \in \prod_r(c_0, X)$, then (see [3], page 53) $u(e_j) = \alpha_j x'_j$ with $(\alpha_j) \in \ell_r$ and $(x'_j) \in \ell_{r'}^w(X)$.

Proposition 5 Assume that $\mathcal{L}(c_0, X^*) = \prod_{s'}(c_0, X^*)$ for some $1 < s < \infty$. Then $\ell_{\pi_{r,s}}(X) \subseteq \ell_{\pi_{p,q}}(X)$ for any $1 \leq p, q, r < \infty$ such that (1/p) - (1/q) = (1/r) - (1/s).

PROOF. Let us take $(x_j) \in \ell_{\pi_{r,s}}(X)$ and $(x_j^*) \in \ell_q^w(X^*)$. To show that $(x_j^*x_j) \in \ell_p$, it suffices to see that for any $(\alpha_j) \in \ell_{q'}$ we get $(\alpha_j x_j^* x_j) \in \ell_u$ where (1/p) + (1/q') = 1/u. Given now a sequence $(\alpha_j) \in \ell_{q'}$ we have that $(\alpha_j x_j^*) \in \ell_1^w(X^*)$. Using Lemma 3 we have that there exist $(\beta_j) \in \ell_{s'}$ and $(y_j^*) \in \ell_s^w(X^*)$ such that $\alpha_j x_j^* = \beta_j y_j^*$. Therefore $(\alpha_j x_j^*) = (\beta_j y_j^* x_j) \in \ell_{s'} \ell_r = \ell_u$ since 1/u = (1/p) + (1/q') = (1/s') + (1/r).

Combining Theorem 4 and Proposition 5 we get the following:

Theorem 5 Let X such that $\mathcal{L}(c_0, X^*) = \prod_{s'}(c_0, X^*)$ for some $1 < s < \infty$. Then $\ell_{\pi_{r,s}}(X) = \ell_{\pi_{p,q}}(X)$ whenever $1 \leq p, q, r, s < \infty$ are such that $1 \leq p \leq r$ and (1/p) - (1/q) = (1/r) - (1/s).

Proposition 6

(a) If X has cotype 2 then $\ell_1^w(X) = \ell_2 \ell_2^w(X)$.

(b) If X has cotype q > 2 then $\ell_1^w(X) = \ell_r \ell_{r'}^w(X)$ for any r > q.

PROOF. Use Lemma 3 and the fact that $\mathcal{L}(c_0, Y) = \Pi_2(c_0, Y)$ for any Y of cotype 2 and $\mathcal{L}(c_0, Y) = \Pi_r(c_0, Y)$ for any Y of cotype q > 2 and r > q (see Theorem 11.14 in [3]).

Remark 5 Let X be any space with GL-property (see Page 350, [3] for definition and results). Then X has cotype 2 if and only if $\ell_1^w(X) = \ell_2 \ell_2^w(X)$. Actually it holds that $\mathcal{L}(c_0, X) = \prod_2(c_0, X)$ if an only if X is of cotype 2, (see page 352, [3]).

Remark 6 Recall that X is a G.T. space if $\mathcal{L}(X, \ell_2) = \prod_1(X, \ell_2)$ (the term comes after Grothendieck theorem, that asserts that this is the case for $X = L_1(\mu)$). Then $\ell_1^w(X) = \ell_2 \ell_2^w(X)$.

Indeed, if $u \in \mathcal{L}(c_0, X)$ then $u^* \in \mathcal{L}(X^*, \ell_1)$. Now GT property on X gives that $u^* \in \Pi_2(X^*, \ell_1)$ (see [4], page 71) which implies that u^* factors through a Hilbert space, and so u does. Therefore $u \in \Pi_2(c_0, X)$.

Corollary 4 If X^* has cotype 2 then $\ell_{\pi_{p,q}}(X) = \ell_{\pi_{r,2}}(X)$ for any $p \leq r$ and 1/q = (1/p) - (1/r) + (1/2).

In particular $\ell_{\pi_1}(X) = \ell_{\pi_2}(X)$ and $\ell_{\pi_{1,q}}(X) = \ell_{\pi_{r,2}}(X)$ for 1/r = (1/q') + (1/2).

Corollary 5 If X^* has cotype $q_0 > 2$ then $\ell_{\pi_{p,q}}(X) = \ell_{\pi_{r,s}}(X)$ for any $p \leq r$, $s < q'_0$ and (1/p) - (1/q) = (1/r) - (1/s).

In particular $\ell_{\pi_p}(X) = \ell_{\pi_1}(X)$ for any $1 \le p < q'_0$ and $\ell_{\pi_{1,q}}(X) = \ell_{\pi_{r,s}}(X)$ for $s < q'_0$ and 1/r = (1/q') + (1/s).

Proposition 7 Let $1 \le q \le p < \infty$ and $r \ge p'$. Then the following are equivalent:

- (a) id_{X^*} is (p,q)-summing.
- (b) $\ell_r(X) \subseteq \ell_{\pi_{s,q}}(X)$ for any $1 \le s \le r$ such that 1/s = (1/r) + (1/p).

Moreover, $\pi_{p,q}(\operatorname{id}_{X^*}) = \sup\{\pi_{s,q}[x_j] : ||(x_j)||_{\ell_r(X)} = 1\}.$

PROOF. Assume first that the identity in X^* is (p, q)-summing. If r and s are as stated, $(x_j) \in B_{\ell_r(X)}$ and $x_1^*, \ldots, x_n^* \in X^*$ we see that

$$\left(\sum_{j} |x_{j}^{*}x_{j}|^{s}\right)^{1/s} \leq \left(\sum_{j} ||x_{j}^{*}||^{p}\right)^{1/p} \leq \pi_{p,q}(\mathrm{id}_{X^{*}}) ||(x_{j}^{*})||_{\ell_{q}^{w}(X^{*})}.$$

Conversely, we assume now that $\ell_r(X) \subseteq \ell_{\pi_{s,q}}(X)$ and take x_1^*, \ldots, x_n^* in X^* . From Lemma 2 we have

$$\left(\sum_{j} \|x_{j}^{*}\|^{p}\right)^{1/p} = \sup\{\left(\sum_{k=1}^{n} |x_{k}^{*}x_{k}|^{s}\right)^{1/s} : \sum_{k=1}^{n} \|x_{k}\|^{r} = 1\}.$$

Then (x_j) is of norm 1 in $\ell_r(X)$, and if C is the norm of the inclusion of $\ell_r(X)$ in $\ell_{\pi_{s,q}}(X)$ we have $\left(\sum_j |x_j^* x_j|^s\right)^{1/s} \leq C ||(x_j^*)||_{\ell_q^w(X^*)}$. This yields $\left(\sum_j ||x_j^*||^p\right)^{1/p} \leq C ||(x_j^*)||_{\ell_q^w(X^*)}$.

Some particularly interesting cases are given in the following corollaries.

Corollary 6 For any X and $1 \le p$ the following are equivalent:

- (a) id_{X^*} is (p, 1)-summing.
- (b) $\ell_{\infty}(X) = \ell_{\pi_{p,1}}(X).$

(c)
$$\ell_{p'}(X) \subseteq \ell_{\pi_1}(X)$$
.

Moreover, if $p \ge 2$ they hold if and only if X^* has cotype p.

PROOF. Only the last claim deserves a proof. It is due to the deep result, due to M. Talagrand (see [7]), that asserts that for $2 < q < \infty$ the identity in any Banach space Y is (q, 1)-summing if and only if Y has cotype q.

Remark 7 As for p = 2, we get that $\ell_2(X) \subseteq \ell_{\pi_1}(X)$ if and only if $\ell_{\infty}(X) = \ell_{\pi_{2,1}}(X)$, if and only if X^* has the so-caled Orlicz property, i. e. id_{X^*} is (2, 1)-summing. However, although cotype 2 is a sufficient condition to have the Orlicz property it is not necessary (see [8]).

These inclusions are the best possible when dealing with infinite dimensional spaces:

Corollary 7 For any Banach space X the following are equivalent:

- (a) X is finite dimensional.
- (b) $\ell_{\pi_{p,q}}(X) = \ell_{\infty}(X)$ for some $p \ge q$ with (1/q) (1/p) < 1/2.
- (c) $\ell_s(X) \subseteq \ell_{\pi_{p,q}}(X)$ for some $1 \le p \le q$ and p < s < r with (1/s) (1/r) < 1/2.
- (d) $\ell_{\pi_{p,1}}(X) = \ell_{\infty}(X)$ for some (or for all) $1 \le p < 2$.

(e) $\ell_{p'}(X) \subseteq \ell_{\pi_1}(X)$ for some (or for all) $1 \leq p < 2$.

PROOF. To see that (b) implies (a) use the fact that $id_{X^*} \in \prod_{p,q}(X^*, X^*)$ for (1/q) - (1/p) < 1/2. This gives that X^* is finite dimensional (see [3], page 199).

If (c) is true then Proposition 7 says that $id_{X^*} \in \prod_{q_1,q}(X^*, X^*)$ for $(1/s) + (1/q_1) = (1/p)$, what again gives (a) because $(1/q) - (1/q_1) < 1/2$.

(d) is the particular case of (b) for q = 1.

(e) is equivalent to (d) by Corollary 6.

Remark 8 For p > 1 and $1 \le q < \infty$, in general $\ell_{\pi_{p,q}}(X) \ne I_p(\ell_q, X)$.

Indeed, recalling that $I_2(X, Y) = \Pi_2(X, Y)$ for every couple of spaces X and Y (see Corollary 5.9 in [3]), we conclude that $\ell_{\pi_{2,1}}(\ell_{\infty}) \neq I_2(\ell_1, \ell_{\infty})$: By Corollary 6 we have that $\ell_{\pi_{2,1}}(\ell_{\infty}) = \ell_{\infty}(\ell_{\infty}) \simeq \mathcal{L}(\ell_1, \ell_{\infty})$, but $\mathcal{L}(\ell_1, \ell_{\infty})$ does not coincide with $\Pi_2(\ell_1, \ell_{\infty})$ because $\Pi_2(\ell_1, \ell_{\infty}) = \Pi_1(\ell_1, \ell_{\infty})$ (for ℓ_1 is of cotype 2, and Corollary 11.16 in [3] applies), and on the other hand $\Pi_1(\ell_1, \ell_{\infty}) \neq \mathcal{L}(\ell_1, \ell_{\infty})$: the operator given by $x \in \ell_1 \mapsto (\sum_{j=1}^n x_j)_n \in \ell_{\infty}$ is not absolutely summing (see [5], exercise III.F.3).

Proposition 8 Let *E* a Banach subspace of *X*. Then we have that $\ell_{\pi_{p,q}}(E) \subseteq \ell_{\infty}(E) \cap \ell_{\pi_{p,q}}(X)$, but equality does not hold in general.

PROOF. The embedding is straightforward.

Let us show that for p = q = 1 there exists E such that $\ell_{\pi_1}(E) \neq \ell_{\infty}(E) \cap \ell_{\pi_1}(X)$:

Take E such that $\ell_2(E) \not\subseteq \ell_{\pi_1}(E)$ (for instance $E = \ell_1$). Since E is a subspace of $X = \ell_{\infty}(\Gamma)$ for $\Gamma = B_{E^*}$ and $(\ell_{\infty}(\Gamma))^* = (\ell_1(\Gamma))^{**}$ is of cotype 2, then $\ell_2(E) \subseteq \ell_{\infty}(E) \cap \ell_{\pi_1}(X)$. Therefore $\ell_{\infty}(E) \cap \ell_{\pi_1}(X)$ does not coincide with $\ell_{\pi_1}(E)$.

3.2 The (p,q)-summing norm of the canonical basis in ℓ_r

Theorem 6 Let p > q and 1/s' = (1/q) - (1/p). Then $\ell_s^w(X) \subseteq \ell_{\pi_{p,q}}(X)$ with inclusion of norm 1.

PROOF. For any finite family of vectors $(x_j)_{1 \le j \le n}$ in X and $(x_j^*)_{1 \le j \le n}$ in X^* , since 1/p' > 1/q' and 1/p' = (1/s') + (1/q') we can write

$$\begin{split} (\sum_{j} |x_{j}^{*}x_{j}|^{p})^{1/p} &= \sup_{\|(\alpha_{j})\|_{p'}=1} |\sum_{j} \alpha_{j}x_{j}^{*}x_{j}| \\ &= \sup_{\|(\beta_{j})\|_{s'}=1} \sup_{\|(\lambda_{j})\|_{q'}=1} |\sum_{j} \beta_{j}\lambda_{j}x_{j}^{*}x_{j}| \\ &= \sup_{\|(\beta_{j})\|_{s'}=1} \sup_{\|(\lambda_{j})\|_{q'}=1} |\int_{0}^{1} \langle \sum_{j} r_{j}(t)\lambda_{j}x_{j}^{*}, \sum_{k} r_{k}(t)\beta_{k}x_{k}\rangle dt| \\ &\leq \sup_{\|(\beta_{j})\|_{s'}=1} \sup_{\|(\lambda_{j})\|_{q'}=1} \sup_{t\in[0,1]} \lim_{j} \sum_{j} r_{j}(t)\lambda_{j}x_{j}^{*}\|_{X^{*}} \|\sum_{k} r_{k}(t)\beta_{k}x_{k}\|_{X} \\ &\leq \|(x_{j}^{*})\|_{\ell_{q}^{w}}(X^{*})\|(x_{j})\|_{\ell_{s}^{w}}(X). \end{split}$$

Corollary 8 For any $p \ge 1$, $\ell_p^w(X) \subset \ell_{\pi_{p,1}}(X)$ with inclusion of norm 1.

As an application, we see next whether the sequence given by the canonical basis (e_j) belongs to $\ell_{\pi_{p,q}}(\ell_r)$, depending on the values of p, q and r.

Proposition 9 For any $p \ge 1$ we have $(e_j) \in \ell_{\pi_{p,1}}(\ell_{p'})$, with $\pi_{p,1}[e_j; \ell_{p'}] = 1$.

PROOF. Note that for $p \ge 2$ this follows from Corollary 6, because $(\ell_{p'})^* = \ell_p$ has cotype p.

For $1 \le p < 2$, apply Corollary 8 to $(e_j) \in \ell_p^w(\ell_{p'})$.

Theorem 7 $(e_j) \in \ell_{\pi_{p,q}}(\ell_r)$ if and only if it holds that $p = \infty$ or $1/r \leq (1/q) - (1/p)$. Moreover, in these cases $\pi_{p,q}[e_j] = 1$.

PROOF. For p < q we have that $\ell_{\pi_{p,q}}(\ell_r) \subset \ell_{(\frac{1}{p}-\frac{1}{q})^{-1}}(\ell_r)$. Hence $(e_j) \in \ell_{\pi_{p,q}}(\ell_r)$ is only possible for $q \leq p$. As the norm of the inclusion $\ell_{q'}^n \to \ell_{r'}^n$ is $n^{(\frac{1}{q}-\frac{1}{r})^+}$, we see that

$$\left(\sum_{j=1}^{n} |\langle e_j, e_j \rangle|^p\right)^{1/p} = n^{\frac{1}{p}} \le \pi_{p,q}[e_j] n^{\left(\frac{1}{q} - \frac{1}{r}\right)^+},$$

which leads to $p = \infty$ or q < r with $0 \le 1/q - 1/p - 1/r$.

Conversely, if $p = \infty$ then $(e_j) \in \ell_{\infty}(\ell_r) = \ell_{\pi_{\infty,q}}(\ell_r)$. And if $1/q - 1/p - 1/r \ge 0$ then, by Proposition 9 and Theorem 4, we obtain

$$(e_j) \in \ell_{\pi_{r',1}}(\ell_r) \subseteq \ell_{\pi_{p,q}}(\ell_r).$$

The inclusion above is of norm 1, so $\pi_{p,q}[e_j] = 1$ when bounded.

This gives a new proof of the well-known fact that id: $\ell_p \hookrightarrow \ell_q$ is integral if and only if p = 1 and $q = \infty$, according to Theorem 2.

4 (p,q)-summing sequences and Grothendieck theorem

Theorem 8 Let X be a Banach space. Then

$$\ell_{\pi_{1,2}}(X) \subseteq \operatorname{Rad}(X) \subseteq \ell_{\pi_1}(X).$$

PROOF. Let us take a finite family of vectors $(x_j)_{1 \le j \le n}$ in X. Using that $L_1([0,1], X)$ isometrically embedds into the dual of $L_{\infty}([0,1], X^*)$, we have

$$\begin{split} \int_{0}^{1} \left\| \sum_{k=1}^{n} x_{k} r_{k}(t) \right\| dt &= \sup_{\|g\|_{L^{\infty}([0,1],X^{*})}=1} \left| \sum_{k=1}^{n} \langle x_{k} \int_{0}^{1} g(t) r_{k}(t) dt \rangle \right| \\ &\leq \pi_{1,2}[x_{j}] \sup_{\|g\|_{L^{\infty}([0,1],X^{*})}=1} \sup_{\|(\alpha_{k})\|_{2}=1} \left\| \sum_{k=1}^{n} \alpha_{k} \int_{0}^{1} g(t) r_{k}(t) dt \right\| \\ &= \pi_{1,2}[x_{j}] \sup_{\|g\|_{L^{\infty}([0,1],X^{*})}=1} \sup_{\|(\alpha_{k})\|_{2}=1} \left\| \int_{0}^{1} (\sum_{k=1}^{n} \alpha_{k} r_{k}(t)) g(t) dt \right\| \\ &= \pi_{1,2}[x_{j}] \sup_{\|(\alpha_{k})\|_{2}=1} \int_{0}^{1} \left| \sum_{k=1}^{n} \alpha_{k} r_{k}(t) \right| dt \\ &\leq \pi_{1,2}[x_{j}]. \end{split}$$

On the other hand, for any finite family of vectors $(x_j)_{1 \le j \le n}$ in X and $(x_j^*)_{1 \le j \le n}$ in X^* we can write

$$\sum_{j=1}^{n} |x_j^* x_j| \sim \sup_{\varepsilon_k = \pm 1} \left| \sum_{j=1}^{n} \langle x_j^*, \varepsilon_j x_j \rangle \right|$$
$$= \sup_{\varepsilon_k = \pm 1} \left| \int_0^1 \langle \sum_{j=1}^{n} \varepsilon_j x_j^* r_j(t), \sum_{j=1}^{n} x_j r_j(t) \rangle dt \right|$$
$$\leq \left\| \sum_{j=1}^{n} x_j r_j \right\|_{\operatorname{Rad}(X)} \|(x_j^*)\|_{\ell_1^w(X^*)}$$

This gives the other inclusion.

By Khintchine inequalities one sees that $L_1(\mu, \ell_2) = \text{Rad}(L_1(\mu))$, and Theorem 3 gives that $\ell_{\pi_{1,2}}(L_1(\mu)) = \text{Rad}(L_1(\mu))$. Actually, combining Theorem 8 with Pisier's results on G.T. spaces (see Theorem 6.6 and Corollary 6.7 in [4]) it is easy to prove the following:

Theorem 9 Rad $(X) = \ell_{\pi_{1,2}}(X)$ if and only if X is a G.T. space of cotype 2.

Grothendieck theorem has been stated in a lot of equivalent ways. We shall give yet another formulation of it in terms of the $\ell_{\pi_{p,q}}$ spaces. It gives a partial answer to a general question about the way that bounded sequences in X^* interact with bounded sequences in X.

For any Banach space X, let us consider the bilinear map

$$V_X \colon \ell_\infty(X^*) \times \ell_\infty(X) \to \ell_\infty(\ell_\infty)$$

given by $V_X((x_j^*), (x_k)) = ((x_j^* x_k)_k)_j$. It is obvious that V_X is bounded.

Note that, for the restricted map $V_{n,X}: \ell_{\infty}^{n}(X^{*}) \times \ell_{\infty}^{n}(X) \to M_{n}(\mathbb{K})$ (defined in the same way), it always holds that the linear span of the image is $M_{n}(\mathbb{K})$. Actually, for $X = \mathbb{K}$,

$$(\alpha_{j,k}) = \sum_{j=1}^{n} \sum_{k=1}^{n} V_n(\alpha_{j,k}e_j, e_k).$$

It is also easy to observe that $V_{\ell_1}(\ell_{\infty}(\ell_{\infty}) \times \ell_{\infty}(\ell_1)) = \ell_{\infty}(\ell_{\infty})$: for any uniformly bounded infinite matrix $(\alpha_{j,k})$, if we set $x_j^* = (\alpha_{j,k})_k \in \ell_{\infty}$ then

$$(\alpha_{j,k}) = V_{\ell_1}((x_j^*)_j, (e_k)_k).$$

However, for other Banach spaces the bilinear map is actually bounded not only into $\ell_{\infty}(\ell_{\infty})$, but into a smaller space. This is the case for ℓ_p if 1 :

Theorem 10 Given $1 \leq q \leq p$, $\Pi_{p,q}(\ell_1, X) = \mathcal{L}(\ell_1, X)$ if and only if V_X defines a bounded bilinear map $V_X \colon \ell_{\infty}(X^*) \times \ell_{\infty}(X) \to \ell_{\pi_{p,q}}(\ell_{\infty})$.

PROOF. Let $(x_j) \subset X$ and $(x_j^*) \subset X^*$ be such that $||x_j||, ||x_j^*|| \leq 1$ for all j. Let $u: \ell_1 \to X$ the continuous operator such that $ue_j = x_j$ for all j; clearly $||u|| \leq 1$.

By hypothesis we can take C (independently of (x_j)) such that $\pi_{p,q}(u) \leq C ||u|| \leq C$. That is,

$$\|(uy_j)\|_{\ell_p(X)} \le C \|(y_j)\|_{\ell_q^w(\ell_1)}$$

for any finite family $(y_j) \subset \ell_1$. Therefore if $\xi_j = x_j^* \circ u$ for each j then

$$((\langle \xi_j, e_k \rangle)_k)_j = ((x_j^*(ue_k))_k)_j = ((x_j^*x_k)_k)_j = V_X((x_j^*), (x_j)).$$

Consequently

$$\|(\langle \xi_j, y_j \rangle)\|_{\ell_p} = \|(\langle x_j^*, uy_j \rangle)\|_{\ell_p} \le \|(uy_j)\|_{\ell_p(X)},$$

and then

$$\|(\langle \xi_j, y_j \rangle)\|_{\ell_p} \le C \|(y_j)\|_{\ell_q^w(\ell_1)},$$

showing that $\pi_{p,q}[\xi_j; \ell_\infty] \leq C$.

Let us assume now that $V_X \colon \ell_{\infty}(X^*) \times \ell_{\infty}(X) \to \ell_{\pi_{p,q}}(\ell_{\infty})$ is bounded with norm C. Given $u \in \mathcal{L}(\ell_1, X)$, for every finite family $(y_j) \in \ell_1$ we have that

$$\begin{aligned} \|(uy_j)\|_{\ell_p(X)} &= \sup\{\|(\langle x_j^*, uy_j \rangle)\|_{\ell_p} : \ (x_j^*) \subset B_{X^*}\} \\ &\leq \sup\{\pi_{p,q}[V_X((x_j^*), (ue_j)); \ell_{\infty}] : \ (x_j^*) \subset B_{X^*}\} \|(y_j)\|_{\ell_q^w(\ell_1)} \\ &\leq C \|u\| \|(y_j)\|_{\ell_q^w(\ell_1)}, \end{aligned}$$

and then $\pi_{p,q}(u) \leq C ||u||$.

In view of this, Grothendieck theorem is equivalent to the following result:

Corollary 9 If H is a Hilbert space, the bilinear form

$$V_H \colon \ell_\infty(H) \times \ell_\infty(H) \to \ell_{\pi_1}(\ell_\infty)$$

is bounded, and its norm is Grothendieck constant K_G .

Taking $H = \ell_2$ (with no loss of generality), this is a particular case of the following result:

Corollary 10 If $1 \le p \le \infty$ and 1/r = 1 - |(1/p) - (1/2)|, then the bilinear form

$$V_{\ell_p} \colon \ell_{\infty}(\ell_{p'}) \times \ell_{\infty}(\ell_p) \to \ell_{\pi_{r,1}}(\ell_{\infty})$$

is bounded, with $||V_{\ell_p}|| \leq 2^{\frac{a}{2}} K_G^{1-a}$, where a = |1 - 2/p|.

PROOF. Equivalently

$$\pi_{r,1}(u) \le 2^{\frac{a}{2}} K_G^{1-a} \|u\|$$

for every operator $u \in \mathcal{L}(\ell_1, \ell_p)$, which is an extension, due to Kwapień, of Grothendieck theorem (see [9], and also 34.11 in [6]).

Remark 9 Note in the previous result that $1 \le r \le 2$. The case r = 2 is for p = 1 (or $p = \infty$). By Corollary 6 we know that $\ell_{\pi_{2,1}}(\ell_{\infty}) = \ell_{\infty}(\ell_{\infty})$, so the statement is trivial in this case. However, Corollary 6 tells us that for r < 2 the inclusion $\ell_{\pi_{r,1}}(\ell_{\infty}) \subseteq \ell_{\infty}(\ell_{\infty})$ is proper.

References

- [1] J. L. Arregui and O. Blasco, On summing sequences of operators (to appear)
- [2] S. Aywa and J. H. Fourie, On summing multipliers and applications J. Math. Anal. Appl. 253 (2001), 166–186, doi:10.1006/jmaa.2000.7081.
- [3] J. Diestel, H. Jarchow and A. Tonge, "Absolutely Summing Operators" Cambridge University Press, 1995.
- [4] G. Pisier, "Factorization of Operators and Geometry of Banach Spaces", CBM 60, Amer. Math. Soc., Providence (R.I.), 1985.
- [5] P. Wojtaszczyk, "Banach spaces for analysts" Cambridge University Press, 1991.
- [6] A. Defant and K. Floret, "Tensor Norms and Operator Ideals", North-Holland, 1993.
- [7] M. Talagrand, Cotype of operators from C(K), Inventiones Math. 107, (1992), 1–40.
- [8] M. Talagrand, Cotype and (q, 1)-summing norm in a Banach space, *Inventiones Math.* 110 (1992), 545–556.
- [9] S. Kwapień, Some remarks on (p,q)-summing operators in l_p-spaces Studia Math., 29 (1968), 327–337.