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ABSTRACT. We prove here that the Hardy space of B-valued functions H1({B)
defined by using the conjugate function and the one defined in terms of B-
valued atoms do not coincide for a general Banach space. The condition
for them to coincide is the UMD property on B. We also characterize the
dual space of both spaces, the first one by using B*-valued distributions and
the second one in terms of a new space of vector-valued measures, denoted
FA4E (B*), which coincides with the classical BMO(B*) of functions when B*
has the RNP.

Introduction. When the theory of Hardy spaces began {o be studied by ns-
ing the so-called real techniques, several characterizations for these spaces were
obtained. We shall consider Hardy spaces on the cirele T. Let us write three
equivalent formulations of H1.

(1) Hipp = {f € LY(T): [ € LY{T)},

(2) Hipaye = 1 € LN (T): P*J(t) = supge,s 12 = f{t)] € LT},

{3 fg"ét_ = {f e LYT): f =73 Aeak, 2. |Asl < 00, ar atom},
where f stands for the conjugate function of § and F, for the Poisson kernel on the
circie T.

In 1971, D. L. Burkholder, R. I, Gundy and M. L. Silverstein [7] connected the
spaces defined by the conjugate function {1} and by the radial maximal function {2)
showing that H} , = H]} ., with equivalent norms. Later, R. R. Coifman {10] gave
a constructive proof of the so-called atomic decomposition of functions in HJ .,
stating that H . = H} with equivalent norms. In this paper we shall prove that in
the vector-vahied case Burkholder-Gundy-Silverstein’s result holds only for special
kinds of Banach spaces. One of the most famous resulis in Hardy spaces theory
was obtained by C. Fefferman (see {15, 18]) by proving that the dual space of Hl
could be identified with the BMO space (functions of bounded mean oscillation)
defined by F. John and L. Nirenberg [19]. This duality result leads immediately
to the atomic decomposition for functions in HY,. A direct proof of the duality
(H1)* = BMO can be found in {11 or 20].

The aim of this paper is to consider the above spaces when the functions are
allowed to take values in a gencral Banuach space £, to study the relationship
between them and to characterize their dual spaces. The paper is divided into three
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sections. The first one shows that HZ, (8) and HL, (B), defined in the obvious
way, need not be the same. The space HL,, (B) is always included in I} . (B),
being the necessary and sufficient condition for them to coincide with the UMD
property. The second part is devoted to giving a representation of the dual space of
H} A (B) in terms of B*-valued distributions. Finally in the last section we define
a new space of vector-valued measures, denoted by B4 (B), so that we can write
the general duality result {H1 (B))* = ZB#7(B*). Besides we find the Radon-
Nikodym property on B as the right one to make the space of measures 9{:’%’@’ (B)
coincide with the classical space of functions BMO(B).

Throughout this paper (B, | ||) will denote & real Banach space, LP (B) will stand
for the B-valued measurable functions on T such that

P2 i/
1= (5 [ ey

1. Two different Hardy spaces. We can replace the absolute value in Def-
initions {2} and (3) by the norm of B to get the corresponding B-valued Hardy
spaces

HhalB) = {1 € LB): P10 = s (Pefit)] € 1],
HL(B) = {f € LN(B): [ = Y dxar, Y|l < o0, ax Batom.

We define in these the foliowing norms
(i.l) Hf”max == ”P*fEEh

(1.2) W las = inf {37 0l 7= 5w}

The reader is referred to [10, 14, 17] for terminclogy and concepts used in the
definitions.

The first result we would like to mention here is that Coifinan’s proof {10] can
be merely reproduced in the B-valued setting and consequently we can write

{1.3) HL. (B)=HL(B) with eguivalent norms.

at
The definition of H} (B) needs a slight remark. Since the existence of the

conjugate function cannot be guaranteed {take B = {! to see where the problem
arises), we have {0 assume the existence of the conjugate function and alsc that
this belongs to L1(B), that is

Hiw(B)={f€L'(B): fe L'(B)}.
An easy way of looking at f is as the following limit:

J) =tm@, « (1) tae.

where {J, stands for the conjugate Poisson kernel.
The norm on this last space is given by

(1.4) 1 leon = 10+ 11F -

Our next objective is to show that H} (8) C H...(B) for a general Banach
space. To do this we shall use the following lemma whose proof follows easily from
the one of the real-valued case {see [4, 18]).
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LEMMA 1.1. Lei By be a complez Banach space, D the unit disc, and F a
holomorphic function on the disc with values in By belonging to HY(1}, By), that is

]. Py .
i = Oiugl Py ](; |1 F(re®)ip, dt < oo.
7

Then
2ar

sup HF(re“)HBO dt < ClF|| g

1.9 —
(1.5) 2T Jo o<t

THEOREM 1.1. HL (B) is continuously embedded in Hé}ax(Bﬂ)”'.

PROOF. Take fin H., (B} and consider By = B +1B with the norm {je+1b]| =
lafl + |ibll. Let us define the following function

(1.6) Fre') = P« f{t) +4P » f(t).

It is very easy to verify that F belongs to H'{(D, By) and therefore applying
Lemma 1.1, we get

1 2w 1 2 .
up 17, f S 5 [ sup (P (e mg < W eon,
T Jg O<r<l

27 g O<r<i
which finishes the proof.

Let us observe that this result, according to (1.3}, is & different approach $o
the fact, proved by Bourgain [4] using Brownian motion, that every function fin
LY(B) with f(n) = 0 for n < 0 can be decomposed into atorns.

Qut next goal is to characterize the class of spaces B where I}, (B) coincides
with H1_ (B), i.e. Burkholder-Gundy-Silverstein’s result remains valid. These
spaces will be those where the martingale differences are unconditional, called UMD
spaces, We shall introduce this property by using a very well-known result due
te Bourgain [3], MacConnell and Burkholder [6] which characterized the UMD
property in terms of the boundedness of the conjugate function for functions in
LP(B).

DEFINITION 1.1. A Banach space B is said to be a UMD space, or to have the
UMD property, if there exist a value of p, 1 < p < o0, and a constant ' such that

(1.7) 1fls < Collflly  for all f & LP(B).

Standard technigques show that instead of taking LF norm we can work with
Llog LT{B)}, and then we can state the following theorem.

THEOREM A [21]. Let 1 < p < oc. The following statements are equivaient.
(a) B is a UMD space.
{b) There are consiants ¢ and C' such that

Wl < Cliflisrog e +C"

The direct implication of the next theorem can be obtained from results in
(23, &, and 4]. Here we present a proof for the sake of completeness.
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THEOREM 1.2. The following statements are equivalent.

(a) H2,,(B) = HL  (B) with equivalent norms.

(b) B is an UMD space.

PROOF. Assume that every function in H1 . (B) belongs to H2,,{B), and take
a function f in Llog® L{B). Due to the simple fact that

Prft)= sup [[B# f{)]] € sup B+ {fh{2) < M{IfIH{8)
Q<r<l D<r<
where M [ stands for the Hardy-Littlewood maximal function, observe that since

£l € Llogt L(T) then M (|| f|}) € L'(T), which implies that f belongs to HL,..(B),
and therefore, by assumption, to HL,.(B). Moreover we have

I/l £ Cliffzog 2+ + C.
Conversely, according to {1.3), we shall prove that there is a constant ¢ such
that for all B-atoms o it verifies
(1.8) lall < c.
The first observation is that the conjugate function of an atom exists since we
are assumning B is UMD, and a € L*(B). Assume @ is supported in {~§,4) for some
§ > 0 {here we are identifying T with [~7,7}}.

28 98 1/2 _
| taopde < ( [ tatol? dt) (26)"2 < Cllafe/* < C
35 —28
To check the integral over {t: 26 < |t] < 7} we use the fact that
f Ot =) = Q)| dt < C forallr, 0<r<1
28<|t|<n
and & standard computation with atoms shows that

é
fscuea 1= [ 1] (@ hte) - @rtrat s a

-8

&
</ 5 ( jg o @l - @r@)adt) la(s)|| ds < Clalh < C.

From this last inequality we get

[ lat)lldt < C.
26 <t

Once we have proved {1.8) we can extend this 10 any function f in H) {B) and
easily show that

I < ClIfl for fin Hy(B),
which implies, using (1.3}, that H}_ (B} ¢ HL(B), and since the other inclusion
was proved in Theorem 1.1, then the proof is completed.

REMARE 1.1, There is another very interesting space to consider in the setting
of vector-valued Hardy spaces: HZ @B, that is the tensor product with the pro-
jective norm. Several results about it can be seen in [18]. Here we only want to
mention that in general Hl ®B C HL, (B). The following example gives equality
B = {*. To see this it is enough to realize that AL (I') can be interpreted as
IY(H') and then use the very well-known fact that {*®B = I!(B) for any Banach

space 8.
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2. Duality for H! (B). To characterize the dual space of Hl,, (B) we shall
introduce the concepts of B-valued distribution and conjugate distribution.

Let us denote C°(T) the space of 2m-periodic functions in C*(R) endowed
with the topology given by the seminorms {py,: m € IN) where

pm(6) = sup sup|¢®(t)].
n<k<mtcT

DEFINITION 2.1. The continuocus linear maps from GC"’(T) into B will be called
B-valued distributions and the space will be denoted by Z7(B). The main point
to consider in this space is given by the following fact: .

(2.1) If ¢ € C°(T) then ¢ & C°°(T).

This enables us to define the conjugate of a distribution T in Z'(B} as the
B-valued distribution given by

(2.2) T{p) = ~T(¢) forall g in C*(T).

Given an element @ in (H1,,(B))* we can define the following B*-valued distribu-
tion

(2.3) (Ta(9),b) = ®(¢- ) for all p € C%(T), b€ B,

where 1 - b denotes the B-valued function (¢ - b){¢) = ¥{t) - b

Under this identification we are able to look at the dual space of H  (B) as
certain class distributions in @'(B*). We shall denote by A®{B) the class of
distributions which can be extended to elements in % (L1 (T}, B), that is, verifying
that there exisis a constant ¢ such that

(2.4) T < Clely for all v in G°(T),

where the norm in it is given by the infimum of the constant verifying (2.4).
(Ohserve that

A®(BY) = Z(I1(T), B*) = (L'&B)" = (L'(B))".
Finally let us denote by A(B) = {T € @'(B): 7 € A(B)} where 1Tl = 0T,
THEOREM 2.1. (HA_(B))* = A®(B*) + A®(B*).

£0on

PROOF. Let & be an element m (H, (B))*. Since the application f — {f, )
maps HL (B} into L' (B)®L*{B) then the Hahn-Banach extension theorem allows
us to find ®;, ®; belonging to (L{A))" such that
(2.5) () = @1(f) + @2(/) forall [ in Hiu(B).

By the last remark we can consider 71,7, in %m(B*) as the corresponding
elements for @, . We shall prove that T =T —~ Ts.

(T{th),b) = ®(¢ - b) = ®1{yp - b} + Dol )
= (111}, 0) + (To(y), ) = (T3 — T2} (4], b).

Conversely suppose we fake T' = T3 + 7 with T, Ts belonging to A% (B*) whose
corresponding elements in (£1{B))" are ®;, ®.
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Define ®{f) = & {f} — $o{[) for each [ in H!,(B). This is obviously linear

and the continuity follows from the following easy inequality

12(N)] < @)+ [22(/)] < max ([ @4, 12D} /con-

Since it can be shown Te = T4 -+ 1% we have finished the proofl.

REMARE 1.2. Duality resulés for Hardy spaces of vector-valued functions have
been considered by several authors (see [4, 5, 25])." The following result can be
stated for special kinds of Banach spaces (see {5, 25]):

(HEn(B))" = HE,(B") if and only if B is a UMD space, {1 < p < o0}

con

Here we shall formulate a duality result for a general Banach épace. Let us define
the class of distributions in &/(B) such that there exists a positive function g in
LP(T) veritying

(2.6) N7 ()| < {g, [&ly  for all ¢ &€ C(T).

This space can be identified with the space of cone absolutely summing operators
from L¥ into B (see {26, p. 244]). Denoting this space by AP(B), we can identify
the dual of LP(B) with AP(B*) (see [26, p. 277]). Due to this identification a proof
such as for Theorem 2.1 would allow us to show the foliowing.

COROLLARY 2.1. For | < p < oo, (HE(B))*AY (B} + AP (B*).

REMARK 2.2. Theorem 2.1 can be also used to give a sufficient condition on
Btoget H (B) = H.,.&B. By using the density of H} @B in H}  (B) (a fact
which can be seen by showing that o, * f converges to f in HL {B), o, being the
Féjer kernel [21]) we have only to verify that (), &B)* coincides with (H2,, (8))*.
In Theorem 2.1 we have identified the dual of the second one, but the dual of a
tensor product is known to be identified with S7(H? , B*) (see [12, p. 230]), and
from these two facts is very easy to find a condition to get the equality between
both spaces.

Let us recall that a Banach space X is said to have the Hahn-Banach extension
property if for every ¥ and ¥, Banach spaces, {J: ¥y - Y5 isometric inclusion and
T in (Y, X) then T can be extended to T in S (Vy, X) with T - {1 = T and
T <117

Now considering the embedding from i}

Loninto LY @ LY given by ¢ — (9, %) we
can easily prove the next result.

COROLLARY 2.2, If B* has the Hahn-Banach extension property then HL,, (B)
=H! &B.

con

This result has also been pointed out in [18], and proves that the example in
Remark 1.1 is not a coincidence since {I*)* = [*° has this property.

3. Duality for H (B). In this section we shall give a representation of the
dual space of H1,(B). To do this the first thing to realize is the following inclusions:

(3.1} IP(Byc HL(BYC LY(B} (with continuity), 1< p<oo.
Since each space is dense in the next one, we can also write

(3.2) A®(B) = (LY(B))" C (HL(B))* € (LP(B))" = AP (B").
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Instead of looking at A°®(B*) and AP (B*} as spaces of distributions, or equivalently
of operators in . (L}, B*) and (17, B*), we shall regard them as spaces of B*-
valued measures. The identification is quite obvious:

Given T in .27(LP, B} we define the measure

{3.3) G(E) = T(xg) for all measurable sets .

The spaces AP{B) will correspond to certain classes of B-valued measures defined
as follows '

DEFINITION 3.1. Let 1 < p < oo, Let G be a B-valued mﬁmte}y additive
measure on {T,.%). G is sald to have bounded p-variation if g

Gy = sup (Z E:;E p”i) < 50

Eell

{where the supremum is taken over all finite partitions of T and where A/0 is
interpreted by 0 if A = 0 or by +o0 if A » 0}, & is said to have co-bounded
variation if

1G|oo = mf{C: [G(E)|| < Om{L) for all B} < +oo.

We shall denote by VP(B) the space of measures of bounded p-variation {1 <
p < 00). These spaces have been connected with spaces of operators in several ways
(see [13, 2]).

Before we define the spaces of vecior-valued measures we shall work with, let
us mtroduce some other notation. Given a measurable set £ and a measure (5,
we shall denote by G the B-valued measure restricted to (¥, %g, mg) where
Fg = {ANE: ANF} and mp(A) = m(AN E). According to the definition of
Z-variation we can wriie

., 2\ /2
(3.4) Gols ._ﬁsup( y> lou )

A&

where the sup is taken over all finite partitions g of IV,
DEFINITION 3.2, Let (7 be a finitely additive measure with values in B, Let
be an interval, and consider the following measure on (f,.%r, mr):

(3.5) G5 = Gy — (G{D) m{))m
G is said to belong to BAF(B) if
(3.6) . = sup{M{I)7?|G3l;: 1 nterval) < oo.

Observe that |G|, = 0 does not imply G = 0 (since G{F) = (L) for a constant
vector b satisfies |G]. = 0). Therefore we shall introduce the following norm in

B2 (B):
(3.7) [ Glleme = 1G + IGT).

An equivalent useful norm can be given by replacing (Gl b

{3.8) |Gl = sup {b]?}g m{IyM2Gy - bmgly: T interval} .
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PROPOSITION 3.1. Let G be a finitely additive measure, then |GY, < |G|, <
21G..

PROOF. The first inequality is completely obvious. To see the converse let us
take a vector b in B and an interval /. Then we can write

G =Gy~ bmy ~ (G} /m{d)— b)my.
Since V2{B) is a normed space we have
|GTlz < 1G7 —bmrly + {GU) /m{I) — BYmys.

Taking 2 look at (3.4) and considering the particular partition given onty hy |
we get
NG = bm{D)]| < |Gy~ binglem(1)72.

Therefore the resuit follows from this and the fact {myly = m{I}V/2.
PROPOSITION 3.2. V<(B) C BA#7(B) C VEH{B) (with continuity).

PROOF. Let G be a measure in V°(B). Then G} (A)|l £ 2iG|em{A). This
easily implies that |G|, < 2|Gle. Assume now that G belongs to FB#7(B), and
take I = T. Then we have G} = & — G(T)m and |G|z < |G*s + ||G(T)|} €
1G]lsmo-

Because of this last proposition and the good properties of measures in V*(B)
(see [13]) we can write

COROLLARY 3.1. If & belongs to BA7(B) then G 1s countable additive, m-
continuous and with bounded variation.

The following result connects the space of functions in BMO(B), whose definition
is like the classical one replacing the absolute value by the norm (see {17, 19 and
11] for the definitions and previous properties) with the space of measures.

PROPOSITION 3.3. Let f belong to L' (B) and consider G(E fh dm{t
G € BT (B) if and only if [ € BMO(B),

PROOF This is simply based on the foliowing result for measures in V?(B):
G(E) = [,g(tjdm{t) € V*(B) then | (J g dm{£))*/? (see [2, 13]).
Smte

G}(E)mL(f(t)u—f;)dm(i) for all E in B

where fr = m{I})7! [, f{t)dml(), then obviously @ belonging to B#7(B), to-
gether with John- Nlrenberg s lemma, is equivalent to § belonging to BMO(B).

The last proposition implies that BMO{B) C 47 { B) being this is an isometric
inclusion. The next one characterizes when both spaces coincide.

PROPOSITION 3.4. BMO(B) = BAF(B) i and only if B has the Radon-
Nikodym property.

PROOF. A formulation of RNP is that V(B) = L*®(B) (see [12, p. 63]), so
assuming BMO(B) = @47 (B) and taking G in V°°(B) we deduce that we can
represent G by a function f in L*(B). Now a standard argument (see {12, p. 62])
shows that in fact f belongs to L%(B). Conversely when we assume B has RNP
and we take G in ZB4#7(B), then Corollary 3.1 and Proposition 3.3 finish the proof.
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LEMMA 3.1, Let (7 be a measure in B#E (B). Then for ench positive inferger
n there 13 a simple function fn- such that

(3.9) I fallBmo < 4Gllamo-

(3.10) Denoting by Go(E) = [g fa(t)dm(t), then G, € V°{B) and for all
measurable sets E, Gn(F) converges to G{E) asn goes ta co.

PROOF. Denote by I, ¢ the dyadic interval [k27", (k + 1)27") and write 2y =
G{Iy x}/m{In ). Let us define the following simple function

27 —-1

(3.11) Jo =D ExXLaa-
k=0

We shall check

, 1/2
inf <m(1)“‘/ | fn(8) — B2 dt) 1 interval}
Be B I
by considering two kinds of intervals, Let us start by taking an interval I with
m{I) < 27" Here we have two cases to take into account: The interval 7 is either
contained in some I, or it intersects two consecutive intervals 7, & and In k41
which we denote by I' and I, By taking by = (f);, that is the average of f,, over
the interval 7, we shall have

(3.12) Iy [I Vult) = il dt = 0

| fal% = sup {

in the first case, and therefore

(1) / [ ult) — B2 d)/? =0,

inf
heB

In the second case we shall have

(ds = 2p m{ini) 4 m{l NI

w0

and then

(1) [ 1alt) - bal?
I
=m{I) " ey = by|PmI I} + Jzpr ~ b Pm{I N I7)).
A very easy computation shows that
er = byl = lzp = apolim(I 0 I ym(z) Y,
1 = bill = [z — zplim{I NI ym{L) 77

To compute |lzp — 27+ we shall use the triangle inequality and we compute
Hep — zpypell + lere — zpggell. Since I' and I are consecutive intervals and
7 is contaimed in J' U T, being 2m{I’} = 2m(I") = m(I" U 1"}, we can easily show

o —apop| £ 2GL and  flap ~ zpurll € 2Gs
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Putiing it all together we have
1/2

(3.13) (mu}“l [ v a) <dcl.

which shows that for an interval with m(f) < 27" we are done,

Let us consider now an interval I with m(J) > 27" denoting by I the union of
dyadic intervals such that I € [ = {lo 5k € F(0)} and 1 < m{T)/m{I) < 3. In
this case we shall choose by = G(I)/m(1).

[ () — el dt < 3m(T f 1 (t) = B2 dt
—3m(D) T o — bl )

ke F(I)
< 3m(1) "G — brmyls < 3IGIL.

Now joining this last inequality with {3.13) we can get easily (3.9). To obtain
{3.10) it suflices to notice that the Borel v-algebra &7 is generated by | J,, %, where
B, is the algebra given by the dyadic mtervals of length 27" and to abserve that
when we restrict to sets in 9, we have G, (E) = G(L). Finally we have that the
fact that G, belongs to V°°{B) follows from f, being a function in L°°{B].

Before we state the duality theorem, let us look at the space H.,{B) in a more
convenient way for our purposes.

DEFINITION 3.3. A function a in L#(B) is said to be a {8, 2)-atom if there
exists an interval [ such that

{1} suppa C ]

2) f;a = 0,
f}, H?dm {t} < ()L
We also C{}HSIdei a(t) = b for some b in B with {|b]} = 1 as a (B, 2})-atom. A proof
such as that given in [11] allows us to consider the space H1 (B) defined in terms
of these atoms. So we consider

H;t(B) = {f e LYB): [= Z)\kakjak are (B, Z)-atoms and Z [Ae] < oo}.

The norm on it is given by

(3.14) Wl = inf {3 Dl 7= 37 dwae |
THEOREM 3.1. {HL{B))" = B47(B").

PROOF. First let us take G belonging to 47 (B*). We shall define an operator
acting on B-valued simple functions and we shall prove that is bounded as an
operator acting {rom the space of simpie functions with norm given by HL, (B) into
R, and then we shall extend it tc an element in (FL(B))".

Define the following cperator

n kel
{3.15) Tg (Z ﬂkXEk) = > (G(E), ax)
k=1 k=1
We shall show that
(3.16) [Te{s)] < Glsmolisllae  for all simple functions s.
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First we use Lernma 3.1 to get a sequence of measures G,, in Ve B*), Denote
by T,, the operator given by {3.15) replacing 7 by (7,,. The advantage of this one
with respect to the first cne is that 7}, defines an element in {L1(B))* since G,

belongs to V°°(B*). Our aim now is to show

(3.17) TulE) < CliGullemol fllae  for all £ in Ho(B).
Let us start with a simple atom, that is :
N N N
s=) wxm, Bl S apm(By) =0, 2 HaxlPm(Er) < 2m(1)".
k=1 k=1 k=1
Denoting b; = G, (7)/m(7) we can write
N N
Tn(s) = 3 ACniEx) ) = S (Gl Bg) ~ bym(Ee), ax).
k=1 k=1

Therefore
N

ITa()] < X NG (Ee) — bym{ Ey)|

N 1/2 N /2
[Gn{Er) — bym{Ey) i 2
< ( 1 m(E;') k ) : (’E flal m(E;c))

sem(E )T m( B Y |

< Em(f)ﬁl/gj{Gn)f —brmyle < 2|GL)..

Given now a general (B,2}-atom @ in L?(B) supported in 7 we can find a se-
quence of simple functions dj converging to a in L3(J B), Taking s, = dy ~
{J; de(8) dm{))x; we have a sequence of simple atoms which also converges to o
in L(7, B) and therfore in L'(i,B). Using the continuity of 7}, as an element in
(L'(B))* we can say

Tal{a)] < 2G|, for nonconstant atoms a.
For a(t) = b with lbl] = 1 we have [T0(a)] = G{T)||, and therefore
(To(e)] < 2Gnllamo  for all atoms a.

This last inequality, together with the fact that 7, € {L'{B))*, and the conver-
gence in each representation f = 3 Apay is also in LY(B), imply (3.17). To finish
the proof we invoke Lemma 3.1 which says that T, (s) converges to T(s) for all
simple functions s and IGrilsmo < 4]|G]smo.

To prove the converse inclusion, let us take T in (HL(B))*, and define the
following B*-valued measure
(3.18) (G(E).b) = T(bxg) forallbe Band £ € &,

Given n intervals 7 and a partition {I; = {Ew By EL} of 1, we can write,
according to the duality (2(B))* = 2(B*),

D NGBS = (D™ (B3 m(B) !
= |G(E)m(E)~ /2 - G(Dm(I)  m(F:) 22,

=[S (G E ) - G(I)m([)‘lm(Ei}i/?,bi)iz
for some Z H6ill% = 1.
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Therefore using the definition of & we have

| tim(B) 2 x5) = T0am (B 21y
T (Z bm;(Ez-)_l/QxE - bm(]}“lxg)’ . Where b = Zm(Ei)UQbi.
The reader can easily verify that i

. - -
a = sm(2) 2 (5 m(E) ™ ixg - bin(T) 1;(;:)

18 a {8, 2)-atom and therefore we get |

1G7l: < T(@m(I)a)] < 2m(1) 27,
5 < |7, then we have ||Gllpmo < 27| and the proof is

Since also [|G(T)|
finished.

The following result was proved in [1] with a direct proof but now we can get it
as & corollary from Theorem 3.1 and Proposition 3.4.

COROLLARY 3.2. (HL(B)* = BMO(B*) if and only if B* has the RNP.

COROLLARY 3.3. Let L(B) = {T € Z'(B): T € L*(B)}.

(a) If B* has RNP then BMO(B*) ¢ L®(B*) + [*(B*).

(b} B is « UMD space if and only if BMO(B*} = L*°(B*) +E°°(B*}.

PROOF. (a) follows from Corollary 3.2 and Theorems 2.1 and 3.1. To see (b) it
is a standard fact that if L°°(B*) ¢ BMO(B*) then also L*(B*) ¢ L*(B*) which
implies that B* and therefore B are UMD spaces. On the other hand, Theorem 1.9
and the duality results give us the converse.

REMARK 3.1. 8. Y. Chang and R. Fefferman (9] considered the space H!{T?)
as the space of functions f in L1(T?) such that

Sup ff Folty — 51)Ps(tg ~ 82)f(s1,82)ds  dsg € LI(TQJ.

O<r<1,0<8<1

max (Hhax) 1o this space by noticing that a function in HY (HE )
can be identified with a function f in £(T?) satisfying

fpr(ti - Si)f(31,82)581

We can relate L

€ LY(D).

1
Hmax

P*f(ti} = Sup
O<r<t

The proof of this identification uses g very nice observation due to W. Hensgen who
showed that the unit ball of Y, s closed in 4! (T) {personal communication).
With these two identifications it is very easy to verify that

HI&I&X(T“Z) C Hlj:tnax (Hélax)‘
Now from duality, and since BMO fails RNP, we can get that
BMO(BMO) & BMO(T?)

where BMO{T?) is the space considered in (8] and which represents the dual of
HL o (T2,
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