(p, q)-summing sequences

J. L. Arregui
Departamento de Matemáticas, Universidad de Zaragoza, 50009 Zaragoza, Spain

O. Blasco
Departamento de Análisis Matemático, Universidad de Valencia, 46100 Burjassot, Spain

Abstract

A sequence $\left(x_{j}\right)$ in a Banach space X is (p, q)-summing if for any weakly q-summable sequence $\left(x_{j}^{*}\right)$ in the dual space we get a p-summable sequence of scalars $\left(x_{j}^{*}\left(x_{j}\right)\right)$. We consider the spaces formed by these sequences, relating them to the theory of (p, q)-summing operators. We give a characterization of the case $p=1$ in terms of integral operators, and show how these spaces are relevant for a general question on Banach spaces and their duals, in connection with Grothendieck theorem.

Key words: Sequences in Banach spaces, bounded, integral and (p, q)-summing operators, type and cotype, Grothendieck theorem.

1 Definitions and basic results

In all that follows X is a Banach space over the field $\mathbb{K}=\mathbb{C}$ or \mathbb{R}. We shall use the usual terms X^{*} for the dual space of $X, \mathcal{L}(X, Y)$ for the space of bounded linear operators between two Banach spaces, and B_{X} and S_{X} for the unit ball and sphere in $X ; X \simeq Y$ means that X and Y are isometrically isomorphic. We write the action of an operator or functional on x merely as $u x$ and $x^{*} x$, though we prefer to use $x^{*}(x)$ or $\left\langle x^{*}, x\right\rangle$ if we think it helps, and we use the tensor form for expressing finite rank operators: $\left(x^{*} \otimes y\right) x=x^{*}(x) y$. Finally, $\left(e_{j}\right)$ is the canonical basis of the sequence spaces ℓ_{p} and c_{0}, p^{\prime} denotes the

[^0]conjugate exponent of $p, \alpha^{+}=\max \{\alpha, 0\}$ for any real α, and $\|\cdot\|_{p}$ stands for the usual p-norm of a sequence or function.

Definition 1 Let $p, q \in[1, \infty)$. A sequence $\left(x_{j}\right)$ in X is called $a(p, q)$ summing sequence if there exists a constant $C \geq 0$ for which

$$
\left(\sum_{j=1}^{n}\left|x_{j}^{*} x_{j}\right|^{p}\right)^{1 / p} \leq C \sup \left\{\left(\sum_{j=1}^{n}\left|x_{j}^{*} x\right|^{q}\right)^{1 / q}: x \in B_{X}\right\}
$$

for any finite collection of vectors $x_{1}^{*}, \ldots, x_{n}^{*}$ in X^{*}.
The least such C is the (p, q)-summing norm of $\left(x_{j}\right)$, denoted by $\pi_{p, q}\left[x_{j}\right]$ or (in case of ambiguity) $\pi_{p, q}\left[x_{j} ; X\right]$, and $\ell_{\pi_{p, q}}(X)$ is the space of all (p, q)-summing sequences in X. If $p=q$ we simply write $\pi_{p}\left[x_{j}\right]$ and $\ell_{\pi_{p}}(X)$, the space of p-summing sequences in X.

We believe our notations are justified as long as these sequences in $X \subseteq$ $X^{* *}$ are multiplier sequences from $\ell_{q}^{w}\left(X^{*}\right)$ to ℓ_{p}, special instances of the more general class of (p, q)-summing sequences of operators $\left(u_{j}\right)$ in $\mathcal{L}(X, Y)$ for two Banach spaces X and Y : those such that $\left\|\left(u_{j} x_{j}\right)\right\|_{\ell_{p}(Y)} \leq C\left\|\left(x_{j}\right)\right\|_{\ell_{p}^{w}(X)}$ for a constant C. Note that a constant sequence $\left(u_{j}=u\right)$ satisfies this if and only if $u \in \Pi_{p, q}(X, Y)$, i.e. u is a (p, q)-summing operator, and the least C equals $\pi_{p, q}(u)$, the (p, q)-summing norm of u (the p-summing norm $\pi_{p}(u)$ if $p=q$).

We refer the reader to the forthcoming paper [1] for further results on this more general setting; see also [2] for the particular case $p=q, X=Y$ and $u_{j}=\alpha_{j} \mathrm{id}_{X}$. A quite recent and very good source book on p-summing norms and related topics is [3]. Some other good references are [4], [5] and [6].

Remark $1\left(\ell_{\pi_{p, q}}(X), \pi_{p, q}\right)$ is a Banach space. This follows readily once we note that it is closed as a subset of $\mathcal{L}\left(\ell_{q}^{w}\left(X^{*}\right), \ell_{p}\right)$.

Remark 2 The obvious modifications in the definition for $p=\infty$ or $q=\infty$ make sense, but then clearly $\ell_{\pi_{p, \infty}}(X)=\ell_{p}(X)$ and $\ell_{\pi_{\infty, q}}(X)=\ell_{\infty}(X)$.

Remark 3 A standard use of the weak Principle of Local Reflexivity (see [6], p. 73) shows that $\left(x_{j}^{*}\right) \subset X^{*}$ is (p, q)-summing if and only if

$$
\left(\sum_{j=1}^{n}\left|x_{j}^{*} x_{j}\right|^{p}\right)^{1 / p} \leq C \sup \left\{\left(\sum_{j=1}^{n}\left|x^{*} x_{j}\right|^{q}\right)^{1 / q}: x^{*} \in B_{X^{*}}\right\},
$$

where C is a constant independent from n and $x_{1}, \ldots, x_{n} \in X$.
In particular $\ell_{\pi_{p, q}}(X)=\ell_{\pi_{p, q}}\left(X^{* *}\right) \cap \ell_{\infty}(X)$.
Let us omit as well the simple proofs of the following facts:

Lemma 1 Let $1 \leq p, q<\infty,\left(\alpha_{j}\right) \subseteq \mathbb{K}$ and $x \in X$: Then

$$
\pi_{p, q}\left[\alpha_{j} x\right]=\left\|\left(\alpha_{j}\right)\right\|_{r}\|x\|,
$$

where $1 / r=((1 / p)-(1 / q))^{+}$.
Proposition 1 Given $1 \leq p, q$, let r such that $(1 / r)=((1 / p)-(1 / q))^{+}$. Then

$$
\ell_{p}(X) \subseteq \ell_{\pi_{p, q}}(X) \subseteq \ell_{r}(X)
$$

with continuous inclusions of norm 1.
Actually, if X is finite dimensional then $\ell_{\pi_{p, q}}(X)=\ell_{r}(X)$.
To verify the last claim, recall that X is finite dimensional if and only if $\ell_{q}^{w}(X)=\ell_{q}(X)$ for any $q \in[1, \infty)$.

Remark 4 Note that $\ell_{\pi_{p, q}}(X) \subset c_{0}(X)$ if and only if $p<q$.
Furthermore, any non trivial constant sequence is in $\ell_{\pi_{p, q}}(X)$ if and only if $p \geq q$; this corresponds to the fact that the notion of (p, q)-summing operator only makes sense for $p \geq q$, since otherwise $\pi_{p, q}(u)<\infty$ only if $u=0$; in contrast with that, any finite sequence is obviously a (p, q)-summing sequence for any p and q.

Lemma 2 Given $1 \leq t \leq s<\infty$, let r such that $1 / r=(1 / t)-(1 / s)$. Then we have, for any $x_{1}^{*}, x_{2}^{*}, \ldots, x_{n}^{*} \in X^{*}$,

$$
\left(\sum_{j=1}^{n}\left\|x_{j}^{*}\right\|^{s}\right)^{1 / s}=\sup \left\{\left(\sum_{j=1}^{n}\left|x_{j}^{*} x_{j}\right|^{t}\right)^{1 / t}:\left\|\left(x_{j}\right)\right\|_{\ell_{r}(X)}=1\right\} .
$$

PROOF. For $t=1$ this is just the duality $\ell_{s}\left(X^{*}\right)=\left(\ell_{s^{\prime}}(X)\right)^{*}$.
The general case follows from

$$
\left(\sum_{j=1}^{n}\left|x_{j}^{*} x_{j}\right|^{t}\right)^{1 / t}=\sup \left\{\sum_{j=1}^{n}\left|\alpha_{j} x_{j}^{*} x_{j}\right|: \sum_{j=1}^{n}\left|\alpha_{j}\right|^{t^{\prime}}=1\right\} .
$$

Note that $\ell_{s^{\prime}}(X)=\ell_{t^{\prime}} \ell_{r}(X)$, and then

$$
\begin{aligned}
& \sup \left\{\sum_{j=1}^{n}\left|\alpha_{j} x_{j}^{*} x_{j}\right|: \sum_{j=1}^{n}\left|\alpha_{j}\right|^{t^{\prime}}=1,\left\|\left(x_{j}\right)\right\|_{\ell_{r}(X)}=1\right\} \\
& =\sup \left\{\sum_{j=1}^{n}\left|x_{j}^{*} y_{j}\right|: \sum_{j=1}^{n}\left\|y_{j}\right\|^{s^{\prime}}=1\right\}=\left(\sum_{j=1}^{n}\left\|x_{j}^{*}\right\|^{s}\right)^{1 / s} .
\end{aligned}
$$

Theorem 1 If $1 \leq p \leq q<\infty$, the following are equivalent:
(a) X is finite dimensional.
(b) $\ell_{\pi_{p, q}}(X)=\ell_{r}(X)$ for $1 / r=(1 / p)-(1 / q)$.

PROOF. We only have to show that (b) implies (a). By the previous lemma

$$
\left(\sum_{k=1}^{n}\left\|x_{k}^{*}\right\|^{q}\right)^{1 / q}=\sup \left\{\left(\sum_{k=1}^{n}\left|x_{k}^{*} x_{k}\right|^{p}\right)^{1 / p}: \sum_{k=1}^{n}\left\|x_{k}\right\|^{r}=1\right\}
$$

Therefore $\ell_{r}(X) \subseteq \ell_{\pi_{p, q}}(X)$ implies $\ell_{q}^{w}\left(X^{*}\right)=\ell_{q}\left(X^{*}\right)$.

We'll see later on that there are infinite dimensional spaces X such that $\ell_{\pi_{p, q}}(X)=\ell_{\infty}(X)$ for certain $p>q$.

Let us remark now another difference between the cases $p<q$ and $p \geq q$: note first that, in general, the $\pi_{p, q}$-norm of any sequence is independent from any reordering of its terms:

Proposition 2 Let $\left(x_{j}\right)$ a bounded sequence in X, and let $1 \leq p, q$. Then

$$
\pi_{p, q}\left[x_{\sigma(j)}\right]=\pi_{p, q}\left[x_{j}\right]
$$

for any bijection $\sigma: \mathbb{N} \rightarrow \mathbb{N}$.
The proof follows from the definition and the fact that the p-norm and the weak q-norm are reordering invariant.

When $p \geq q$ we can say more:
Proposition 3 Let $\left(x_{j}\right)$ a bounded sequence in X, and let $1 \leq q \leq p<\infty$. Then

$$
\pi_{p, q}\left[x_{\sigma(j)}\right] \leq \pi_{p, q}\left[x_{j}\right]
$$

for any map $\sigma: \mathbb{N} \rightarrow \mathbb{N}$.

PROOF. Given $x_{1}^{*}, x_{2}^{*}, \ldots, x_{n}^{*} \in X^{*}$ we have

$$
\begin{aligned}
& \left(\sum_{j}\left|x_{j}^{*} x_{\sigma(j)}\right|^{p}\right)^{1 / p}=\left(\sum_{k}\left(\sum_{\sigma(j)=k}\left|x_{j}^{*} x_{k}\right|^{p}\right)\right)^{1 / p} \leq\left(\sum_{k}\left(\sum_{\sigma(j)=k}\left|x_{j}^{*} x_{k}\right|^{q}\right)^{p / q}\right)^{1 / p} \\
& \left.\quad=\left(\sum_{k}\left|\left(\sum_{\sigma(j)=k} \alpha_{j} x_{j}^{*}\right) x_{k}\right|^{p}\right)\right)^{1 / p} \quad\left(\text { where }\left(\alpha_{j}\right)_{\sigma(j)=k} \in B_{\ell_{q^{\prime}}}\right) \\
& \quad=\left(\sum_{k}\left|y_{k}^{*} x_{k}\right|^{p}\right)^{1 / p} \quad\left(\text { with } y_{k}^{*}=\sum_{\sigma(j)=k} \alpha_{j} x_{j}^{*} \in X^{*}\right) \\
& \quad \leq \pi_{p, q}\left[x_{j}\right]\left\|\left(y_{k}^{*}\right)\right\|_{\ell_{q}^{w}\left(X^{*}\right)}=\pi_{p, q}\left[x_{j}\right] \sup _{\left\|\left(\beta_{k}\right)\right\|_{q^{\prime}} \leq 1}\left\|\sum_{k} \beta_{k} y_{k}^{*}\right\| \\
& \quad=\pi_{p, q}\left[x_{j}\right] \sup _{\left\|\left(\beta_{k}\right)\right\|_{q^{\prime}} \leq 1}\left\|\sum_{j} \alpha_{j} \beta_{\sigma(j)} x_{j}^{*}\right\| \\
& \quad \leq \pi_{p, q}\left[x_{j}\right] \sup _{\left\|\left(\gamma_{j}\right)\right\|_{q^{\prime}} \leq 1}\left\|\sum_{k} \gamma_{j} x_{j}^{*}\right\|=\pi_{p, q}\left[x_{j}\right]\left\|\left(x_{j}^{*}\right)\right\|_{\ell_{q}^{w}\left(X^{*}\right)} .
\end{aligned}
$$

The result does not hold if $1 \leq p<q$: take σ a constant map.
Proposition 3 implies that all (p, q)-sequences satisfy something apparently stronger than the condition in Definition 1:

Corollary 1 For any $p \geq q \geq 1$, a sequence $\left(x_{j}\right) \subset X$ is (p, q)-summing if and only if there exists a constant C such that

$$
\left(\sum_{k=1}^{n} \sup _{j}\left|x_{k}^{*} x_{j}\right|^{p}\right)^{1 / p} \leq C \sup _{x \in B_{X}}\left(\sum_{k=1}^{n}\left|x_{k}^{*} x\right|^{q}\right)^{1 / q}
$$

for any $x_{1}^{*}, \ldots, x_{n}^{*} \in X^{*}$, and the least such C is $\pi_{p, q}\left[x_{j}\right]$.

$2(1, q)$-summing sequences as integral operators

Recall that $u \in \mathcal{L}(X, Y)$ is p-integral if the composition $X \xrightarrow{u} Y \xrightarrow{j_{Y}} Y^{* *}$ equals $X \xrightarrow{\beta} L_{\infty}(\mu) \xrightarrow{i_{p}} L_{p}(\mu) \xrightarrow{\alpha} Y^{* *}$ for some positive measure μ and bounded operators α and β (i_{p} and j_{Y} are the respective inclusions).

The p-integral norm of u is the infimum of all the possible values of $\|\alpha\|\|\beta\|$ in the previous expression. The set of p-integral operators (a Banach operator ideal) is denoted by $I_{p}(X, Y)$. For $p=1$ it is denoted simply by $I(X, Y)$, the space of integral operators.

Any p-integral operator u is also p-summing, and $\pi_{p}(u)$ is not greater than the p-integral norm, but the converse is not true in general. Basic results on p-integral operators can be seen in [3].

We'll make use of the following fact: $u: X \rightarrow Y$ is integral if and only if there exists a constant $C>0$ such that

$$
|\operatorname{tr}(u v)| \leq C\|v\|
$$

for any finite rank linear operator $v: Y \rightarrow X$, and the least such C is the integral norm of u.

This makes easy to characterize the $(1, q)$-sequences in terms of integral operators:

Theorem 2 For any $1 \leq q<\infty$, a sequence $\left(x_{j}\right) \subset X$ is $(1, q)$-summing if and only if it defines an integral operator $u: \ell_{q} \rightarrow X$ by $u e_{j}=x_{j}$, and the integral norm of u is then $\pi_{1, q}\left[x_{j}\right]$.

PROOF. Let u an integral operator $\ell_{q} \rightarrow X$ with $u e_{j}=x_{j}$ for all j, and let C its integral norm. Given $x_{1}^{*}, \ldots x_{n}^{*} \in X^{*}$, let $v=\sum_{j=1}^{n} x_{j}^{*} \otimes \lambda_{j} e_{j}$, where $\lambda_{j}=\operatorname{sgn}\left(x_{j}^{*} x_{j}\right)$. Then

$$
\sum_{j=1}^{n}\left|x_{j}^{*} x_{j}\right|=\sum_{j=1}^{n} \lambda_{j} x_{j}^{*} x_{j}=\operatorname{tr}(u v)
$$

so $\sum_{j=1}^{n}\left|x_{j}^{*} x_{j}\right| \leq C\|v\|$, and $\|v\|$ is just $\left\|\left(x_{j}^{*}\right)\right\|_{\ell_{q}^{w}\left(X^{*}\right)}$. Then $\pi_{1, q}\left[x_{j}\right] \leq C$.
Conversely, let $\left(x_{j}\right) \in \ell_{\pi_{1, q}}(X)$. Then $\left(x_{j}\right) \in \ell_{q^{\prime}}(X)$, so $u: e_{j} \mapsto x_{j}$ defines a bounded operator in $\mathcal{L}\left(\ell_{q}, X\right)$. Now, if $v=\sum_{j=1}^{n} x_{j}^{*} \otimes \xi_{j}$ with $\xi_{j}=\left(\xi_{j k}\right)_{k} \in$ ℓ_{q} then, for $v_{k}^{*}=\sum_{j} \xi_{j k} x_{j}^{*} \in X^{*}$, it turns out that $|\operatorname{tr}(u v)|=\sum_{k}\left|v_{k}^{*} x_{k}\right| \leq$ $\pi_{1, q}\left[x_{k}\right]\left\|\left(v_{k}^{*}\right)\right\|_{\ell_{q}^{w}\left(X^{*}\right)}$ and $\left\|\left(v_{k}^{*}\right)\right\|_{\ell_{q}^{w}\left(X^{*}\right)}=\|v\|$, giving that the integral norm of u is bounded by $\pi_{1, q}\left[x_{j}\right]$.

As an application of Theorem 2, we can identify the sequences in $\ell_{\pi_{1, q}}\left(L_{1}(\mu)\right)$, for any σ-finite space μ :

For any Banach lattice X, an operator $u: X \rightarrow L_{1}(\mu)$ is integral if and only if $\int\left(\sup _{x \in B_{X}}|u x|\right) d \mu<\infty$, its value being the integral norm of u (see Th. 5.19 in [3]). If applied to $X=\ell_{q}$, Theorem 2 gives the following:

Theorem 3 Let $1 \leq q<\infty$, and let μ a σ-finite measure. Then $\left(f_{j}\right) \in$ $\ell_{\pi_{1, q}}\left(L_{1}(\mu)\right)$ if and only if

$$
\int\left\|\left(f_{j}(w)\right)\right\|_{\ell_{q^{\prime}}} d \mu(w)<\infty
$$

and then the integral equals $\pi_{1, q}\left[f_{j}\right]$.

PROOF. Just note that $\sup _{\left\|\left(\lambda_{j}\right)\right\|_{q}=1}\left|\sum_{j} \lambda_{j} f_{j}(w)\right|=\left\|\left(f_{j}(w)\right)\right\|_{q^{\prime}}$ for any w in the measure space.

When $1<q<\infty$ it results that $\ell_{\pi_{1, q}}\left(L_{1}(\mu)\right) \simeq L_{1}\left(\mu, \ell_{q^{\prime}}\right)$. This is true for $q=\infty$, since $\ell_{\pi_{1, \infty}}\left(L_{1}(\mu)\right)=\ell_{1}\left(L_{1}(\mu)\right) \simeq \mathcal{L}_{1}\left(\mu, \ell_{1}\right)$.

As for $q=1$, recall that we can have $\int \sup _{j}\left|f_{j}(w)\right| d \mu(w)<\infty$ with $w \mapsto$ $\left(f_{j}(w)\right)$ not being a measurable function. For example, for the Rademacher functions r_{j} in $([0,1], d t)$ we have that $\left\{\left(r_{j}(t)\right): t \in[0,1]\right\}=\{-1,1\}^{\mathbb{N}}$ is not esentially separable and then the sequence does not define a function in $L_{1}\left(d t, \ell_{\infty}\right)$. Anyway $\left(r_{j}\right) \in \ell_{\pi_{1}}\left(L_{1}[0,1]\right)$, as Theorem 3 gives the following for $q=1$:

Corollary 2 Let μ a σ-finite measure. Then $\left(f_{j}\right) \in \ell_{\pi_{1}}\left(L_{1}(\mu)\right)$ if and only if there exists another function $f \in L_{1}(\mu)$ such that, for every $j,\left|f_{j}\right| \leq f \mu$-a.e.

Another consequence of the interpretation of π_{1}-sequences as integral operators is the following:

Corollary 3 Let $\left(x_{j}\right)$ be a bounded sequence in X. Then $\left(x_{j}\right) \in \ell_{\pi_{1}}(X)$ if and only if there exist a Banach space Y, a sequence $\left(y_{j}^{*}\right) \in \ell_{\infty}\left(Y^{*}\right)$ and $u \in \Pi_{1}\left(X^{*}, Y\right)$ such that $x_{j}=y_{j}^{*} \circ u \in X^{* *}$ for each j.

PROOF. Let us assume that such u and $\left(y_{j}^{*}\right)$ do exist. The constant sequence $\left(u_{j}=u\right)$ is a multiplier from $\ell_{1}^{w}\left(X^{*}\right)$ to $\ell_{1}(Y)$, and so it is $\left(y_{j}^{*}\right)$ from $\ell_{1}(Y)$ to ℓ_{1}, so the composition $\left(x_{j}\right)=\left(y_{j}^{*} \circ u\right)$ belongs to $\ell_{\pi_{1}}\left(X^{* *}\right)$.

Conversely, if $\left(x_{j}\right) \in \ell_{\pi_{1}}(X)$ then Theorem 2 says that $v: \ell_{1} \rightarrow X$ given by $v e_{j}=x_{j}$ is an integral operator, and in particular v^{*} is absolutely summing (v^{*} is integral if v is so, and integral operators with values in ℓ_{∞} are absolutely summing). Then we can take $Y=\ell_{\infty}, u=v^{*}$ and $\left(y_{j}^{*}\right)=\left(e_{j}\right)$ in $\ell_{1} \subset\left(\ell_{\infty}\right)^{*}$. Since $e_{j}\left(v^{*} x^{*}\right)=x^{*}\left(v e_{j}\right)=x^{*} x_{j}$ for any $x^{*} \in X^{*}$ and each j, the result follows.

3 Inclusions among the spaces $\ell_{\pi_{p, q}}(X)$

Let us point out first some elementary embeddings among these spaces.
Proposition 4 Let $1 \leq r, s<\infty, 1 \leq p_{1} \leq p_{2}, 1 \leq q_{1} \leq q_{2}$ and $1 \leq p \leq q$.

Then

$$
\begin{aligned}
& \ell_{\pi_{p_{1}, s}}(X) \subseteq \ell_{\pi_{p_{2}, s}}(X) \\
& \ell_{\pi_{r, q_{2}}}(X) \subseteq \ell_{\pi_{r, q_{1}}}(X) \text { and } \\
& \ell_{\pi_{p}}(X) \subseteq \ell_{\pi_{q}}(X),
\end{aligned}
$$

with continuous inclusions of norm 1.
In particular, for $1 \leq p, q<\infty$

$$
\ell_{\pi_{1, q}}(X) \subseteq \ell_{\pi_{1}}(X) \subseteq \ell_{\pi_{p}}(X) \subseteq \ell_{\pi_{p, 1}}(X)
$$

We can actually show the following more general result:
Theorem 4 Let p, q, r and s such that $1 \leq p \leq r, 1 \leq q, s$ and $(1 / q)+(1 / r) \leq$ $(1 / p)+(1 / s)$. Then $\ell_{\pi_{p, q}}(X) \subseteq \ell_{\pi_{r, s}}(X)$, with continuous inclusion of norm 1 .

PROOF. The case $s \leq q$ follows from the norm 1 inclusions $\ell_{s}^{w}\left(X^{*}\right) \subseteq \ell_{q}^{w}\left(X^{*}\right)$ and $\ell_{p}(X) \subseteq \ell_{r}(X)$. If $q<s$, then for $r=\infty$ or $s=\infty$ the result is true by Remark 2 and Proposition 1. So we assume that $q<s$ and $r, s<\infty$. Then $1<r / p, s / q<\infty$; let a and b their conjugate numbers, that is $1=$ $(1 / a)+(p / r)=(1 / b)+(q / s)$.

If $\pi_{p, q}\left[x_{j}\right] \leq C$, for any finite set of vectors x_{j}^{*} in X^{*} we have, for appropriate scalars $\alpha_{j} \geq 0$ such that $\sum \alpha_{j}^{a}=1$, that

$$
\left(\sum_{j}\left|x_{j}^{*} x_{j}\right|^{r}\right)^{1 / r}=\left(\sum_{j} \mid x_{j}^{*}\left(\alpha_{j}^{1 / p} x_{j}\right)^{p}\right)^{1 / p} \leq C \sup _{\left\|x^{*}\right\| \leq 1}\left(\sum_{j} \alpha_{j}^{q / p}\left|x^{*} x_{j}\right|^{q}\right)^{1 / q}
$$

From our assumptions we have that $a p \leq b q$, so that $\sum_{j} \alpha_{j}^{\frac{q}{p} b} \leq 1$, and for any x^{*} Hölder inequality gives $\left(\sum_{j} \alpha_{j}^{q / p}\left|x^{*} x_{j}\right|^{q}\right)^{1 / q} \leq\left(\sum_{j}\left|x^{*} x_{j}\right|^{s}\right)^{1 / s}$. This shows that $\pi_{r, s}\left[x_{j}\right] \leq C$.

3.1 The role of type and cotype

Recall that $\operatorname{Rad}_{p}(X)$ is the closure in $L_{p}([0,1], X)$ of the set of functions of the form $\sum_{j=1}^{n} r_{j} x_{j}$, where $x_{j} \in X$ and $\left(r_{j}\right)_{j \in \mathbb{N}}$ are the Rademacher functions on $[0,1]$. By Kahane-Khintchine inequalities (see [3], page 211) it follows that $\operatorname{Rad}_{p}(X)$ coincide up to equivalent norms for all $p<\infty$. The space is denoted then $\operatorname{Rad}(X)$. Given $1 \leq p \leq 2$ (respect. $q \geq 2$), a Banach space X is said
to have (Rademacher) type p (respect. (Rademacher) cotype q) if $\ell_{p}(X) \subseteq$ $\operatorname{Rad}(X)$ (respect. $\left.\operatorname{Rad}(X) \subseteq \ell_{q}(X)\right)$.

We know by Proposition 1 that, for finite dimensional X, if $(1 / p)-(1 / q)=$ $(1 / r)-(1 / s)$ then $\ell_{\pi_{p, q}}(X)=\ell_{\pi_{r, s}}(X)$. In order to find conditions that ensure $\ell_{\pi_{p, q}}(X)=\ell_{\pi_{r, s}}(X)$ if $(1 / q)+(1 / r)=(1 / p)+(1 / s)$ we give the following lemma:

Lemma 3 Let $1<r<\infty$. Then $\ell_{1}^{w}(X)=\ell_{r} \ell_{r^{\prime}}^{w}(X)$ if and only if $\mathcal{L}\left(c_{0}, X\right)=$ $\Pi_{r}\left(c_{0}, X\right)$.

PROOF. Assume $\ell_{1}^{w}(X)=\ell_{r} \ell_{r^{\prime}}^{w}(X)$ and take $u \in \mathcal{L}\left(c_{0}, X\right)$. If $x_{j}=u\left(e_{j}\right)$ then $\left(x_{j}\right) \in \ell_{1}^{w}(X)$, so we write $x_{j}=u\left(e_{j}\right)=\alpha_{j} x_{j}^{\prime}$ where $\left(\alpha_{j}\right) \in \ell_{r}$ and $\left(x_{j}^{\prime}\right) \in \ell_{r^{\prime}}^{w}(X)$. This allows to factorize $u=w v$, where $v \in \mathcal{L}\left(c_{0}, \ell_{r}\right)$ is given by $v\left(e_{j}\right)=\alpha_{j} e_{j}$ and $w \in \mathcal{L}\left(\ell_{r}, X\right)$ is given by $w\left(e_{j}\right)=x_{j}^{\prime}$. It is not difficult to show (see [3], page 41) that $v \in \Pi_{r}\left(c_{0}, \ell_{r}\right)$, and then $u \in \Pi_{r}\left(c_{0}, X\right)$.

Conversely, assume $\mathcal{L}\left(c_{0}, X\right)=\Pi_{r}\left(c_{0}, X\right)$ and let us take $\left(x_{j}\right) \in \ell_{1}^{w}(X)$. Consider now the operator $u: c_{0} \rightarrow X$ defined by $u\left(e_{j}\right)=x_{j}$. From the assumption $u \in \Pi_{r}\left(c_{0}, X\right)$. Now, since $\left(e_{j}\right) \in \ell_{1}^{w}\left(c_{0}\right)$ and $u \in \Pi_{r}\left(c_{0}, X\right)$, then (see [3], page 53) $u\left(e_{j}\right)=\alpha_{j} x_{j}^{\prime}$ with $\left(\alpha_{j}\right) \in \ell_{r}$ and $\left(x_{j}^{\prime}\right) \in \ell_{r^{\prime}}^{w}(X)$.

Proposition 5 Assume that $\mathcal{L}\left(c_{0}, X^{*}\right)=\Pi_{s^{\prime}}\left(c_{0}, X^{*}\right)$ for some $1<s<\infty$. Then $\ell_{\pi_{r, s}}(X) \subseteq \ell_{\pi_{p, q}}(X)$ for any $1 \leq p, q, r<\infty$ such that $(1 / p)-(1 / q)=$ $(1 / r)-(1 / s)$.

PROOF. Let us take $\left(x_{j}\right) \in \ell_{\pi_{r, s}}(X)$ and $\left(x_{j}^{*}\right) \in \ell_{q}^{w}\left(X^{*}\right)$. To show that $\left(x_{j}^{*} x_{j}\right) \in \ell_{p}$, it suffices to see that for any $\left(\alpha_{j}\right) \in \ell_{q^{\prime}}$ we get $\left(\alpha_{j} x_{j}^{*} x_{j}\right) \in \ell_{u}$ where $(1 / p)+\left(1 / q^{\prime}\right)=1 / u$. Given now a sequence $\left(\alpha_{j}\right) \in \ell_{q^{\prime}}$ we have that $\left(\alpha_{j} x_{j}^{*}\right) \in \ell_{1}^{w}\left(X^{*}\right)$. Using Lemma 3 we have that there exist $\left(\beta_{j}\right) \in \ell_{s^{\prime}}$ and $\left(y_{j}^{*}\right) \in \ell_{s}^{w}\left(X^{*}\right)$ such that $\alpha_{j} x_{j}^{*}=\beta_{j} y_{j}^{*}$. Therefore $\left(\alpha_{j} x_{j}^{*}\right)=\left(\beta_{j} y_{j}^{*} x_{j}\right) \in \ell_{s^{\prime}} \ell_{r}=\ell_{u}$ since $1 / u=(1 / p)+\left(1 / q^{\prime}\right)=\left(1 / s^{\prime}\right)+(1 / r)$.

Combining Theorem 4 and Proposition 5 we get the following:
Theorem 5 Let X such that $\mathcal{L}\left(c_{0}, X^{*}\right)=\Pi_{s^{\prime}}\left(c_{0}, X^{*}\right)$ for some $1<s<\infty$. Then $\ell_{\pi_{r, s}}(X)=\ell_{\pi_{p, q}}(X)$ whenever $1 \leq p, q, r, s<\infty$ are such that $1 \leq p \leq r$ and $(1 / p)-(1 / q)=(1 / r)-(1 / s)$.

Proposition 6

(a) If X has cotype 2 then $\ell_{1}^{w}(X)=\ell_{2} \ell_{2}^{w}(X)$.
(b) If X has cotype $q>2$ then $\ell_{1}^{w}(X)=\ell_{r} \ell_{r^{\prime}}^{w}(X)$ for any $r>q$.

PROOF. Use Lemma 3 and the fact that $\mathcal{L}\left(c_{0}, Y\right)=\Pi_{2}\left(c_{0}, Y\right)$ for any Y of cotype 2 and $\mathcal{L}\left(c_{0}, Y\right)=\Pi_{r}\left(c_{0}, Y\right)$ for any Y of cotype $q>2$ and $r>q$ (see Theorem 11.14 in [3]).

Remark 5 Let X be any space with GL-property (see Page 350, [3] for definition and results). Then X has cotype 2 if and only if $\ell_{1}^{w}(X)=\ell_{2} \ell_{2}^{w}(X)$. Actually it holds that $\mathcal{L}\left(c_{0}, X\right)=\Pi_{2}\left(c_{0}, X\right)$ if an only if X is of cotype 2, (see page 352, [3]).

Remark 6 Recall that X is a G.T. space if $\mathcal{L}\left(X, \ell_{2}\right)=\Pi_{1}\left(X, \ell_{2}\right)$ (the term comes after Grothendieck theorem, that asserts that this is the case for $X=$ $\left.L_{1}(\mu)\right)$. Then $\ell_{1}^{w}(X)=\ell_{2} \ell_{2}^{w}(X)$.

Indeed, if $u \in \mathcal{L}\left(c_{0}, X\right)$ then $u^{*} \in \mathcal{L}\left(X^{*}, \ell_{1}\right)$. Now $G T$ property on X gives that $u^{*} \in \Pi_{2}\left(X^{*}, \ell_{1}\right)$ (see [4], page 71) which implies that u^{*} factors through a Hilbert space, and so u does. Therefore $u \in \Pi_{2}\left(c_{0}, X\right)$.

Corollary 4 If X^{*} has cotype 2 then $\ell_{\pi_{p, q}}(X)=\ell_{\pi_{r, 2}}(X)$ for any $p \leq r$ and $1 / q=(1 / p)-(1 / r)+(1 / 2)$.

In particular $\ell_{\pi_{1}}(X)=\ell_{\pi_{2}}(X)$ and $\ell_{\pi_{1, q}}(X)=\ell_{\pi_{r, 2}}(X)$ for $1 / r=\left(1 / q^{\prime}\right)+(1 / 2)$.
Corollary 5 If X^{*} has cotype $q_{0}>2$ then $\ell_{\pi_{p, q}}(X)=\ell_{\pi_{r, s}}(X)$ for any $p \leq r$, $s<q_{0}^{\prime}$ and $(1 / p)-(1 / q)=(1 / r)-(1 / s)$.

In particular $\ell_{\pi_{p}}(X)=\ell_{\pi_{1}}(X)$ for any $1 \leq p<q_{0}^{\prime}$ and $\ell_{\pi_{1, q}}(X)=\ell_{\pi_{r, s}}(X)$ for $s<q_{0}^{\prime}$ and $1 / r=\left(1 / q^{\prime}\right)+(1 / s)$.

Proposition 7 Let $1 \leq q \leq p<\infty$ and $r \geq p^{\prime}$. Then the following are equivalent:
(a) $\operatorname{id}_{X^{*}}$ is (p, q)-summing.
(b) $\ell_{r}(X) \subseteq \ell_{\pi_{s, q}}(X)$ for any $1 \leq s \leq r$ such that $1 / s=(1 / r)+(1 / p)$.

Moreover, $\pi_{p, q}\left(\mathrm{id}_{X^{*}}\right)=\sup \left\{\pi_{s, q}\left[x_{j}\right]:\left\|\left(x_{j}\right)\right\|_{\ell_{r}(X)}=1\right\}$.

PROOF. Assume first that the identity in X^{*} is (p, q)-summing. If r and s are as stated, $\left(x_{j}\right) \in B_{\ell_{r}(X)}$ and $x_{1}^{*}, \ldots, x_{n}^{*} \in X^{*}$ we see that

$$
\left(\sum_{j}\left|x_{j}^{*} x_{j}\right|^{s}\right)^{1 / s} \leq\left(\sum_{j}\left\|x_{j}^{*}\right\|^{p}\right)^{1 / p} \leq \pi_{p, q}\left(\operatorname{id}_{X^{*}}\right)\left\|\left(x_{j}^{*}\right)\right\|_{\ell_{q}^{w}\left(X^{*}\right)}
$$

Conversely, we assume now that $\ell_{r}(X) \subseteq \ell_{\pi_{s, q}}(X)$ and take $x_{1}^{*}, \ldots, x_{n}^{*}$ in X^{*}. From Lemma 2 we have

$$
\left(\sum_{j}\left\|x_{j}^{*}\right\|^{p}\right)^{1 / p}=\sup \left\{\left(\sum_{k=1}^{n}\left|x_{k}^{*} x_{k}\right|^{s}\right)^{1 / s}: \sum_{k=1}^{n}\left\|x_{k}\right\|^{r}=1\right\}
$$

Then $\left(x_{j}\right)$ is of norm 1 in $\ell_{r}(X)$, and if C is the norm of the inclusion of $\ell_{r}(X)$ in $\ell_{\pi_{s, q}}(X)$ we have $\left(\sum_{j}\left|x_{j}^{*} x_{j}\right|^{s}\right)^{1 / s} \leq C\left\|\left(x_{j}^{*}\right)\right\|_{\ell_{q}^{w}\left(X^{*}\right)}$. This yields $\left(\sum_{j}\left\|x_{j}^{*}\right\|^{p}\right)^{1 / p} \leq$ $C\left\|\left(x_{j}^{*}\right)\right\|_{\ell_{q}^{w}\left(X^{*}\right)}$.

Some particularly interesting cases are given in the following corollaries.
Corollary 6 For any X and $1 \leq p$ the following are equivalent:
(a) $i d_{X^{*}}$ is $(p, 1)$-summing.
(b) $\ell_{\infty}(X)=\ell_{\pi_{p, 1}}(X)$.
(c) $\ell_{p^{\prime}}(X) \subseteq \ell_{\pi_{1}}(X)$.

Moreover, if $p \geq 2$ they hold if and only if X^{*} has cotype p.

PROOF. Only the last claim deserves a proof. It is due to the deep result, due to M. Talagrand (see [7]), that asserts that for $2<q<\infty$ the identity in any Banach space Y is $(q, 1)$-summing if and only if Y has cotype q.

Remark 7 As for $p=2$, we get that $\ell_{2}(X) \subseteq \ell_{\pi_{1}}(X)$ if and only if $\ell_{\infty}(X)=$ $\ell_{\pi_{2,1}}(X)$, if and only if X^{*} has the so-caled Orlicz property, i. e. $i d_{X^{*}}$ is $(2,1)-$ summing. However, although cotype 2 is a sufficient condition to have the Orlicz property it is not necessary (see [8]).

These inclusions are the best possible when dealing with infinite dimensional spaces:

Corollary 7 For any Banach space X the following are equivalent:
(a) X is finite dimensional.
(b) $\ell_{\pi_{p, q}}(X)=\ell_{\infty}(X)$ for some $p \geq q$ with $(1 / q)-(1 / p)<1 / 2$.
(c) $\ell_{s}(X) \subseteq \ell_{\pi_{p, q}}(X)$ for some $1 \leq p \leq q$ and $p<s<r$ with $(1 / s)-(1 / r)<$ $1 / 2$.
(d) $\ell_{\pi_{p, 1}}(X)=\ell_{\infty}(X)$ for some (or for all) $1 \leq p<2$.
(e) $\ell_{p^{\prime}}(X) \subseteq \ell_{\pi_{1}}(X)$ for some (or for all) $1 \leq p<2$.

PROOF. To see that (b) implies (a) use the fact that $i d_{X^{*}} \in \Pi_{p, q}\left(X^{*}, X^{*}\right)$ for $(1 / q)-(1 / p)<1 / 2$. This gives that X^{*} is finite dimensional (see [3], page 199).

If (c) is true then Proposition 7 says that $i d_{X^{*}} \in \Pi_{q_{1}, q}\left(X^{*}, X^{*}\right)$ for $(1 / s)+$ $\left(1 / q_{1}\right)=(1 / p)$, what again gives (a) because $(1 / q)-\left(1 / q_{1}\right)<1 / 2$.
(d) is the particular case of (b) for $q=1$.
(e) is equivalent to (d) by Corollary 6 .

Remark 8 For $p>1$ and $1 \leq q<\infty$, in general $\ell_{\pi_{p, q}}(X) \neq I_{p}\left(\ell_{q}, X\right)$.
Indeed, recalling that $I_{2}(X, Y)=\Pi_{2}(X, Y)$ for every couple of spaces X and Y (see Corollary 5.9 in [3]), we conclude that $\ell_{\pi_{2,1}}\left(\ell_{\infty}\right) \neq I_{2}\left(\ell_{1}, \ell_{\infty}\right)$: By Corollary 6 we have that $\ell_{\pi_{2,1}}\left(\ell_{\infty}\right)=\ell_{\infty}\left(\ell_{\infty}\right) \simeq \mathcal{L}\left(\ell_{1}, \ell_{\infty}\right)$, but $\mathcal{L}\left(\ell_{1}, \ell_{\infty}\right)$ does not coincide with $\Pi_{2}\left(\ell_{1}, \ell_{\infty}\right)$ because $\Pi_{2}\left(\ell_{1}, \ell_{\infty}\right)=\Pi_{1}\left(\ell_{1}, \ell_{\infty}\right)$ (for ℓ_{1} is of cotype 2, and Corollary 11.16 in [3] applies), and on the other hand $\Pi_{1}\left(\ell_{1}, \ell_{\infty}\right) \neq \mathcal{L}\left(\ell_{1}, \ell_{\infty}\right)$: the operator given by $x \in \ell_{1} \mapsto\left(\sum_{j=1}^{n} x_{j}\right)_{n} \in \ell_{\infty}$ is not absolutely summing (see [5], exercise III.F.3).

Proposition 8 Let E a Banach subspace of X. Then we have that $\ell_{\pi_{p, q}}(E) \subseteq$ $\ell_{\infty}(E) \cap \ell_{\pi_{p, q}}(X)$, but equality does not hold in general.

PROOF. The embedding is straightforward.
Let us show that for $p=q=1$ there exists E such that $\ell_{\pi_{1}}(E) \neq \ell_{\infty}(E) \cap$ $\ell_{\pi_{1}}(X)$:

Take E such that $\ell_{2}(E) \nsubseteq \ell_{\pi_{1}}(E)$ (for instance $E=\ell_{1}$). Since E is a subspace of $X=\ell_{\infty}(\Gamma)$ for $\Gamma=B_{E^{*}}$ and $\left(\ell_{\infty}(\Gamma)\right)^{*}=\left(\ell_{1}(\Gamma)\right)^{* *}$ is of cotype 2, then $\ell_{2}(E) \subseteq \ell_{\infty}(E) \cap \ell_{\pi_{1}}(X)$. Therefore $\ell_{\infty}(E) \cap \ell_{\pi_{1}}(X)$ does not coincide with $\ell_{\pi_{1}}(E)$.

3.2 The (p, q)-summing norm of the canonical basis in ℓ_{r}

Theorem 6 Let $p>q$ and $1 / s^{\prime}=(1 / q)-(1 / p)$. Then $\ell_{s}^{w}(X) \subseteq \ell_{\pi_{p, q}}(X)$ with inclusion of norm 1 .

PROOF. For any finite family of vectors $\left(x_{j}\right)_{1 \leq j \leq n}$ in X and $\left(x_{j}^{*}\right)_{1 \leq j \leq n}$ in X^{*}, since $1 / p^{\prime}>1 / q^{\prime}$ and $1 / p^{\prime}=\left(1 / s^{\prime}\right)+\left(1 / q^{\prime}\right)$ we can write

$$
\begin{aligned}
& \left(\sum_{j}\left|x_{j}^{*} x_{j}\right|^{p}\right)^{1 / p}=\sup _{\left\|\left(\alpha_{j}\right)\right\|_{p^{\prime}}=1}\left|\sum_{j} \alpha_{j} x_{j}^{*} x_{j}\right| \\
& \quad=\sup _{\left\|\left(\beta_{j}\right)\right\|_{s^{\prime}}=1\left\|\left(\lambda_{j}\right)\right\|_{q^{\prime}}=1}\left|\sum_{j} \beta_{j} \lambda_{j} x_{j}^{*} x_{j}\right| \\
& \quad=\sup _{\left\|\left(\beta_{j}\right)\right\|_{s^{\prime}}=1} \sup _{\left\|\left(\lambda_{j}\right)\right\|_{q^{\prime}}=1}\left|\int_{0}^{1}\left\langle\sum_{j} r_{j}(t) \lambda_{j} x_{j}^{*}, \sum_{k} r_{k}(t) \beta_{k} x_{k}\right\rangle d t\right| \\
& \quad \leq \sup _{\left\|\left(\beta_{j}\right)\right\|_{\|^{\prime}}=1} \sup _{\left\|\left(\lambda_{j}\right)\right\|_{q^{\prime}}=1} \sup _{t \in[0,1]}\left\|\sum_{j} r_{j}(t) \lambda_{j} x_{j}^{*}\right\|_{X^{*}}\left\|\sum_{k} r_{k}(t) \beta_{k} x_{k}\right\|_{X} \\
& \quad \leq\left\|\left(x_{j}^{*}\right)\right\|_{\ell_{q}\left(X^{*}\right)}\left\|\left(x_{j}\right)\right\|_{\ell_{s}^{w}(X)} .
\end{aligned}
$$

Corollary 8 For any $p \geq 1, \ell_{p}^{w}(X) \subset \ell_{\pi_{p, 1}}(X)$ with inclusion of norm 1.
As an application, we see next whether the sequence given by the canonical basis $\left(e_{j}\right)$ belongs to $\ell_{\pi_{p, q}}\left(\ell_{r}\right)$, depending on the values of p, q and r.

Proposition 9 For any $p \geq 1$ we have $\left(e_{j}\right) \in \ell_{\pi_{p, 1}}\left(\ell_{p^{\prime}}\right)$, with $\pi_{p, 1}\left[e_{j} ; \ell_{p^{\prime}}\right]=1$.

PROOF. Note that for $p \geq 2$ this follows from Corollary 6 , because $\left(\ell_{p^{\prime}}\right)^{*}=$ ℓ_{p} has cotype p.

For $1 \leq p<2$, apply Corollary 8 to $\left(e_{j}\right) \in \ell_{p}^{w}\left(\ell_{p^{\prime}}\right)$.
Theorem $7\left(e_{j}\right) \in \ell_{\pi_{p, q}}\left(\ell_{r}\right)$ if and only if it holds that $p=\infty$ or $1 / r \leq$ $(1 / q)-(1 / p)$. Moreover, in these cases $\pi_{p, q}\left[e_{j}\right]=1$.

PROOF. For $p<q$ we have that $\ell_{\pi_{p, q}}\left(\ell_{r}\right) \subset \ell_{\left(\frac{1}{p}-\frac{1}{q}\right)^{-1}}\left(\ell_{r}\right)$. Hence $\left(e_{j}\right) \in$ $\ell_{\pi_{p, q}}\left(\ell_{r}\right)$ is only possible for $q \leq p$. As the norm of the inclusion $\ell_{q^{\prime}}^{n} \rightarrow \ell_{r^{\prime}}^{n}$ is $n^{\left(\frac{1}{q}-\frac{1}{r}\right)^{+}}$, we see that

$$
\left(\sum_{j=1}^{n}\left|\left\langle e_{j}, e_{j}\right\rangle\right|^{p}\right)^{1 / p}=n^{\frac{1}{p}} \leq \pi_{p, q}\left[e_{j}\right] n^{\left(\frac{1}{q}-\frac{1}{r}\right)^{+}},
$$

which leads to $p=\infty$ or $q<r$ with $0 \leq 1 / q-1 / p-1 / r$.
Conversely, if $p=\infty$ then $\left(e_{j}\right) \in \ell_{\infty}\left(\ell_{r}\right)=\ell_{\pi_{\infty, q}}\left(\ell_{r}\right)$. And if $1 / q-1 / p-1 / r \geq 0$ then, by Proposition 9 and Theorem 4, we obtain

$$
\left(e_{j}\right) \in \ell_{\pi_{r^{\prime}, 1}}\left(\ell_{r}\right) \subseteq \ell_{\pi_{p, q}}\left(\ell_{r}\right) .
$$

The inclusion above is of norm 1 , so $\pi_{p, q}\left[e_{j}\right]=1$ when bounded.

This gives a new proof of the well-known fact that id: $\ell_{p} \hookrightarrow \ell_{q}$ is integral if and only if $p=1$ and $q=\infty$, according to Theorem 2 .

$4(p, q)$-summing sequences and Grothendieck theorem

Theorem 8 Let X be a Banach space. Then

$$
\ell_{\pi_{1,2}}(X) \subseteq \operatorname{Rad}(X) \subseteq \ell_{\pi_{1}}(X)
$$

PROOF. Let us take a finite family of vectors $\left(x_{j}\right)_{1 \leq j \leq n}$ in X. Using that $L_{1}([0,1], X)$ isometrically embedds into the dual of $L_{\infty}\left([0,1], X^{*}\right)$, we have

$$
\begin{aligned}
\int_{0}^{1} \| & \sum_{k=1}^{n} x_{k} r_{k}(t) \| d t=\sup _{\left.\|g\|_{L^{\infty}}(0,1], X^{*}\right)=1}\left|\sum_{k=1}^{n}\left\langle x_{k} \int_{0}^{1} g(t) r_{k}(t) d t\right\rangle\right| \\
& \leq \pi_{1,2}\left[x_{j}\right] \sup _{\|g\|_{L^{\infty}\left((0,1], X^{*}\right)}=1\left\|\left(\alpha_{k}\right)\right\|_{2}=1}\left\|\sum_{k=1}^{n} \alpha_{k} \int_{0}^{1} g(t) r_{k}(t) d t\right\| \\
& =\pi_{1,2}\left[x_{j}\right] \sup _{\|g\|_{L^{\infty}\left(0,11, X^{*}\right)}=1} \sup _{\left\|\left(\alpha_{k}\right)\right\|_{2=1}}\left\|\int_{0}^{1}\left(\sum_{k=1}^{n} \alpha_{k} r_{k}(t)\right) g(t) d t\right\| \\
& =\pi_{1,2}\left[x_{j}\right] \sup _{\left\|\left(\alpha_{k}\right)\right\|_{2}=1} \int_{0}^{1}\left|\sum_{k=1}^{n} \alpha_{k} r_{k}(t)\right| d t \\
& \leq \pi_{1,2}\left[x_{j}\right] .
\end{aligned}
$$

On the other hand, for any finite family of vectors $\left(x_{j}\right)_{1 \leq j \leq n}$ in X and $\left(x_{j}^{*}\right)_{1 \leq j \leq n}$ in X^{*} we can write

$$
\begin{aligned}
\sum_{j=1}^{n}\left|x_{j}^{*} x_{j}\right| & \sim \sup _{\varepsilon_{k}= \pm 1}\left|\sum_{j=1}^{n}\left\langle x_{j}^{*}, \varepsilon_{j} x_{j}\right\rangle\right| \\
& =\sup _{\varepsilon_{k}= \pm 1}\left|\int_{0}^{1}\left\langle\sum_{j=1}^{n} \varepsilon_{j} x_{j}^{*} r_{j}(t), \sum_{j=1}^{n} x_{j} r_{j}(t)\right\rangle d t\right| \\
& \leq\left\|\sum_{j=1}^{n} x_{j} r_{j}\right\|_{\operatorname{Rad}(X)}\left\|\left(x_{j}^{*}\right)\right\|_{\ell_{1}^{w}\left(X^{*}\right)}
\end{aligned}
$$

This gives the other inclusion.

By Khintchine inequalities one sees that $L_{1}\left(\mu, \ell_{2}\right)=\operatorname{Rad}\left(L_{1}(\mu)\right)$, and Theorem 3 gives that $\ell_{\pi_{1,2}}\left(L_{1}(\mu)\right)=\operatorname{Rad}\left(L_{1}(\mu)\right)$. Actually, combining Theorem 8 with Pisier's results on G.T. spaces (see Theorem 6.6 and Corollary 6.7 in [4]) it is easy to prove the following:

Theorem $9 \operatorname{Rad}(X)=\ell_{\pi_{1,2}}(X)$ if and only if X is a G.T. space of cotype 2 .
Grothendieck theorem has been stated in a lot of equivalent ways. We shall give yet another formulation of it in terms of the $\ell_{\pi_{p, q}}$ spaces. It gives a partial answer to a general question about the way that bounded sequences in X^{*} interact with bounded sequences in X.

For any Banach space X, let us consider the bilinear map

$$
V_{X}: \ell_{\infty}\left(X^{*}\right) \times \ell_{\infty}(X) \rightarrow \ell_{\infty}\left(\ell_{\infty}\right)
$$

given by $V_{X}\left(\left(x_{j}^{*}\right),\left(x_{k}\right)\right)=\left(\left(x_{j}^{*} x_{k}\right)_{k}\right)_{j}$. It is obvious that V_{X} is bounded.
Note that, for the restricted map $V_{n, X}: \ell_{\infty}^{n}\left(X^{*}\right) \times \ell_{\infty}^{n}(X) \rightarrow M_{n}(\mathbb{K})$ (defined in the same way), it always holds that the linear span of the image is $M_{n}(\mathbb{K})$. Actually, for $X=\mathbb{K}$,

$$
\left(\alpha_{j, k}\right)=\sum_{j=1}^{n} \sum_{k=1}^{n} V_{n}\left(\alpha_{j, k} e_{j}, e_{k}\right) .
$$

It is also easy to observe that $V_{\ell_{1}}\left(\ell_{\infty}\left(\ell_{\infty}\right) \times \ell_{\infty}\left(\ell_{1}\right)\right)=\ell_{\infty}\left(\ell_{\infty}\right)$: for any uniformly bounded infinite matrix $\left(\alpha_{j, k}\right)$, if we set $x_{j}^{*}=\left(\alpha_{j, k}\right)_{k} \in \ell_{\infty}$ then

$$
\left(\alpha_{j, k}\right)=V_{\ell_{1}}\left(\left(x_{j}^{*}\right)_{j},\left(e_{k}\right)_{k}\right) .
$$

However, for other Banach spaces the bilinear map is actually bounded not only into $\ell_{\infty}\left(\ell_{\infty}\right)$, but into a smaller space. This is the case for ℓ_{p} if $1<p<\infty$:

Theorem 10 Given $1 \leq q \leq p, \Pi_{p, q}\left(\ell_{1}, X\right)=\mathcal{L}\left(\ell_{1}, X\right)$ if and only if V_{X} defines a bounded bilinear map $V_{X}: \ell_{\infty}\left(X^{*}\right) \times \ell_{\infty}(X) \rightarrow \ell_{\pi_{p, q}}\left(\ell_{\infty}\right)$.

PROOF. Let $\left(x_{j}\right) \subset X$ and $\left(x_{j}^{*}\right) \subset X^{*}$ be such that $\left\|x_{j}\right\|,\left\|x_{j}^{*}\right\| \leq 1$ for all j. Let $u: \ell_{1} \rightarrow X$ the continuous operator such that $u e_{j}=x_{j}$ for all j; clearly $\|u\| \leq 1$.

By hypothesis we can take C (independently of $\left(x_{j}\right)$) such that $\pi_{p, q}(u) \leq$ $C\|u\| \leq C$. That is,

$$
\left\|\left(u y_{j}\right)\right\|_{\ell_{p}(X)} \leq C\left\|\left(y_{j}\right)\right\|_{\ell_{q}^{w}\left(\ell_{1}\right)}
$$

for any finite family $\left(y_{j}\right) \subset \ell_{1}$. Therefore if $\xi_{j}=x_{j}^{*} \circ u$ for each j then

$$
\left(\left(\left\langle\xi_{j}, e_{k}\right\rangle\right)_{k}\right)_{j}=\left(\left(x_{j}^{*}\left(u e_{k}\right)\right)_{k}\right)_{j}=\left(\left(x_{j}^{*} x_{k}\right)_{k}\right)_{j}=V_{X}\left(\left(x_{j}^{*}\right),\left(x_{j}\right)\right) .
$$

Consequently

$$
\left\|\left(\left\langle\xi_{j}, y_{j}\right\rangle\right)\right\|_{\ell_{p}}=\left\|\left(\left\langle x_{j}^{*}, u y_{j}\right\rangle\right)\right\|_{\ell_{p}} \leq\left\|\left(u y_{j}\right)\right\|_{\ell_{p}(X)},
$$

and then

$$
\left\|\left(\left\langle\xi_{j}, y_{j}\right\rangle\right)\right\|_{\ell_{p}} \leq C\left\|\left(y_{j}\right)\right\|_{\ell_{q}^{w}\left(\ell_{1}\right)},
$$

showing that $\pi_{p, q}\left[\xi_{j} ; \ell_{\infty}\right] \leq C$.
Let us assume now that $V_{X}: \ell_{\infty}\left(X^{*}\right) \times \ell_{\infty}(X) \rightarrow \ell_{\pi_{p, q}}\left(\ell_{\infty}\right)$ is bounded with norm C. Given $u \in \mathcal{L}\left(\ell_{1}, X\right)$, for every finite family $\left(y_{j}\right) \in \ell_{1}$ we have that

$$
\begin{aligned}
\left\|\left(u y_{j}\right)\right\|_{\ell_{p}(X)} & =\sup \left\{\left\|\left(\left\langle x_{j}^{*}, u y_{j}\right\rangle\right)\right\|_{\ell_{p}}:\left(x_{j}^{*}\right) \subset B_{X^{*}}\right\} \\
& \leq \sup \left\{\pi_{p, q}\left[V_{X}\left(\left(x_{j}^{*}\right),\left(u e_{j}\right)\right) ; \ell_{\infty}\right]:\left(x_{j}^{*}\right) \subset B_{X^{*}}\right\}\left\|\left(y_{j}\right)\right\|_{\ell_{q}^{w}\left(\ell_{1}\right)} \\
& \leq C\|u\|\left\|\left(y_{j}\right)\right\|_{\ell_{q}^{w}\left(\ell_{1}\right)},
\end{aligned}
$$

and then $\pi_{p, q}(u) \leq C\|u\|$.

In view of this, Grothendieck theorem is equivalent to the following result:
Corollary 9 If H is a Hilbert space, the bilinear form

$$
V_{H}: \ell_{\infty}(H) \times \ell_{\infty}(H) \rightarrow \ell_{\pi_{1}}\left(\ell_{\infty}\right)
$$

is bounded, and its norm is Grothendieck constant K_{G}.
Taking $H=\ell_{2}$ (with no loss of generality), this is a particular case of the following result:

Corollary 10 If $1 \leq p \leq \infty$ and $1 / r=1-|(1 / p)-(1 / 2)|$, then the bilinear form

$$
V_{\ell_{p}}: \ell_{\infty}\left(\ell_{p^{\prime}}\right) \times \ell_{\infty}\left(\ell_{p}\right) \rightarrow \ell_{\pi_{r, 1}}\left(\ell_{\infty}\right)
$$

is bounded, with $\left\|V_{\ell_{p}}\right\| \leq 2^{\frac{a}{2}} K_{G}^{1-a}$, where $a=|1-2 / p|$.

PROOF. Equivalently

$$
\pi_{r, 1}(u) \leq 2^{\frac{a}{2}} K_{G}^{1-a}\|u\|
$$

for every operator $u \in \mathcal{L}\left(\ell_{1}, \ell_{p}\right)$, which is an extension, due to Kwapień, of Grothendieck theorem (see [9], and also 34.11 in [6]).

Remark 9 Note in the previous result that $1 \leq r \leq 2$. The case $r=2$ is for $p=1$ (or $p=\infty)$. By Corollary 6 we know that $\ell_{\pi_{2,1}}\left(\ell_{\infty}\right)=\ell_{\infty}\left(\ell_{\infty}\right)$, so the statement is trivial in this case. However, Corollary 6 tells us that for $r<2$ the inclusion $\ell_{\pi_{r, 1}}\left(\ell_{\infty}\right) \subseteq \ell_{\infty}\left(\ell_{\infty}\right)$ is proper.

References

[1] J. L. Arregui and O. Blasco, On summing sequences of operators (to appear)
[2] S. Aywa and J. H. Fourie, On summing multipliers and applications J. Math. Anal. Appl. 253 (2001), 166-186, doi:10.1006/jmaa.2000.7081.
[3] J. Diestel, H. Jarchow and A. Tonge, "Absolutely Summing Operators" Cambridge University Press, 1995.
[4] G. Pisier, "Factorization of Operators and Geometry of Banach Spaces", CBM 60, Amer. Math. Soc., Providence (R.I.), 1985.
[5] P. Wojtaszczyk, "Banach spaces for analysts" Cambridge University Press, 1991.
[6] A. Defant and K. Floret, "Tensor Norms and Operator Ideals", North-Holland, 1993.
[7] M. Talagrand, Cotype of operators from $C(K)$, Inventiones Math. 107, (1992), 1-40.
[8] M. Talagrand, Cotype and ($q, 1$)-summing norm in a Banach space, Inventiones Math. 110 (1992), 545-556.
[9] S. Kwapień, Some remarks on (p, q)-summing operators in ℓ_{p}-spaces Studia Math., 29 (1968), 327-337.

[^0]: Email addresses: arregui@posta.unizar.es (J. L. Arregui), oblasco@uv.es (O. Blasco).
 ${ }^{1}$ Both authors partially supported by D.G.E.S.I.C. PB98-1426.

