
REMARKS ON VECTOR–VALUED BMOA

AND VECTOR–VALUED MULTIPLIERS.

Oscar Blasco

Abstract. In this paper we consider the vector-valued interpretation of the space
BMOA defined in terms of Carleson measures and analyze the relationship with
the one defined in terms of oscillation. We study the space of multipliers between
Hp and BMOA in the vector-valued setting. This leads us to the consideration of
some geometric properties depending upon the validity of certain inequalities due to
Littlewood and Paley on the g-function for vector-valued functions.

Introduction.

In [B1, B2] the author considered the vector-valued situation of the result by M.
Mateljevich and M. Pavlovic ([MP]) which establishes that the space of multipiers
between H1 and BMOA can be identified with the space of Bloch functions, i.e.
(H1, BMOA) = Bloch. For such a purpose it was introduced the notion of pairs
(X,Y ) having the (H1, BMO)-property for those where the space of multipliers
(H1(X), BMOA(Y )), with its natural definition (see Section 3), coincides with
Bloch(L(X,Y )) .

It was observed there that the validity of (H1(X), BMOA(Y )) = Bloch(L(X,Y ))
depends on the fact that X and Y satisfy the vector-valued formulation of some
inequalites due to Hardy and Littlewood (see [HL]) in the scalar-valued case.

In this paper we consider the vector-valued interpretation of the space BMOA
defined in terms of Carleson measures (see Definition 1.2 below) instead of the one
considered in [B1] and analyze the relationship with the previous one, studying the
result on vector-valued multipliers for this formulation of BMOA.

This leads us to the consideration of some other geometric properties coming
from other inequalities due to Littlewood and Paley on the g-function which have
been already considered in [B3] and more recently in [Bl1, Bl2, X].

Throughout the paper all spaces are assumed to be complex Banach spaces,
D stands for the unit disc and T for its boundary. Given 1 ≤ p < ∞, we shall
denote by Lp(X) the space of X-valued Bochner p-integrable functions on the

circle T and write ||f ||p,X =
(∫ 2π

0
||f(eit)||p dt2π

) 1
p

and Mp,X(F, r) = ||Fr||p,X =
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(∫ 2π

0
||F (reit)||p dt2π

) 1
p

for an X-valued analytic function F on D. We shall write

Hp(X) (respec. Hp0 (X)) for the vector-valued Hardy spaces, i.e. space of functions
in Lp(X) whose negative (respec. non positive) Fourier coefficients vanish. Of
course Hardy spaces Hp(X) (respec. Hp0 (X)) can be regarded as spaces of analytic
functions on the disc. Actually they coincide with the closure of the X-valued
polynomials, denoted by P(X) (respec. those which vanish at z = 0, denoted by
P0(X)) under the norm given by sup0<r<1Mp,X(f, r).

The paper is divided into three sections. In the first one we consider the vector
valued version of BMOA in terms of Carleson measures, giving the connection with
the standard notion considered in [B1]. It is shown that both notions only coincide
for Hilbert spaces and also a proof of the extension of Kahane’s inequalities to
vector-valued BMO is provided. Section 2 is devoted to the consideration of vector-
valued multipliers between H1 and BMOA and some properties that will play an
important role in this setting. Finally in section 3 we mention some elementary
facts on vector valued Bloch functions and apply the previous theorems to get
some applications.

As usual p′ is the conjugate exponent of p when 1 ≤ p ≤ ∞, i.e. 1
p + 1

p′ = 1 and
C stands for a constant that may vary from line to line.

1.- Vector-valued BMOA

Definition 1.1. Let X be a complex Banach space. BMOA(X) stands for the

space of functions f ∈ L1(X) with f̂(n) = 0 for n < 0 such that

||f ||∗,X = sup
I

1
|I|

∫
I

||f(eit) − fI ||
dt

2π
<∞,

where the supremum is taken over all intervals I ∈ [0, 2π), |I| stands for the nor-
malized Lebesgue measure of I and fI = 1

|I|
∫
I
f(eit) dt2π .

The norm in the space is given by

||f ||BMO(X) = ||
∫ π

−π
f(eit)

dt

2π
|| + ||f ||∗,X .

The same technique as in the scalar-valued case allows us to replace the average
over intervals by convolution with the Poisson kernel. According to this and the
previous formulation one has that

||f ||∗,X ≈ sup
|z|<1

∫ 2π

0

||f(eit) − f(z)||Pz(e−it)
dt

2π

where Pz is the Poisson Kernel Pz(w) = 1−|z|2
|1−zw|2 and f(z) =

∫ 2π

0
f(eit)Pz(e−it) dt2π .

Recall now that in the vector valued setting, although Khintchine’s inequalites do
not generally remain valid, at least one still has the so called Kahane’s inequalities,
i.e. for any 0 < p <∞ there exist constants C1, C2 > 0 such that for any n ∈ N

C1

(∫ 2π

0

||
n∑
k=0

xke
i2kt||p dt

2π

) 1
p

≤
∫ 2π

0

||
n∑
k=0

xke
i2kt|| dt

2π
≤ C2

(∫ 2π

0

||
n∑
k=0

xke
i2kt||p dt

2π

) 1
p

.
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There exists an extension of Kahane-Khintchine inequalities to vector valued
BMO which is part of the folklore. Let us present a proof based upon the following
lemma.

Lemma A. (see [Pe, Pi1]) Let X be a Banach space. Let λk ∈ R
+ such that

λk+1
λk

≥ C > 1 and inf
k∈Z

λk+1 − λk = d > 0. Then there exist constants K1,K2 > 0,

depending only on C and d, such that for any x0, x1, x2, ..., xn ∈ X

K1

∫ 2π

0

||
n∑
k=0

xke
i2kt|| dt

2π
≤

∫ 2π

0

||
n∑
k=0

xke
iλkt|| dt

2π
≤ K2

∫ 2π

0

||
n∑
k=0

xke
i2kt|| dt

2π

Theorem 1.1. Let X be a Banach space. Then there exist constants C1, C2 > 0
such that for any x0, x1, x2, ..., xn ∈ X

C1

∫ 2π

0

||
n∑
k=0

xke
i2kt|| dt

2π
≤ ||

n∑
k=0

xke
i2kt||∗,X ≤ C2

∫ 2π

0

||
n∑
k=0

xke
i2kt|| dt

2π
.

Proof. Let us write f(eit) =
∑n
k=0 xke

i2kt . Given an interval, say J = {eit :
|t− tJ | < 2π|J |}, then consider n(J) ∈ N such that |J |2n(J) ≤ 1 < |J |2n(J)+1.

Now, assuming n ≥ n(J), we split f = g + h where g(eit) =
∑n(J)
k=0 xke

i2kt.
Note that

(g − gJ)(eit) =
1
2

n(J)∑
k=0

xk
1
|J |

∫ tJ+2π|J|

tJ−2π|J|
(ei2

kt − ei2ks)
ds

2π
.

Hence

‖(g − gJ)(eit)‖ ≤ 1
2

n(J)∑
k=0

‖xk‖
1
|J |

∫ tJ+2π|J|

tJ−2π|J|
2k|t− s| ds

2π
.

Now if eit ∈ J then

‖(g − gJ)(eit)‖ ≤ C
n(J)∑
k=0

‖xk‖2k|J |

≤ C‖f‖1(
n(J)∑
k=0

2k)|J |

≤ C‖f‖12n(J)|J |
≤ C‖f‖1,X .

For the function h we have that

1
|J |

∫
J

||h(eit) − hJ ||
dt

2π
≤ 2

|J |

∫
J

||h(eit)|| dt
2π

= 2
∫ 2π

0

||
n∑

k=n(J)+1

xke
i2k(|J|t)|| dt

2π
.
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Now applying Lemma A for λk = 2k|J | ≥ 1 we get

1
|J |

∫
J

||h(eit) − hJ ||
dt

2π
≤ 2K2

∫ 2π

0

||
n∑

k=n(J)+1

xke
i2kt|| dt

2π
.

Now, making use of the contraction principle, we can say that

∫ 2π

0

||
n∑

k=n(J)+1

xke
i2kt|| dt

2π
≤ ‖f‖1,X .

Adding both inequalities and taking now the supremum over J we get the direct
inequality.

The converse inequality is trivial and the proof is finished. �

Let us now recall the formulation of functions in BMOA in terms of Carleson
measures (see [G, Z]) that we shall use later on.

Definition 1.2. Given an analytic function f(z) =
∑∞
k=0 xkz

k we define

||f ||C,X = sup
|z|<1

( ∫
D

(1 − |w|2)||f ′(w)||2Pz(w̄)dA(w)
) 1

2

where Pz is the Poisson Kernel Pz(w) = 1−|z|2
|1−zw|2 .

We shall denote BMOAC(X) the space of functions such that ||f ||C,X <∞.

BMOAC(X) becomes a Banach space endowed with the norm

||f ||BMOAC(X) = ||f(0)|| + ||f ||C,X

Let us now recall the notions of type and cotype of a Banach space. Although
they are usually defined in terms of the Rademacher functions we shall replace them
by lacunary sequences ei2

nt, which gives an equivalent definition ([MPi, Pi]).
Given 1 ≤ p ≤ 2 ≤ q ≤ ∞. A Banach space has cotype q (respectively type p) if

there exists a constant C > 0 such that for allN ∈ N and for all x0, x1, x2, ...xN ∈ X
one has (

N∑
k=0

||xk||q
) 1

q

≤ ||
N∑
k=0

xke
2kit||1,X ,

(respectively

||
N∑
k=0

xke
2kit||1,X ≤ C

(
N∑
k=0

||xk||p
) 1

p

.)

Recall also the well-known result by S. Kwapien ([Kw]), which establishes that
X has type 2 and cotype 2 if and only if X is isomorphic to a Hilbert space.

First of all let us establish the connection between BMOA(X) and BMOAC(X).
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Theorem 1.2. Let X be a complex Banach space.
(i) If there exists a constant C > 0 such that

||f ||C,X ≤ C||f ||∗,X
for any f ∈ P0(X) then X has cotype 2.

(ii) If there exists a constant C > 0 such that

||f ||∗,X ≤ C||f ||C,X
for any f ∈ P0(X) then X has type 2.

Proof.
(i) Let us take f(z) =

∑n
k=0 xkz

2k

. Assume first that ||f ||C,X ≤ C||f ||∗,X .
Note, that choosing z = 0, we have∫ 1

0

(1 − s)M2
2,X(f ′, s)ds ≤ ||f ||C,X ≤ C||f ||1,X .

Since 2n||xn||r2
n−1 ≤M2,X(f ′, r) for n ∈ N then we can write(∫ 1

0

(1 − r)M2
2,X(f ′, r)dr

) 1
2

≥
( ∞∑
k=0

∫ 1−2−(k+1)

1−2−k

(1 − r)22k||xk||2r2(2
k−1)dr

) 1
2

≥ C
(
n∑
k=0

||x2k ||2(1 − 2−k)2(2
k−1)

) 1
2

.

Using now the fact that (1 − 2−k)2
k ≥ Ce−1 one gets the cotype 2 condition(

n∑
k=0

||x2k ||2
) 1

2

≤ C||f ||1,X .

(ii) Assume now that ||f ||∗,X ≤ C||f ||C,X . Therefore, if f(z) =
∑n
k=0 xkz

2k

then

||f ||21,X ≤ C||f ||2∗,X ≤ C sup
z∈D

∫
D

(1 − |w|2)(
n∑
k=0

2k||xk|||w|2
k−1)2Pz(w̄)dA(w).

From the Cauchy-Schwarz inequality

(
n∑
k=0

2k||xk|||w|2
k−1)2 ≤ (

n∑
k=0

2k||xk||2|w|2
k−1)(

n∑
k=0

2k|w|2k−1)

≤ (
n∑
k=0

2k||xk||2|w|2
k−1)(

C

1 − |w|2 ).

This gives that

||f ||21,X ≤ C
∫
D

n∑
k=0

2k||xk||2|w|2
k−1Pz(w̄)dA(w)

= C
∫ 1

0

n∑
k=0

2k||xk||2r2
k−1dr = C

n∑
k=0

||x2k ||2. �

As a consequence we get the following characterization of Hilbert spaces which
is part of the folklore.
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Corollary 1.1. Let X be a complex Banach space. BMOA(X) = BMOAC(X)
(with equivalent norms) if and only if X is isomorphic to a Hilbert space.

Proof. Recall that the classical proof ([G, Theorem 3.4]) can be reproduced in the
case of Hilbert spaces because it merely relies upon Plancherel’s theorem.

The converse follows by combining Theorem 1.1 with Kwapien’s theorem. �
Let us give some easy sufficient conditions to get functions in BMOAC(X). We

need the following

Lemma B.
Let 0 < p ≤ q ≤ ∞ and g an X-valued analytic function. Then

(1.1) Mq,X(g, r2) ≤ C(1 − r) 1
q − 1

pMp,X(g, r) (see [D, page 84])

Let γ > 1 then

(1.2)
∫ 2π

0

dθ

|1 − zeiθ|γ = O((1 − |z|)1−γ) (see [D, page 65])

Let γ < β then

(1.3)
∫ 1

0

(1 − r)γ−1

(1 − rs)β dr = O
(
(1 − s)γ−β

)
(see [SW, Lemma 6])

Next theorem, with BMOAC(X) replaced by BMOA(X), corresponds to The-
orem 2.1 in [B1].

Theorem 1.3. Let f be a X-valued analytic function. If there exists 0 < p < ∞
such that

Mp,X(f ′, r) = O
(
(1 − r)−1/p′

)
then f ∈ BMOAC(X).

Proof. Notice that (1.1) implies that if there exists 0 < p0 <∞ such thatMp0,X(f ′, r) =
O

(
(1 − r)−1/p0′

)
then the same property holds for any p ≥ p0. Therefore it suffices

to prove the result assuming 2 < p <∞.
Set then q = p

2 and take z ∈ D. Then using Hölder’s inequality and (1.2) we
have ∫ 1

0

∫ 2π

0

(1 − s2)(1 − |z|2)||f ′(seit)||2
|1 − zse−it|2

dt

2π
ds

≤
∫ 1

0

(1 − s2)(1 − |z|2)M2
p,X(f ′, s)

(∫ 2π

0

1
|1 − zse−it|2q′

dt

2π

) 1
q′

ds

≤ C
∫ 1

0

(1 − s)1− 2
p′ (1 − |z|2)

(1 − |z|s)2− 1
q′

ds.

Applying now (1.3) for γ = 2
p and β = 1 + 2

p one gets

∫ 1

0

(1 − s)1− 2
p′

(1 − |z|s)2− 1
q′
ds ≤ C

1 − |z| .
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This gives then that f belongs BMOAC(X). �

EXAMPLE 1.1. Let (αn) ≥ 0 such that
∑∞
n=1 α

p
n < ∞ for some 1 < p < ∞

and let sn be an increasing sequence in (0, 1) with limn→∞ sn = 1. If fn(z) =
log( 1

(1−snz)αn ) and f(z) =
(
fn(z)

)
n∈N

then f ∈ BMOA(lp) ∩BMOAC(lp).

It suffices to see that Mp,lp(f ′, r) = O((1 − r)−
1
p′ ). Now using (1.2) we get

Mpp,lp(f ′, r) =
∞∑
n=1

Mpp (f
′
n, r)

=
∞∑
n=1

αpn

∫ 2π

0

sn
|1 − snre−it)|p

dt

2π

≤ C
∞∑
n=1

αpn(1 − snr)1−p ≤ C(1 − r)1−p.

A simple and useful sufficient condition for a function to belong to BMOAC(X)
is given in the following proposition.

Proposition 1.1. Let f be a X-valued analytic function. If∫ 1

0

(1 − r) sup
|z|=r

||f ′(z)||2dr <∞

then f ∈ BMOAC(X).

Proof. For any z ∈ D one has∫
D

(1 − |z|2)(1 − |w|2)|||f ′(w)||2X
|1 − w̄z|2 dA(w)

≤ 2
∫ 1

0

(1 − r) sup
|w|=r

||f ′(w)||2X
( ∫ 2π

0

1 − r2|z|2
|1 − re−itz|2

dt

2π
)
dr

= 2
∫ 1

0

(1 − r) sup
|w|=r

||f ′(w)||2Xdr.

Therefore

||f ||C,X ≤ C
(∫ 1

0

(1 − r) sup
|w|=r

||f ′(w)||2Xdr
) 1

2

<∞. �

It was proved in [B1] Example 3.1 that if X = l1 and f(z) =
(

1
nlog(n+1)z

n
)∞
n=0

,
then ∫ 1

0

(1 − r) sup
|z|=r

||f ′(z)||2l1dr <∞

but f /∈ H1(l1).
This example shows that the condition in Proposition 1.1 is not enough to get

functions in BMOA(X) for general Banach spaces and gives sense to the following
definition.
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Definition 1.3. (see [B1]) A complex Banach space X is said to have the (HL)∗-
property if there exists a constant C > 0 such that

||f ||∗,X ≤ C
(∫ 1

0

(1 − r) sup
|z|=r

||f ′(z)||2dr
) 1

2

.

for any f ∈ P(X).

The reader is referred to [B1] to find spaces having and failing such a property.

2.- Vector valued Multipliers and some geometric properties

Let us mention first some notions introduced in other papers.

Definition 2.1. (see [B1]) LetX,Y be complex Banach spaces. If F (z) =
∑∞
n=0 Tnz

n

is an L(X,Y )-valued analytic function and f(z) =
∑∞
n=0 xnz

n is an X-valued an-
alytic function then we can define the Y -valued analytic function

F ∗ f(z) =
∞∑
n=0

Tn(xn)zn =
∫ 2π

0

F (zeit)
(
f(e−it)

) dt
2π
.

Definition 2.2. (see [AB]) Let 1 ≤ p <∞. A complex Banach space X is said to
have property (H)p, to be denoted X ∈ (H)p, if there exists a constant C > 0 such
that

(
∫ 1

0

(1 − r)max{2,p}−1M
max{2,p}
p,X (f ′, r)dr)

1
max{2,p} ≤ C||f ||p,X

for any polynomial f ∈ P(X).

Remark 2.1. The property (H)1 was already defined and studied in [B1], denoted
there by (HL) and then again in [AB].

Remark 2.2. The property (H)∞ would mean

M∞,X(f ′, r) ≤ CM∞,X(f, r)
1 − r ,

which holds true for any Banach space.

Remark 2.3. Observe that∫ 1

0

(1−r)max{p,2}−1M
max{p,2}
p,X (f ′, r)dr =

∞∑
k=0

∫ rk+1

rk

(1−r)max{p,2}−1M
max{p,2}
p,X (f ′, r)dr,

for rk = 1−2−k and then, since Mp,X(f, r) is increasing, the properties (HL)∗ and
(H)p can be replaced by

(2.1) ||f ||∗,X ≤ C
( ∞∑
k=0

2−2k sup
|z|=rk

||f ′(z)||2
) 1

2
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and

(2.2)

( ∞∑
k=0

2−max{p,2}kMmax{p,2}p,X (f ′, rk)

) 1
max{p,2}

≤ C||f ||p,X .

Hence X has the (H)p-property if and only if the operator f →
(
2−kf ′(rkeit)

)
k

is bounded from Hp0 (X) into lmax{p,2}
(
Lp(X)

)
.

EXAMPLE 2.1. Let X = c0 fails to have (H)p-property for any 1 ≤ p <∞.

Indeed, take fN (z) =
∑N
n=1 enz

n. On the one hand supN∈N||fN ||p,c0 = 1 and
on the other hand Mp,c0(f

′
N , rk) = sup

1≤n≤N
nrn−1
k . Hence Mp,c0(f

′
N , rk) ≥ C2k for

N ≥ 2k. Therefore

log2(N)∑
k=0

2−max{p,2}kMmax{p,2}p,co (f ′N , rk) ≥ Clog(N).

This completes the proof, using (2.2). �

Regarding properties (H)p the reader is referred to [AB, B4] for different results
and examples.

Let us introduce other property which appears from the consideration of Hardy
spaces in terms of the g-function. The reader is referred to [B3] for some related
properties and to [X] for similar formulations on the Lusin area function for vector-
valued Lebesgue spaces.

Definition 2.3. A complex Banach space X is said to have property (g), in short
X ∈ (g), if there exists a constant C > 0 such that

∫ 2π

0

(
∫ 1

0

(1 − r)||f ′(reiθ)||2dr) 1
2 dθ ≤ C||f ||1,X

for any f ∈ P(X).

Theorem 2.1. Let X,Y be Banach spaces and X ∈ (g). If f ∈ H1(X) and
F : D → L(X,Y ) is an analytic function satisfying that

∫ 1

0

∫ 1

0

(1 − r)(1 − s)M2
∞,L(X,Y )(g

′′, rs)drds <∞

then ∫ 1

0

(1 − r) sup
|z|=r

||(F ∗ f)′(z)||2dr <∞.

In particular F ∗ f ∈ BMOAC(Y ).

Proof. Let us write F (z) =
∑∞
n=0 Tnz

n and f(z) =
∑∞
n=0 xnz

n.
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We have that

(F ∗ f)′(z) =
∞∑
n=1

nTn(xn)zn−1

= 2
∫ 1

0

(1 − s2)
∞∑
n=1

n2(n− 1)Tn(xn)zn−1s2n−3ds

= 2
∫ 1

0

∫ 2π

0

(1 − s2)(
∞∑
n=1

n(n− 1)Tnzn−2sn−2ei(n−2)t)
( ∞∑
n=1

nxns
n−1e−i(n−1)t

) dt
2π
zeitds

= 2
∫ 1

0

∫ 2π

0

(1 − s2)F ′′(zseit)
(
f ′(se−it))zeit

dt

2π
ds.

Therefore, using that X ∈ (g), we have

||(F ∗ f)′(z)|| ≤ 2|z|
∫ 2π

0

(
∫ 1

0

(1 − s2)||f ′(seiθ)||2ds) 1
2 (

∫ 1

0

(1 − s2)||F ′′(szeiθ)||2ds) 1
2 dθ

≤ 2|z|(
∫ 1

0

(1 − s2)M2
∞(F ′′, s|z|)ds) 1

2

∫ 2π

0

(
∫ 1

0

(1 − s2)||f ′(seiθ)||2ds) 1
2 dθ

≤ C|z|(
∫ 1

0

(1 − s2)M2
∞(F ′′, s|z|)ds) 1

2 ‖f‖1,X .

Hence

sup
|z|=r

||(F ∗ f)′(z)||2 ≤ C(
∫ 1

0

(1 − s)M2
∞(F ′′, s|z|)ds)‖f‖2

1,X .

Now∫ 1

0

(1−r) sup
|z|=r

||(F∗f)′(z)||2dr ≤ C
∫ 1

0

∫ 1

0

(1−s)(1−r)M2
∞,X(F ′′, sr)dsdr‖f‖2

1,X . �

Let us now give a result which improves the previous theorem as well as Theorem
3.2 in [B1].

Theorem 2.2. Let 1 ≤ p < ∞ and X,Y be Banach spaces with X ∈ (H)p. If
f ∈ Hp(X) and F : D → L(X,Y ) is an analytic function such that

Mp′,L(X,Y )(F ′, r) = O(
1

1 − r ) (r → 1)

then ∫ 1

0

(1 − r)max{p,2}−1 sup
|z|=r

||(F ∗ f)′(z)||max{p,2}dr <∞.

In particular F ∗ f ∈ BMOAC(Y ) provided 1 ≤ p ≤ 2.

Proof. Let us write F (z) =
∑∞
n=0 Tnz

n and f(z) =
∑∞
n=0 xnz

n.
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Now let us observe that

z(F ∗ f)′(z2) =
∞∑
n=1

nTn(xn)z2n−1s2n−1ds

= 2
∫ 1

0

∞∑
n=1

n2Tn(xn)z2n−1

= 2
∫ 1

0

∫ 2π

0

(
∞∑
n=1

nTnz
n−1sn−1ei(n−1)t)

( ∞∑
n=1

nxnz
n−1sn−1e−i(n−1)t

) dt
2π
sds

= 2
∫ 1

0

∫ 2π

0

F ′(zseit)
(
f ′(zse−it))seit

dt

2π
ds.

Therefore if q = max{p, 2} then we have

||z(F ∗ f)′(z2)|| ≤ 2
∫ 1

0

Mp,X(f ′, s|z|)Mp′,L(X,Y )(F ′, s|z|)ds

≤ C
(∫ 1

0

ds

(1 − s|z|)q′
) 1

q′
(∫ |z|

0

Mqp,X(f ′, s)ds

) 1
q

≤ C

(∫ |z|
0
Mqp,X(f ′, s)ds

) 1
q

(1 − |z|) 1
q

.

Hence

sup
|z|=r

||z(F ∗ f)′(z2)|| ≤ C

(1 − r) 1
q

(∫ r

0

Mqp,X(f ′, s)ds
) 1

q

.

Now, using the (H)p-property on X, we can estimate

∫ 1

0

(1 − r2)q−1 sup
|z|=r2

||(F ∗ f)′(z)||qrdr ≤ Cq
∫ 1

0

(1 − r)q−2
( ∫ r

0

Mq1,X(f ′, s)ds
)
dr

= C
∫ 1

0

(1 − s)q−1Mqp,X(f ′, s)ds ≤ C||f ||qp,X . �

Since Bloch(L(X,Y )) corresponds to M∞,L(X,Y )(g′, r) = O( 1
1−r ) then we re-

cover the following

Corollary 2.1. ([B1]) Let X,Y be a Banach spaces such that X ∈ (H)1 and
Y ∈ (HL)∗.

If f ∈ H1(X) and F ∈ Bloch(L(X,Y )) then F ∗ f ∈ BMOA(Y ).

3.- Vector valued Bloch functions and applications.

Let us now recall some results on vector valued Bloch functions.
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Definition 3.1. Given a complex Banach space E we shall use the notation
Bloch(E) for the space of E- valued analytic functions onD, say f(z) =

∑∞
n=0 xnz

n,
such that

sup
|z|<1

(1 − |z|)||f ′(z)|| <∞.

We endow the space with the following norm

||f ||Bloch(E) = max{||f(0)||, sup
|z|<1

(1 − |z|)||f ′(z)||}.

Remark 3.1. It follows clearly from the definition that, for any Banach space E and
F (z) =

∑∞
n=0 xnz

n, one has that F ∈ Bloch (E) if and only if

Fx∗(z) =
∞∑
n=0

< x∗, xn > z
n ∈ Bloch

for any x∗ ∈ E∗. Moreover

||F ||Bloch(E) = sup
||x∗||≤1

||Fx∗ ||Bloch.

Remark 3.2. Let E = L(X,Y ), the space of bounded linear operators from X
into Y and (Tn) ⊂ L(X,Y ). It is elementary to see that F (z) =

∑∞
n=0 Tnz

n ∈
Bloch (L(X,Y )) if and only if the functions Fx,y∗(z) =

∑∞
n=0 < Tn(x), y

∗ > zn ∈
Bloch for any x ∈ X, y∗ ∈ Y ∗ . Moreover

||F ||Bloch(L(X,Y )) = sup
||x||≤1,||y∗||≤1

||Fx,y∗ ||Bloch.

Remark 3.3. In the case E = l∞ one can identify Bloch(l∞) = l∞(Bloch). More-
over if f = (fn)

sup
n∈N

||fn||Bloch = ||f ||Bloch(l∞).

EXAMPLE 3.1. Let 1 ≤ p ≤ ∞ and

fp(z) =
∞∑
n=1

n
−1
p enz

n, f∞(z) =
∞∑
n=1

an
n
zn

where en stands for the canonical basis in lp and an =
∑n
k=1 ek. Then fp ∈

Bloch(lp).

EXAMPLE 3.2. Let 1 ≤ p ≤ ∞ and

gp(z) =
1

(1 − z) 1
p

, g∞(z) = log
1

1 − z .

Then Fp(z) = (gp)z ∈ Bloch(Hp).
There are also other procedures to get X-valued Bloch functions that we state

in the following propositions, already pointed out in [B1].
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Proposition 3.1. (see [B1], Prop. 1.2). Let X be a Banach space and T ∈
L(L1(D), X) where L1(D) stands for the Lebesgue space on the disc with the area
measure. Then f(z) = T (Kz) is a X-valued Bloch function, where Kz denotes the
Bergman Kernel Kz(w) = 1

(1−zw)2 .

Proposition 3.2. (see [B1] Prop. 1.1) Let E be a Banach space and xn ∈ E .

(i) If sup
||x∗||≤1

sup
n≥0

2n+1∑
k=2n

| < x∗, xk > | <∞ then

∞∑
n=0

xnz
n ∈ Bloch(E).

(ii) ||
∑∞
n=0 xnz

2n ||Bloch(E) ≈ supn≥0 ||xn||.

It is well known (see [D, page 103]) that the space of multipliers (H1, H2) can
be identified with the space of sequences (λn) such that

sup
n∈N

2n+1∑
k=2n

|λk|2 <∞.

Therefore one has the following:
If f(z) =

∑∞
n=0 xnz

n ∈ Bloch(X) then < f(z), x∗ >∈ (H1, BMOA). In partic-
ular, since BMOA ⊂ H2, we have that < f(z), x∗ >∈ (H1, H2) and then

sup
||x∗||=1

sup
n∈N

2n+1∑
k=2n

| < x∗, xk > |2 <∞.

We shall see that we can get better information assuming some conditions on X.
Let us recall the notion of Fourier-type introduced by J. Peetre ([Pee]). Given

1 ≤ p ≤ 2, a Banach space X is said to have Fourier type p if there exists a constant
C > 0 such that ( ∞∑

n=−∞
||f̂(n)||p′

) 1
p′

≤ C||f ||Lp(X).

Typical examples of spaces of Fourier type p are the Lebesgue spaces Lr(µ) for
p ≤ r ≤ p′ or those obtained by interpolation [X,H]θ between any Banach space
X and a Hilbert space H for 1/p = 1 − θ/2.

Proposition 3.3. Let X be a Banach space with (HL)∗-property and Fourier type
p.

If f(z) =
∑
n∈N

xnz
n ∈ Bloch(X) then ‖xn‖ ∈ (H1, lp

′
).

In particular

(3.1) sup
n∈N

2n+1∑
k=2n

||xk||p
′
<∞.

Proof. Using that ‖f ∗ φ‖p,X ≤ C‖f ∗ φ‖BMOA(X) and Corollary 2.1 we have

‖f ∗ φ‖p,X ≤ C‖f‖Bloch(X)‖φ‖1
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for any function φ ∈ H1.
Applying now the Fourier type condition

(∑
n∈N

αp
′

n ||xn||p
′

) 1
p′

≤ C‖f‖Bloch(X)‖φ‖1

for any φ(z) =
∑∞
n=0 αnz

n ∈ H1.

This means that ‖xn‖ ∈ (H1, lp
′
).

Choosing φr(z) = 1
(1−rz)2 we shall have

(∑
n∈N

np
′ ||xn||p

′
rnp

′

) 1
p′

≤ C‖f‖Bloch(X)
1

(1 − r) .

This implies
N∑
n=1

np
′ ||xn||p

′ ≤ CNp′ ||f ||p
′

Bloch(X).

Which obviously gives (3.1) �
Let me point out now another applications.

Proposition 3.4. Let X be a Banach space with the (HL)∗-property and f ∈
Bloch(X). Then

||fr||BMOA(X) ≤ Clog
1

1 − r ||f ||Bloch(X)

where fr(z) = f(rz).

Proof. It is a simple consequence of Corollary 2.1 and the fact

∫ 2π

0

1
|1 − reit|

dt

2π
≈ log 1

1 − r . �

Proposition 3.5. Let X be a Banach space with the (H)1-property.

If
∑
n∈N

xnz
n ∈ H1(X) and (x∗n) ⊂ X∗ satisfies sup||x||=1 supn∈N

∑2n+1

k=2n | <
x∗k, x > | <∞ then ∑

n∈N

| < x∗n, xn > |2 <∞.

Proof. It follows from (i) in Proposition 3.2 that for any sequence εn ∈ {0, 1} we
have

∑
n∈N

εnx
∗
nz
n ∈ Bloch(X∗) with norm bounded by a constant independent of

the choice of εn. Then, from Corollary 2.1, since f(z) =
∑
n∈N

xnz
n ∈ H1(X) we

have

||
∑
n∈N

εn < x
∗
n, xn > z

n||BMOA ≤ C||
∑
n∈N

εnx
∗
nz
n||Bloch(X∗)||f ||1,X
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This shows that for any t ∈ [0, 1]

||
∑
n∈N

rn(t) < x∗n, xn > z
n||BMOA ≤ C||f ||1,X .

Therefore

(∑
n∈N

| < x∗n, xn > |2
) 1

2

≈
∫ 1

0

∫ 2π

0

|
∑
n∈N

rn(t) < x∗n, xn > e
inθ|dt dθ

2π

=
∫ 1

0

||
∑
n∈N

rn(t) < x∗n, xn > z
n||H1dt

≤
∫ 1

0

||
∑
n∈N

rn(t) < x∗n, xn > z
n||BMOAdt

≤ C||f ||1,X <∞. �
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