Bergman and Bloch spaces of vector-valued functions

By José Luis Arregui of Zaragoza, Oscar Blasco of Valencia

(Received)

Abstract

We investigate Bergman and Bloch spaces of analytic vector-valued functions in the unit disc. We show how the Bergman projection from the Bochner-Lebesgue space $L_{p}(\mathbb{D}, X)$ onto the Bergman space $B_{p}(X)$ extends boundedly to the space of vector-valued measures of bounded p-variation $V_{p}(X)$, using this fact to prove that the dual of $B_{p}(X)$ is $B_{p}\left(X^{*}\right)$ for any complex Banach space X and $1<p<\infty$. As for $p=1$ the dual is the Bloch space $\mathcal{B}\left(X^{*}\right)$. Furthermore we relate these spaces (via the Bergman kernel) with the classes of p-summing and positive p-summing operators, and we show in the same framework that $B_{p}(X)$ is always complemented in $\ell_{p}(X)$.

1. Introduction.

Throughout the paper X will be a complex Banach space, $1 \leq p<\infty, \mathcal{H}(\mathbb{D}, X)$ (respect. $\mathcal{P}(X)$) denotes the space of analytic functions (respect. polynomials) on the unit disc \mathbb{D} taking values in X and $L_{p}(m, X)$ stands for the Bochner-Lebesgue p integrable functions on \mathbb{D} where m is the normalized Borel-Lebesgue measure on \mathbb{D}. We write $H_{p}(X)$ and $B_{p}(X)$ for the Hardy and Bergman spaces of vector-valued analytic functions respectively, which, using the notation $M_{p}(f, r)=\left(\frac{1}{2 \pi} \int_{-\pi}^{\pi}\left\|f\left(r e^{i t}\right)\right\|^{p} d t\right)^{1 / p}$, consist of those functions in $\mathcal{H}(\mathbb{D}, X)$ where $\sup _{0<r<1} M_{p}(f, r)=\|f\|_{H_{p}(X)}<\infty$ and $\left(\int_{0}^{1} M_{p}^{p}(f, r) r d r\right)^{1 / p}=\|f\|_{B_{p}(X)}<\infty$.
A limiting case in the scale of Bergman spaces, which is useful for many purposes, is the Bloch space $\mathcal{B}(X)$, its elements being all functions in $\mathcal{H}(\mathbb{D}, X)$ such that $\sup _{|z|<1}\left(1-|z|^{2}\right)\left\|f^{\prime}(z)\right\|<\infty$.

For $X=\mathbb{C}$ the reader is referred to [3], [15] and [22] for the scalar-valued theory on these spaces, to [8], [9] or [10] for several properties of Bloch functions and their connection with multipliers between H_{1} and $B M O A$ in the vector-valued setting, and finally to the paper [4] for properties on Taylor coefficient of functions in $B_{p}(X)$ and different results on multipliers between vector-valued Bergman spaces.

[^0]In this paper we shall study questions such as the boundedness of Bergman projection, the duality or the atomic decomposition in the vector-valued setting. The relationship between vector-valued analytic functions, vector measures and operators is also considered.
The paper is divided into four sections. In the first one we prove some elementary facts on the spaces $B_{p}(X)$ and $\mathcal{B}(X)$, showing that the norm of a function in $B_{p}(X)$ can be described in terms of its derivatives, in particular that $f \in B_{p}(X)$ if and only if $(1-|z|)\left\|f^{\prime}(z)\right\| \in L_{p}(m)$, which makes natural to introduce $\mathcal{B}(X)$ in the scale as a limiting case.
The second section is devoted to analyze the Bergman projection in the vectorvalued setting. We see that the Bergman projection is bounded not only on $L_{p}(m, X)$ but even on the space of vector measures of bounded p-variation $V_{p}(m, X)$. This allows us, as in the scalar-valued case, to get the duality $\left(B_{p}(X)\right)^{*}=B_{p^{\prime}}\left(X^{*}\right)$ without conditions on the space X. It is also shown that the Bergman projection is bounded from $V_{\infty}(m, X)$ onto $\mathcal{B}(X)$, and a projection from the space of vector-valued measures of bounded variation $M(X)$ onto $B_{1}(X)$ is also presented. Then we prove that $B_{1}(X)$ coincides with the projective tensor product $B_{1} \hat{\otimes} X$ and that $\mathcal{B}(X)$ can be identified with $\mathcal{L}\left(B_{1}, X\right)$. As a consequence the duality $\left(B_{1}(X)\right)^{*}=\mathcal{B}\left(X^{*}\right)$ is obtained.
Next section is devoted to relate vector-valued analytic functions and operators. For any $\mathcal{L}(X, Y)$-valued analytic function $F(z)=\sum_{n=0}^{\infty} T_{n} z^{n}$ we can associate two linear operators, $T_{F}(x)=F_{x}$ where $F_{x}(z)=\sum_{n=0}^{\infty} T_{n}(x) z^{n}$ which maps elements in X into Y-valued analytic functions and $S_{F}(g)=\sum_{n=0}^{\infty} \frac{T_{n}\left(x_{n}\right)}{n+1}$ for any $g \in \mathcal{P}(X)$ such that $g(z)=\sum_{n \geq 0} x_{n} z^{n}$, which maps X-valued polynomials into vectors in Y. Under these identifications it is shown that $\mathcal{B}(\mathcal{L}(X, Y))$ can be regarded either as $\mathcal{L}(X, \mathcal{B}(Y))$ or as $\mathcal{L}\left(B_{1}(X), Y\right)$. Of course if $F \in B_{p}(\mathcal{L}(X, Y))$ then $T_{F} \in \mathcal{L}\left(X, B_{p}(Y)\right)$ and $S_{F} \in \mathcal{L}\left(B_{p^{\prime}}(X), Y\right)$ but the converse does not hold true in general. Some connections with the theory of p-summing and positive p-summing operators are provided. It is observed that $B_{p}\left(\Pi_{p}(X, Y)\right)$ is continuosly embedded into $\Pi_{p}\left(X, B_{p}(Y)\right)$ but again the converse is false. As a final result of our considerations we see that if $T \in \mathcal{L}\left(B_{p^{\prime}}, X\right)$ and $f_{T}(z)=T\left(K_{z}\right)$, where K_{z} stands for the Bergman kernel, then f_{T} belongs to $B_{p}(X)$ if and only if the composition with the Bergman projection TP gives a positive p-summing operator from $L_{p^{\prime}}(m)$ into X.
Finally, in the last section we show that $B_{p}(X)$ is always isomorphic to a complemented subspace of $\ell_{p}(X)$.
We write $\mathcal{L}(X, Y)$ (resp. $\mathcal{K}(X, Y))$ for the space of bounded (resp. compact) linear operators between the spaces X and Y, we denote $x^{*} x$ the duality pairing in (X^{*}, X), $u_{n}(z)=z^{n}$ for $n \geq 0$ and any $f \in \mathcal{P}(X)$ is written $f=\sum_{n=0}^{N} u_{n} \otimes x_{n}$ for some $N \in \mathbb{N}$ where $(\phi \otimes x)(z)=\phi(z) x$ for $\phi \in \mathcal{H}(\mathbb{D}, \mathbb{C})$ and $x \in X$. As usual we use p^{\prime} for the conjugate exponent, i.e. $1 / p+1 / p^{\prime}=1$, and C denotes a constant that may vary from line to line.

2. Preliminaries

Definition 2.1. Let $1 \leq p<\infty$ and let X be a complex Banach space. $B_{p}(X)$ is
defined as the space of X-valued analytic functions on the unit disc \mathbb{D} such that

$$
\|f\|_{B_{p}(X)}=\left(\int_{\mathbb{D}}\|f(z)\|^{p} d m(z)\right)^{1 / p}<\infty
$$

As in the scalar-valued case one gets the following facts, whose proofs are left to the reader.

Proposition 2.2. Let $1 \leq p<\infty$ and let X be a complex Banach space.
(i) $B_{p}(X)$ is a Banach space.
(ii) If $f \in B_{p}(X)$ then $\lim _{r \rightarrow 1}\left\|f-f_{r}\right\|_{B_{p}(X)}=0$, where $f_{r}(z)=f(r z)$.
(iii) The space of X-valued analytic polynomials $\mathcal{P}(X)$ is dense in $B_{p}(X)$.

Remark 2.3. If H is a complex Hilbert space, then $B_{2}(H)$ is also a Hilbert space under the scalar product given by

$$
\langle\langle f, g\rangle\rangle=\int_{\mathbb{D}}\langle f(z), g(\bar{z})\rangle d m(z) \quad\left(f, g \in B_{2}(H)\right)
$$

where $\langle\cdot, \cdot\rangle$ denotes the scalar product on H.
For any $f \in B_{2}(H)$ such that $f(z)=\sum_{n=0}^{\infty} x_{n} z^{n}$ we have

$$
\begin{equation*}
\|f\|_{B_{2}(H)}=\left(\sum_{n=0}^{\infty} \frac{\left\|x_{n}\right\|^{2}}{n+1}\right)^{1 / 2} \tag{2.1}
\end{equation*}
$$

This shows that $B_{2}(H)$ is isometrically isomorphic to $\ell_{2}(H)$. Actually, if H is separable with an orthonormal basis $\left(e_{n}\right)_{n \geq 0}$ then $\left(\sqrt{n+1} u_{n} \otimes e_{k}\right)_{n, k \geq 0}$ is an orthonormal basis of $B_{2}(H)$.
Let us mention that (2.1) is no longer true for Banach spaces, as follows from the next easy example.

Example 2.4. Let $2<p<\infty$ and let $\left(e_{n}\right)$ be the canonical basis of ℓ_{p}. If $f(z)=\sum_{n=0}^{\infty} e_{n} z^{n}=\left(z^{n}\right)_{n=0}^{\infty}$ then $f \in B_{2}\left(\ell_{p}\right)$ but $\sum_{n=0}^{\infty} \frac{\left\|e_{n}\right\|^{2}}{n+1}=\infty$.

The reader is referred to [4] for further results on Taylor coefficients of functions in vector valued Bergman spaces and for connections with geometry of Banach spaces.

Let us point out that, as in the scalar-valued case, we have that for $f \in \mathcal{H}(\mathbb{D}, X)$, $0<r<1$ and $1 \leq q \leq \infty$, the following inequalities hold true:

$$
\begin{gather*}
r^{2} M_{q}\left(f^{\prime}, r^{2}\right) \leq \frac{M_{q}(f, r)}{1-r} \tag{2.2}\\
M_{q}(f, r) \leq\|f(0)\|+\int_{0}^{r} M_{q}\left(f^{\prime}, s\right) d s \tag{2.3}
\end{gather*}
$$

These facts can be used to get an equivalent norm in $B_{p}(X)$ by looking at the derivatives of the function rather than the function itself.

Theorem 2.5. (see [22]) Let $f \in \mathcal{H}(\mathbb{D}, X), n \in \mathbb{N}, 1 \leq p<\infty$. Then $f \in B_{p}(X)$ if and only if the function $z \mapsto\left(1-|z|^{2}\right)^{n} f^{(n)}(z) \in L_{p}(m, X)$.

Proof. Let us show that for any $g \in \mathcal{H}(\mathbb{D}, X)$ and $k \geq 0$, the function $\left(1-|z|^{2}\right)^{k} g(z)$ belongs to $L_{p}(m, X)$ if and only if $\left(1-|z|^{2}\right)^{k+1} g^{\prime}(z)$ also does. Then a recurrence argument gives the statement.
Note that $\left(1-|z|^{2}\right)^{k+1} g^{\prime}(z) \in L_{p}(m, X)$ if and only if

$$
\int_{\mathbb{D}}\left(1-|z|^{2}\right)^{p k+p}\left\|z g^{\prime}(z)\right\|^{p} d m(z)<\infty
$$

Let us denote $h(z)=z g^{\prime}(z)=\sum_{n=0}^{\infty} n x_{n} z^{n}$, and observe that for each $r<1$ one has that $h_{r^{2}}=g_{r} * \lambda_{r}$, where $\lambda_{r}\left(e^{i \theta}\right)=r e^{i \theta}\left(1-r e^{i \theta}\right)^{-2}$.

Since $M_{1}(\lambda, r)=\frac{r}{1-r^{2}}$ and $M_{p}\left(h, r^{2}\right) \leq M_{1}(\lambda, r) M_{p}(g, r)$, one gets that

$$
\begin{aligned}
\int_{\mathbb{D}}\left(1-|z|^{2}\right)^{p k+p}\left\|z g^{\prime}(z)\right\|^{p} d m(z) & =\int_{0}^{1} 4 r^{3}\left(1-r^{4}\right)^{p k+p} M_{p}^{p}\left(h, r^{2}\right) d r \\
& \leq \int_{0}^{1} 8 r\left(1-r^{2}\right)^{p k} M_{p}^{p}(g, r) d r \\
& =C \int_{\mathbb{D}}\left(1-|z|^{2}\right)^{p k}\|g(z)\|^{p} d m(z)
\end{aligned}
$$

Conversely, let us take g such that $\left(1-r^{2}\right)^{k+1} M_{p}\left(g^{\prime}, r\right) \in L_{p}((0,1), d r)$. We may assume that $\int_{0}^{1}(1-r)^{(k+1) p} M_{p}^{p}\left(g^{\prime}, r\right) d r=1$ and also that $g(0)=0$.

Thanks to (2.3) we have

$$
\begin{aligned}
\int_{\mathbb{D}}\left(1-|z|^{2}\right)^{k p}\|g(z)\|^{p} d m(z) & =\int_{0}^{1} 2 r\left(1-r^{2}\right)^{k p} M_{p}^{p}(g, r) d r \\
& \leq \int_{0}^{1} 2 r\left(1-r^{2}\right)^{k p}\left(\int_{0}^{r} M_{p}\left(g^{\prime}, s\right) d s\right)^{p} d r \\
& \leq C \int_{0}^{1}(1-r)^{k p}\left(\int_{0}^{r} M_{p}\left(g^{\prime}, s\right) d s\right)^{p} d r
\end{aligned}
$$

For $p=1$ we get

$$
\begin{aligned}
\int_{\mathbb{D}}\left(1-|z|^{2}\right)^{k}\|g(z)\| d m(z) & \leq C \int_{0}^{1}(1-r)^{k}\left(\int_{0}^{r} M_{1}\left(g^{\prime}, s\right) d s\right) d r \\
& =C \int_{0}^{1}(1-s)^{k+1} M_{1}\left(g^{\prime}, s\right) d s=C
\end{aligned}
$$

For $p>1$, we write for each $t \in(0,1)$

$$
I_{t}=\int_{0}^{t}(1-r)^{k p}\left(\int_{0}^{r} M_{p}\left(g^{\prime}, s\right) d s\right)^{p} d r
$$

Let $u(r)=-\frac{1}{p k+1}(1-r)^{p k+1}$ and $v(r)=\left(\int_{0}^{r} M_{p}\left(g^{\prime}, s\right) d s\right)^{p}$.

Since $u(t) v(t)<0$ and $v(0)=0$, we have

$$
I_{t}=\int_{0}^{t} u^{\prime}(r) v(r) d r \leq-\int_{0}^{t} u(r) v^{\prime}(r) d r
$$

That is

$$
\begin{aligned}
I_{t} & \leq \frac{p}{p k+1} \int_{0}^{t}(1-r)^{p k+1} M_{p}\left(g^{\prime}, r\right)\left(\int_{0}^{r} M_{p}\left(g^{\prime}, s\right) d s\right)^{p-1} d r \\
& =\frac{p}{p k+1} \int_{0}^{t}(1-r)^{k+1} M_{p}\left(g^{\prime}, r\right)(1-r)^{(p-1) k}\left(\int_{0}^{r} M_{p}\left(g^{\prime}, s\right) d s\right)^{p-1} d r
\end{aligned}
$$

Then the assumption and Hölder's inequality show that $I_{t} \leq C I_{t}^{1 / p^{\prime}}$. Hence $I_{t} \leq C$ for all t and the proof is finished.

Taking the formulation in terms of the first derivative, it makes sense to look at the extreme case $p=\infty$ of Bergman spaces as functions in $\mathcal{H}(\mathbb{D}, X)$ such that the function $(1-|z|)^{2} f^{\prime}(z)$ belongs to $L_{\infty}(m, X)$.

Definition 2.6. The Bloch space $\mathcal{B}(X)$ is defined as the set of all functions in $\mathcal{H}(\mathbb{D}, X)$ for which $\sup _{z \in \mathbb{D}}\left(1-|z|^{2}\right)\left\|f^{\prime}(z)\right\|<\infty$. Under the norm

$$
\|f\|_{\mathcal{B}(X)}=\|f(0)\|+\sup _{z \in \mathbb{D}}\left(1-|z|^{2}\right)\left\|f^{\prime}(z)\right\|
$$

it becomes a Banach space.
The little Bloch space $\mathcal{B}_{0}(X)$ is the subspace of $\mathcal{B}(X)$ given by those functions for which

$$
\lim _{r \rightarrow 1}\left(1-r^{2}\right) M_{\infty}\left(f^{\prime}, r\right)=0
$$

Remark 2.7. $f \in \mathcal{B}(X)$ if and only if $x^{*} f \in \mathcal{B}$ for all $x^{*} \in X^{*}$.
And, interchanging the suprema, we have that

$$
\begin{equation*}
\|f\|_{\mathcal{B}(X)} \approx \sup _{\left\|x^{*}\right\|=1}\left\|x^{*} f\right\|_{\mathcal{B}} \tag{2.4}
\end{equation*}
$$

where $x^{*} f(z)=\left\langle f(z), x^{*}\right\rangle$.

Proposition 2.8. If $f \in \mathcal{B}(X)$ then $\|f\|_{\mathcal{B}(X)}=\lim _{r \rightarrow 1}\left\|f_{r}\right\|_{\mathcal{B}(X)}$.
Proof. Note that

$$
\left(1-|z|^{2}\right)\left\|f_{r}^{\prime}(z)\right\|=r\left(1-|z|^{2}\right)\left\|f^{\prime}(r z)\right\| \leq\left(1-|r z|^{2}\right)\left\|f^{\prime}(r z)\right\|
$$

what implies that $\left\|f_{r}\right\|_{\mathcal{B}(X)} \leq\|f\|_{\mathcal{B}(X)}$ for all $0<r<1$.
Now, given $\varepsilon>0$ take $z_{0} \in \mathbb{D}$ such that $\left(1-\left|z_{0}\right|^{2}\right)\left\|f^{\prime}\left(z_{0}\right)\right\|>\|f\|_{\mathcal{B}(X)}-\varepsilon / 2$ and take r_{0} verifying that $r\left(1-\left|z_{0}\right|^{2}\right)\left\|f^{\prime}\left(r z_{0}\right)\right\|>\left(1-\left|z_{0}\right|^{2}\right)\left\|f^{\prime}\left(z_{0}\right)\right\|-\varepsilon / 2$ for any $r>r_{0}$. Hence

$$
\left\|f_{r}\right\|_{\mathcal{B}(X)}>\|f\|_{\mathcal{B}(X)}-\varepsilon
$$

Theorem 2.9. Let $f \in \mathcal{B}(X)$. The following are equivalent.
(i) $f \in \mathcal{B}_{0}(X)$.
(ii) $\lim _{r \rightarrow 1}\left\|f-f_{r}\right\|_{\mathcal{B}(X)}=0$.
(iii) f belongs to the closure of $\mathcal{P}(X)$.

Proof. (i) \Rightarrow (ii) Assume that $\lim _{s \rightarrow 1}\left(1-s^{2}\right) M_{\infty}\left(f^{\prime}, s\right)=0$. Note that for all $0<$ $s<1$ we have

$$
\sup _{|z|<1}\left(1-|z|^{2}\right)\left\|f^{\prime}(z)-r f^{\prime}(r z)\right\| \leq 2 \sup _{|z|>s}\left(1-|z|^{2}\right) M_{\infty}\left(f^{\prime},|z|\right)+\sup _{|z| \leq s}\left\|f^{\prime}(z)-f_{r}^{\prime}(z)\right\|
$$

Hence, given $\varepsilon>0$ choose $s_{0}<1$ such that $\sup _{|z|>s_{0}}\left(1-|z|^{2}\right) M_{\infty}\left(f^{\prime},|z|\right)<\frac{\varepsilon}{4}$ and then use that f_{r}^{\prime} converges uniformly on compact sets to get $r_{0}<1$ such that $\sup _{|z| \leq s_{0}}\left\|f^{\prime}(z)-f_{r}^{\prime}(z)\right\|<\frac{\varepsilon}{2}$ for $r>r_{0}$. Then $\left\|f-f_{r}\right\|_{\mathcal{B}(X)}<\varepsilon$ for $r>r_{0}$.
(ii) \Rightarrow (iii) Assume now that, for each $\varepsilon>0$, there exists $r_{0}<1$ such that $\| f-$ $f_{r_{0}} \|_{\mathcal{B}(X)}<\varepsilon / 2$. Now we can take a Taylor polynomial of $f_{r_{0}} P_{N}=P_{N}\left(f_{r_{0}}\right)$ such that $\left\|f_{r_{0}}-P_{N}\right\|_{H_{\infty}(X)}<\varepsilon / 2$. Therefore

$$
\left\|f-P_{N}\left(f_{r_{0}}\right)\right\|_{\mathcal{B}(X)} \leq\left\|f-f_{r_{0}}\right\|_{\mathcal{B}(X)}+\left\|f_{r_{0}}-P_{N}\right\|_{H_{\infty}(X)}<\varepsilon
$$

(iii) \Rightarrow (i) Note that $\mathcal{P}(X) \subset \mathcal{B}_{0}(X)$, because if $P \in \mathcal{P}(X)$ then

$$
\left(1-r^{2}\right) M_{\infty}\left(P^{\prime}, r\right) \leq 2(1-r) \max _{|z| \leq 1}\left\|P^{\prime}(z)\right\|
$$

Since $\mathcal{B}_{0}(X)$ is closed the result is proved.

3. Bergman kernels and projections.

Let us write $K(z, w)=\frac{1}{(1-z w)^{2}}$ and $K_{z}(w)=K(z, w)$ for $z, w \in \mathbb{D}$. That is

$$
K_{z}=\sum_{n=0}^{\infty}(n+1) u_{n} z^{n}
$$

Since $\left\|u_{n}\right\|_{H_{p}}=1,\left\|u_{n}\right\|_{B_{p}} \sim n^{-1 / p}$ and $\left\|u_{n}\right\|_{\mathcal{B}} \sim e^{-1}$ we have that, for each $|z|<1$, the series $\sum_{n=0}^{\infty}(n+1) u_{n} z^{n}$ is absolutely convergent considered as a \mathcal{B}, H_{p} or $B_{p^{-}}$ valued function. This allows us to consider $K: \mathbb{D} \rightarrow X$ given by $K(z)=K_{z}$ as an X-valued analytic function where X is either \mathcal{B}, H_{p} or B_{p} for $1 \leq p \leq \infty$.
We will call $K(z, w)$ the Bergman kernel, and the map $K: \mathbb{D} \rightarrow X$ the Bergman function. Of course $(n+1) u_{n}$ are its Taylor coefficients, and its derivative is given by $K^{\prime}(z)=\sum_{n=1}^{\infty}(n+1) n u_{n} z^{n-1}$, with $K^{\prime}(z)(w)=\frac{2 w}{(1-z w)^{3}}$.

In order to estimate the norms of K in different spaces we simply need the following lemmas.

Lemma 3.1. (see [15], page 65) Let $J_{\alpha}(r)=\int_{0}^{1} \frac{d t}{\left|1-r e^{i t}\right|^{\alpha}}$ for $\alpha>0$. Then (i) $J_{\alpha}(r)$ is bounded in $(0,1)$ for $\alpha<1$,
(ii) $J_{\alpha}(r) \sim \log \frac{1}{1-r}$ as $r \rightarrow 1$ for $\alpha=1$, and
(iii) $J_{\alpha}(r) \sim \frac{1}{(1-r)^{\alpha-1}}$ as $r \rightarrow 1$ for $\alpha>1$.

Lemma 3.2. (see [22] 4.2.2.]) Let $I_{\alpha, \beta}(r)=\int_{\mathbb{D}} \frac{\left(1-|w|^{2}\right)^{\alpha}}{|1-r w|^{\beta}} d m(w)$ for $\beta>0$ and $\alpha>-1$. Then
(i) $I_{\alpha, \beta}(r)$ is bounded in $(0,1)$ for $\beta-\alpha<2$,
(ii) $I_{\alpha, \beta}(r) \sim \log \frac{1}{1-r}$ as $r \rightarrow 1$ for $\beta-\alpha=2$, and
(iii) $I_{\alpha, \beta}(r) \sim \frac{1}{(1-r)^{\beta-\alpha-2}}$ as $r \rightarrow 1$ for $\beta-\alpha>2$.

From these lemmas we get the next estimates as $|z| \rightarrow 1$:

$$
\begin{gather*}
\|K(z)\|_{B_{1}} \sim \log \frac{1}{1-|z|} \text { and }\|K(z)\|_{B_{p}} \sim \frac{1}{(1-|z|)^{2 / p^{\prime}}}, \text { for } p>1 \tag{3.1}\\
\|K(z)\|_{H_{p}} \sim \frac{1}{(1-|z|)^{2-1 / p}} \text { for } p \geq 1 \tag{3.2}\\
\left\|K^{\prime}(z)\right\|_{B_{p}} \sim \frac{1}{(1-|z|)^{3-2 / p}} \text { and }\left\|K^{\prime}(z)\right\|_{H_{p}} \sim \frac{1}{(1-|z|)^{3-1 / p}} \tag{3.3}\\
\|K(z)\|_{\mathcal{B}} \sim \frac{1}{(1-|z|)^{2}} \text { and }\left\|K^{\prime}(z)\right\|_{\mathcal{B}} \sim \frac{1}{(1-|z|)^{3}} \tag{3.4}
\end{gather*}
$$

Proposition 3.3. Let $1 \leq p, q<\infty$. Let $X \in\left\{B_{q}, H_{q}, \mathcal{B}, 1 \leq q \leq \infty\right\}$.
(i) The Bergman function $K \in B_{p}(X)$ if and only if $X=B_{q}$ and $2 p<q^{\prime}$.
(ii) The Bergman function $K \in \mathcal{B}(X)$ if and only if $X=B_{1}$.
(iii) The Bergman function $K \notin H_{p}(X)$.

Definition 3.4. (see [14] or [12]) For any Banach space X, we denote by $M(X)$ the Banach space of vector (X-valued) measures of bounded variation defined on the Borel subsets of \mathbb{D}, with norm given by $\|G\|_{1}=|G|(\mathbb{D})$.

For $1<p<\infty$. A measure G is said to have bounded p-variation, $G \in V_{p}(m, X)$, if

$$
\|G\|_{p}=\sup _{\pi}\left(\sum_{A \in \pi} \frac{\|G(A)\|^{p}}{m(A)^{p-1}}\right)^{\frac{1}{p}}<\infty
$$

where the supremum is taken over all finite partitions π of \mathbb{D} into Borel sets of positive measure.
For $p=\infty$ we have that $G \in V_{\infty}(m, X)$ if there exists a constant $C>0$ such that $\|G(A)\| \leq C m(A)$ for any Borel set A, and its norm is given by

$$
\|G\|_{\infty}=\sup \left\{\frac{\|G(A)\|}{m(A)}: m(A)>0\right\}
$$

Remark 3.5. Given an X-valued simple measurable function $f=\sum_{k=1}^{n} x_{k} \chi_{A_{k}}$ and a X^{*}-valued measure G we denote by

$$
\langle f, G\rangle=\sum_{k=1}^{n} x_{k}^{*} x_{k}
$$

where $x_{k}^{*}=G\left(\bar{A}_{k}\right)$ and $\bar{A}_{k}=\left\{z \in \mathbb{D}: \bar{z} \in A_{k}\right\}$.
It is not difficult to see that if $G \in V_{p}\left(m, X^{*}\right)$ this extends to a linear functional in $L_{p^{\prime}}(m, X)$ and actually we have the duality $\left(L_{p^{\prime}}(m, X)\right)^{*}=V_{p}\left(m, X^{*}\right)$ under this pairing (see [14]).
If G is an X-valued measure of bounded variation, and $\phi=\sum_{k=1}^{n} \alpha_{k} \chi_{E_{k}}$ is a simple function then we define

$$
\int_{\mathrm{D}} \phi d G=\sum_{k=1}^{n} \alpha_{k} G\left(E_{k}\right) .
$$

Since $\left\|\int_{\mathbb{D}} \phi d G\right\| \leq\|G\|_{1}\|\phi\|_{\infty}$, using the density of simple functions we extend the definition of $\int_{\mathbb{D}} \phi d G$ for any bounded function ϕ.

Definition 3.6. Let $G \in M(X)$. We define the Bergman projection of the measure G as the analytic function in the disc given by

$$
P G(z)=\int_{\mathrm{D}} K_{z}(\bar{w}) d G(w) \in X
$$

Since $\sup _{w \in \mathrm{D}}\left\|K_{z}(w)\right\| \leq \frac{1}{(1-|z|)^{2}}$ then $P G(z)$ is well defined. Actually since the series $K_{z}=\sum_{n=0}^{\infty}(n+1) u_{n} z^{n}$ is absolutely convergent in $L_{\infty}(m)$ for each $|z|<1$ then for $z \in \mathbb{D}$ we have

$$
P G(z)=\sum_{n=0}^{\infty} x_{n} z^{n}
$$

where $x_{n}=(n+1) \int_{\mathbb{D}} \bar{w}^{n} d G(w)$.
Remark 3.7. If $f \in L_{1}(m, X)$ then $P f(z)=\int_{\mathbb{D}} f(w) K_{z}(\bar{w}) d m(w)$.
In particular we have that $P f=f$ for $f \in B_{1}(X)$.
Indeed, if $f(z)=\sum_{n=0}^{\infty} x_{n} z^{n}$ then

$$
\begin{aligned}
(n+1) \int_{\mathbb{D}} f(w) \bar{w}^{n} d m(w) & =(n+1) \int_{0}^{1} 2 r^{n+1}\left(\frac{1}{2 \pi} \int_{-\pi}^{\pi} f\left(r e^{i \theta}\right) e^{i n \theta} d \theta\right) d r \\
& =(n+1)\left(\int_{0}^{1} 2 r^{2 n+1} d r\right) x_{n}=x_{n}
\end{aligned}
$$

This shows that the Taylor coefficients of f and $P f$ coincide.

Theorem 3.8. Let X be a complex Banach space and $1<p<\infty$. Then the Bergman projection P is bounded from $V_{p}(m, X)$ onto $B_{p}(X)$.

Proof. Since $G \in V_{p}(m, X)$ there exists a nonnegative ϕ in $L_{p}(m)$ such that $d|G|=$ $\phi d m$ and $\|\phi\|_{p}=\|G\|_{p}$ (see [14], page 243).

Now, for each $z \in \mathbb{D}$ we have

$$
\begin{aligned}
\|P G(z)\| & =\left\|\int_{\mathbb{D}} K_{z}(\bar{w}) d G(w)\right\| \\
& \leq \int_{\mathbb{D}}\left|K_{z}(\bar{w})\right| d|G|(w) \\
& =\int_{\mathbb{D}}\left|K_{z}(\bar{w})\right| \phi(w) d m(w)
\end{aligned}
$$

Now to finish the proof, let us recall that if $P^{*}(f)(z)=\int_{\mathbb{D}}|K(z, \bar{w})| f(w) d m(w)$ then $P^{*}: L_{p}(m) \rightarrow L_{p}(m)$ defines a bounded operator for any $1<p<\infty$ (see for instance [22] for a proof).
Therefore $\|P G\|_{B_{p}(X)} \leq\left\|P^{*}(\phi)\right\|_{L_{p}} \leq C\|\phi\|_{L_{p}}=C\|G\|_{p}$.

This allows, as in the scalar valued case, to get the duality result for vector-valued Bergman spaces.

Theorem 3.9. Let X be a complex Banach space and $1<p<\infty$. Then $\left(B_{p}(X)\right)^{*}$ is isometrically isomorphic to $B_{p^{\prime}}\left(X^{*}\right)$.

Proof. Let us define the linear operator $J: B_{p^{\prime}}\left(X^{*}\right) \rightarrow\left(B_{p}(X)\right)^{*}$ given by

$$
(J g)(f)=\int_{\mathbb{D}} g(z) f(\bar{z}) d m(z)
$$

It follows from Hölder's inequatity that J is bounded. Let us see that it is injective. If g verifies that $J g=0$, then for each $n \in \mathbb{N}$ and $x \in X$ we have

$$
(J g)\left(f_{n}\right)=\left(\int_{\mathbb{D}} g(z) \bar{z}^{n} d m(z)\right) x=0
$$

where $f_{n}=u_{n} \otimes x$. This shows that $\int_{\mathbb{D}} g(z) \bar{z}^{n} d m(z)=\frac{1}{(n+1)!} g^{(n)}(0)=0$ for all $n \in \mathbb{N}$ and hence $g=0$.

Let us now show that J is surjective.
Given $\xi \in\left(B_{p}(X)\right)^{*}$, the Hahn-Banach theorem gives an extension $\tilde{\xi} \in\left(L_{p}(m, X)\right)^{*}$ with the same norm. Using duality (see Remark 3.5) there exists a vector valued measure $G \in V_{p^{\prime}}\left(m, X^{*}\right)$, with p^{\prime}-variation equal to $\|\xi\|$, for which $\tilde{\xi} \varphi=\int_{\mathbb{D}} \varphi d G$ for every $\varphi \in L_{p}(m, X)$.
Let G_{c} be the measure defined by $G_{c}(E)=G(\bar{E})$ for each measurable set $E \subset \mathbb{D}$. Clearly G_{c} has the same p^{\prime}-variation as G, and

$$
\int_{\mathrm{D}} \psi(z) d G_{c}(z)=\int_{\mathrm{D}} \psi(\bar{z}) d G(z) .
$$

for any simple function ψ. Define $g=P G_{c}$. From Theorem 3.8 we get $g \in B_{p^{\prime}}\left(X^{*}\right)$. Let us see that $J g=\xi$:

For any $f \in \mathcal{P}(X)$ we can write

$$
\begin{aligned}
(J g)(f) & =\int_{\mathbb{D}} P G_{c}(z) f(\bar{z}) d m(z)=\int_{\mathbb{D}}\left(\int_{\mathbb{D}} K_{z}(\bar{w}) d G_{c}(w)\right) f(\bar{z}) d m(z) \\
& =\int_{\mathbb{D}}\left(\int_{\mathbb{D}} K_{z}(w) d G(w)\right) f(\bar{z}) d m(z)=\int_{\mathbb{D}}\left(\int_{\mathbb{D}} K_{z}(w) f(\bar{z}) d m(z)\right) d G(w) \\
& =\int_{\mathbb{D}}\left(\int_{\mathbb{D}} K_{w}(\bar{z}) f(z) d m(z)\right) d G(w)=\int_{\mathbb{D}} P f(w) d G(w) \\
& =\int_{\mathbb{D}} f(w) d G(w)=\xi(f)
\end{aligned}
$$

Proposition 3.10. P is not bounded neither on $M(X)$ nor on $V_{\infty}(m, X)$.
Proof. Assume that P is bounded on $V_{\infty}(m, X)$. Using measures $d G=(\phi \otimes x) d m$ for $\phi \in L_{\infty}(m)$ and $x \in X$ we also have that the corresponding Bergman projection is bounded on $L_{\infty}(m)$. In such case

$$
\sup _{|z|<1}\left|\int_{\mathbb{D}} K_{z}(w) \phi(w) d m(w)\right| \leq C\|\phi\|_{\infty}
$$

for all $\phi \in L_{\infty}(m)$. Hence $\sup _{|z|<1}\left\|K_{z}\right\|_{L_{1}(m)} \leq C$, but we have previously noticed that $\left\|K_{z}\right\|_{L_{1}(m)}=\|K(z)\|_{B_{1}} \sim \log \frac{1}{1-|z|}$ as $|z| \rightarrow 1$.

The case $p=1$ follows now looking at the adjoint operator.

Theorem 3.11. The Bergman projection P defines a bounded operator from $V_{\infty}(m, X)$ onto $\mathcal{B}(X)$.

Proof. Let G belong to $V_{\infty}(m, X)$. Therefore there exists $C>0$ such that

$$
|G|(A) \leq C m(A)
$$

for all measurable sets A. Now from the Radon-Nikodym theorem there exists $\phi \in$ $L_{\infty}(m)$ such that $d|G|=\phi d m$ and $\|\phi\|_{L_{\infty}}=\|G\|_{\infty}$.
On the other hand $P G(z)=\sum_{n=0}^{\infty} x_{n} z^{n}$, where $x_{n}=(n+1) \int_{\mathbb{D}} \bar{z}^{n} d G(z)$.
Since $(P G)^{\prime}(z)=\int_{\mathbb{D}} \frac{2 \bar{w}}{(1-\bar{w} z)^{3}} d G(w)$ we have

$$
\left\|(P G)^{\prime}(z)\right\| \leq \int_{\mathbb{D}} \frac{2}{|1-z \bar{w}|^{3}} \phi(w) d m(w) \leq C \frac{\|\phi\|_{L_{\infty}}}{1-|z|}
$$

Let us prove the surjectivity. Let $f \in \mathcal{B}(X)$ with $f(0)=f^{\prime}(0)=0$.
If $f(z)=\sum_{n=2}^{\infty} x_{n} z^{n}$, let g be given by

$$
g(z)=\frac{\left(1-|z|^{2}\right) f^{\prime}(z)}{\bar{z}}
$$

We have that $g \in L_{\infty}(m, X)$ since $f \in \mathcal{B}(X)$ and $f^{\prime}(0)=0$. Now write $\operatorname{Pg}(z)=$ $\sum_{n=0}^{\infty} y_{n} z^{n}$ and take $n \geq 1$

$$
\begin{aligned}
y_{n} & =(n+1) \int_{\mathbb{D}} g(z) \bar{z}^{n} d m(z)=(n+1) \int_{\mathbb{D}}\left(1-|z|^{2}\right) f^{\prime}(z) \bar{z}^{n-1} d m(z) \\
& =(n+1) \int_{\mathbb{D}} f^{\prime}(z) \bar{z}^{n-1} d m(z)-(n+1) \int_{\mathbb{D}} z f^{\prime}(z) \bar{z}^{n} d m(z)=x_{n}
\end{aligned}
$$

Also $y_{0}=0$. That is $P G=f$ for $d G=g d m$.
The general case follows by writting $f=f(0)+u_{1} \otimes f^{\prime}(0)+f_{1}$ where f_{1} is as above. So if $P g_{1}=f_{1}$ then $P\left(f(0)+u_{1} \otimes f^{\prime}(0)+g_{1}\right)=f$.

Let us recall that the Riesz projection $R: L_{p}(\mathbb{T}) \rightarrow H_{p}(\mathbb{T})$ defined by $R(f)=$ $\sum_{n \geq 0} \hat{f}(n) u_{n}$ gives, as happens for the Bergman projection on $L_{p}(m)$, a bounded operator only for $1<p<\infty$. Nevertheless $H_{1}(\mathbb{T})$ is not isomorphic to any complemented subspace of $L_{1}(\mathbb{T})$, so we cannot define any bounded projection from $L_{1}(\mathbb{T})$ to $H_{1}(\mathbb{T})$, while we can define several bounded projections from $L_{1}(m)$ to B_{1} (see [22]). Let us extend this also to the vector valued setting.

Definition 3.12. For any $G \in M(X)$, we can also define

$$
\tilde{P} G(z)=\int_{\mathrm{D}} \tilde{K}_{z}(\bar{w}) d G(w)
$$

where the kernel $\tilde{K}_{z}(w)=\frac{2\left(1-|w|^{2}\right)}{(1-w z)^{3}}=\sum_{n=0}^{\infty}(n+1)(n+2) v_{n}(w) z^{n}$ and $v_{n}(w)=$ $\left(1-|w|^{2}\right) w^{n}$.

Hence $\tilde{P}(G)(z)=\sum_{n=0}^{\infty} x_{n} z^{n}$ where $x_{n}=(n+1)(n+2) \int_{\mathbb{D}}\left(1-|w|^{2}\right) \bar{w}^{n} d G(w)$.

Theorem 3.13. \tilde{P} defines a bounded projection from $M(X)$ onto $B_{1}(X)$.
Proof. Let us first see that $B_{1}(X)$ is left invariant under \tilde{P}.
Let $d G(w)=f(w) d m(w)$ for some $f(z)=\sum_{n=0}^{\infty} x_{n} z^{n}$ in $B_{1}(X)$. Let us show that the Taylor coefficients of f and $\tilde{P}(f)$ coincide.

$$
\begin{aligned}
\int_{\mathbb{D}}\left(1-|w|^{2}\right) \bar{w}^{n} d G(w) & =\int_{\mathbb{D}}\left(1-|w|^{2}\right) \bar{w}^{n} f(w) d m(w) \\
& =\int_{0}^{1} 2 r^{n+1}\left(1-r^{2}\right)\left(\frac{1}{2 \pi} \int_{-\pi}^{\pi} f\left(r e^{i \theta}\right) e^{-i n \theta} d \theta\right) d r \\
& =\left(\int_{0}^{1} 2 r^{2 n+1}\left(1-r^{2}\right) d r\right) x_{n} \\
& =\frac{x_{n}}{(n+1)(n+2)}
\end{aligned}
$$

Given now $G \in M(X)$ we can write

$$
\begin{aligned}
\int_{\mathbb{D}}\|\tilde{P} G(z)\| d m(z) & =\int_{\mathbb{D}}\left\|\int_{\mathbb{D}} \tilde{K}_{z}(\bar{w}) d G(w)\right\| d m(z) \\
& \leq \int_{\mathbb{D}}\left(\int_{\mathbb{D}}\left|\tilde{K}_{z}(\bar{w})\right| d|G|(w)\right) d m(z) \\
& =\int_{\mathbb{D}}\left(\int_{\mathbb{D}}\left|\tilde{K}_{z}(\bar{w})\right| d m(z)\right) d|G|(w)
\end{aligned}
$$

Using Lemma 3.2 for $\alpha=0$ and $\beta=3$ we have

$$
\int_{\mathbb{D}}\left|\tilde{K}_{z}(\bar{w})\right| d m(z)=\int_{\mathbb{D}} \frac{2\left(1-|w|^{2}\right)}{|1-w z|^{3}} d m(z) \leq C
$$

and then $\|\tilde{P} G\|_{B_{1}(X)} \leq C|G|(\mathrm{D})$.

Theorem 3.14. $B_{1}(X)$ is isometrically isomorphic to $B_{1} \hat{\otimes} X$.
Proof. Let \tilde{P} and \tilde{P}_{X} the respective projections from $L_{1}(m)$ and $L_{1}(m, X)$ onto B_{1} and $B_{1}(X)$ given above. By the properties of the projective tensor product, $\tilde{P} \otimes \mathrm{id}_{X}$ is a projection from $L_{1}(m) \hat{\otimes} X$ onto $B_{1} \hat{\otimes} X$. Then the usual isometry J between $L_{1}(m) \hat{\otimes} X$ and $L_{1}(m, X)$ restricts to an operator \tilde{J} from $B_{1} \hat{\otimes} X$ such that $\tilde{J}\left(\tilde{P} \otimes \mathrm{id}_{X}\right)=\tilde{P}_{X} J$, and \tilde{J} is an isometry between $B_{1} \hat{\otimes} X$ and $B_{1}(X)$.

Remark 3.15. The Bloch space was first shown to be a dual space in [1]. In fact one has that $\left(B_{1}\right)^{*}=\mathcal{B}$ and $\left(\mathcal{B}_{0}\right)^{*}=B_{1}$ (see [22]) under the pairing

$$
\langle f, g\rangle=\int_{\mathbb{D}} f(z) \overline{g(z)} d m(z)
$$

which is well defined for polynomials and then extends by density for functions in B_{1}.

That it is well defined and bounded is seen as the first part in the following proposition:

Proposition 3.16.

(i) If $T \in \mathcal{L}\left(B_{1}, X\right)$ then $f_{T}(z)=T\left(K_{z}\right) \in \mathcal{B}(X)$.
(ii) If $f \in \mathcal{B}(X)$, the linear operator defined by $T_{f}(\phi)=\int_{\mathbb{D}} f(z) \phi(\bar{z}) d m(z)$ for each polynomial ϕ extends to a bounded operator in $\mathcal{L}\left(B_{1}, X\right)$.
(iii) $\mathcal{B}(X)$ is isomorphic to $\mathcal{L}\left(B_{1}, X\right)$.

Proof. (i) Let $g(z)=\frac{2 w}{(1-z w)^{3}}$. One easily sees that $f_{T}^{\prime}(z)=T\left(g_{z}\right)$ and $\left\|g_{z}\right\|_{1} \sim$ $1 /(1-|z|)$. This shows that $f_{T} \in \mathcal{B}(X)$.
(ii) From Remark $2.7 x^{*} f \in \mathcal{B}$ and then $x^{*} T_{f} \in\left(B_{1}\right)^{*}$ for all $x^{*} \in X^{*}$. Since $\left\|T_{f}(\phi)\right\|=\sup _{\left\|x^{*}\right\|=1}\left|x^{*} T_{f}(\phi)\right|$, we have that T_{f} is bounded. Moreover

$$
\left\|T_{f}\right\|=\sup _{\left\|x^{*}\right\|=1}\left\|x^{*} T_{f}\right\|_{\left(B_{1}\right)^{*}} \approx \sup _{\left\|x^{*}\right\|=1}\left\|x^{*} f\right\|_{\mathcal{B}} \approx\|f\|_{\mathcal{B}(X)}
$$

(iii) follows easily from (i) and (ii).

We will explore further this interplay between functions and operators in section 4.

Corollary 3.17. (see [7]) $\mathcal{B}\left(X^{*}\right)$ is isomorphic to $\left(B_{1}(X)\right)^{*}$.
Proof. Since $(X \hat{\otimes} Y)^{*}=\mathcal{L}\left(X, Y^{*}\right)$, Proposition 3.16 and Theorem 3.14 give the result.

4. Vector-valued functions and operators.

Given two complex Banach spaces X and Y there are two natural ways of looking at a map $F: \mathbb{D} \times X \rightarrow Y$: it can be regarded as a map from X into $Y^{\mathbb{D}}$ or, alternatively, from \mathbb{D} into Y^{X} (and vice-versa). More precisely, given $F: \mathbb{D} \times X \rightarrow Y$, we can define $F_{x}: \mathbb{D} \rightarrow Y$ and $F_{z}: X \rightarrow Y$ by

$$
F_{x}(z)=F_{z}(x)=F(z, x)
$$

for any $x \in X$ and $z \in \mathbb{D}$.
Proposition 4.1. Let $F: \mathbb{D} \times X \rightarrow Y$ be a continuous map such that F_{z} is linear for all $z \in \mathbb{D}$. Then $F_{z} \in \mathcal{L}(X, Y)$ for all z, and the norm $\left\|F_{z}\right\|$ is locally bounded.

Proof. First statement is immediate. To see the second one, let us assume there exists a compact set $K \subset \mathbb{D}$ where $\left\{\left\|F_{z}\right\| ; z \in K\right\}$ is not bounded. By the BanachSteinhaus theorem the set $A=\left\{x \in X ; \sup _{z \in K}\|F(z, x)\|_{Y}=\infty\right\}$ will be dense in X. Then we can take two sequences $\left(x_{j}\right) \subset X$ and $\left(z_{j}\right) \subset K$ such that $x_{j} \rightarrow 0$ and $\left\|F\left(z_{j}, x_{j}\right)\right\| \geq j$. By the compactness of K, passing to a subsequence we see that we can assume that $\left(z_{j}\right)$ converges to certain $z_{0} \in K$. But $\left(z_{j}, x_{j}\right)$ tends to $\left(z_{0}, 0\right)$ and $F\left(z_{0}, 0\right)=0$, so F cannot be continuous.

Theorem 4.2. Let $F: \mathbb{D} \times X \rightarrow Y$ be continuous, such that F_{z} is linear for all $z \in \mathbb{D}$ and F_{x} is analytic for all $x \in X$. Then
(i) The map $z \mapsto F_{z}$ is an $\mathcal{L}(X, Y)$-valued analytic function.
(ii) The operator $x \mapsto F_{x}$ is linear, and continuous with respect to the topology of the uniform convergence on compact sets on the space $\mathcal{H}(\mathbb{D}, Y)$.

Proof. For each $n \geq 0$ we define

$$
T_{n} x=\frac{1}{2 \pi i} \int_{|z|=r} \frac{F_{z}(x)}{z^{n+1}} d z
$$

Of course $F_{x}(z)=\sum_{n=0}^{\infty}\left(T_{n} x\right) z^{n}$.
It is clear that T_{n} is linear for each $n \in \mathbb{N}$. By the previous proposition, there exists C_{r} such that $\left\|F_{z}\right\| \leq C_{r}$ for all $z \in \overline{D(0, r)}$, and then $\left\|T_{n} x\right\| \leq C_{r}\|x\| / r^{n}$.
Now for each $z \in \mathbb{D}$ the series $\sum_{n \geq 0} T_{n} z^{n}$ is absolutely convergent in $\mathcal{L}(X, Y)$. Hence $z \mapsto \sum_{n \geq 0} T_{n} z^{n}$ defines an analytic function from \mathbb{D} into $\mathcal{L}(X, Y)$.
To see (ii), note that the linearity is immediate, so it suffices to see that if $x_{j} \rightarrow 0$ then $F_{x_{j}} \rightarrow 0$ uniformly on compact sets. If $K \subset \overline{D(0, r)}$ is compact and we take $s \in(r, 1)$ and C such that $\left\|T_{n}\right\| \leq C / s^{n}$, then for any $z \in K$,

$$
\left\|F_{x_{j}}(z)\right\|_{Y} \leq \sum_{n \geq 0}\left\|T_{n}\right\|\left\|x_{j}\right\||z|^{n} \leq C\left\|x_{j}\right\| \sum_{n \geq 0}\left(\frac{r}{s}\right)^{n}=\frac{C s}{s-r}\left\|x_{j}\right\| .
$$

Definition 4.3. Let X, Y be two complex Banach spaces and let $F(z)=\sum_{n=0}^{\infty} T_{n} z^{n}$ be a function in $\mathcal{H}(\mathbb{D}, \mathcal{L}(X, Y))$. We denote by $T_{F}: X \rightarrow \mathcal{H}(\mathbb{D}, Y)$ the linear operator given by

$$
\left(T_{F} x\right)(z)=(F(z))(x)=\sum_{n=0}^{\infty}\left(T_{n} x\right) z^{n}
$$

Theorem 4.4.

$\mathcal{B}(\mathcal{L}(X, Y))$ is isomorphic to $\mathcal{L}(X, \mathcal{B}(Y))$ (via the map $\left.F \mapsto T_{F}\right)$.
Proof. Let $F \in \mathcal{B}(\mathcal{L}(X, Y))$ we have that

$$
\sup _{\|x\|=1}\left\|F_{x}(0)\right\|_{Y}=\|F(0)\|_{\mathcal{L}(X, Y)}
$$

and also

$$
\begin{aligned}
\sup _{\|x\|=1} \sup _{z \in \mathbb{D}}\left(1-|z|^{2}\right)\left\|F^{\prime}(z) x\right\|_{Y} & =\sup _{z \in \mathbb{D}} \sup _{\|x\|=1}\left(1-|z|^{2}\right)\left\|F^{\prime}(z) x\right\|_{Y} \\
& =\sup _{z \in \mathbb{D}}\left(1-|z|^{2}\right)\left\|F^{\prime}(z)\right\|_{\mathcal{L}(X, Y)}
\end{aligned}
$$

This shows that $\left\|T_{F}\right\|_{\mathcal{L}(X, \mathcal{B}(Y))} \approx\|F\|_{\mathcal{B}(\mathcal{L}(X, Y))}$.
Now given $T \in \mathcal{L}(X, \mathcal{B}(Y))$ we can define $F: \mathbb{D} \times X \rightarrow Y$ by $F(z, x)=T x(z)$. Now by Theorem 4.2 we have that $z \mapsto F_{z}$ belongs to $\mathcal{H}(\mathbb{D}, \mathcal{L}(X, Y))$. Since $T_{F}=T$ the previous identities complete the proof.

Proposition 4.5. Let $1 \leq p<\infty$. $B_{p}(\mathcal{L}(X, Y)) \subset \mathcal{L}\left(X, B_{p}(Y)\right)$ (via the mapping $\left.F \mapsto T_{F}\right)$. In general $B_{p}(\mathcal{L}(X, Y)) \neq \mathcal{L}\left(X, B_{p}(Y)\right)$.

Proof. Given $F \in B_{p}(\mathcal{L}(X, Y))$ we clearly have

$$
\begin{aligned}
\left\|T_{F} x\right\|_{B_{p}(Y)} & =\left(\int_{\mathbb{D}}\|F(z) x\|_{Y}^{p} d m(z)\right)^{1 / p} \\
& \leq\|x\|\left(\int_{\mathbb{D}}\|F(z)\|_{\mathcal{L}(X, Y)}^{p} d m(z)\right)^{1 / p}=\|F\|_{B_{p}(X)}\|x\|
\end{aligned}
$$

To see that this inclusion is not surjective, let us take $X=\ell_{1}$ and $Y=\mathbb{C}$. The inclusion becomes $B_{p}\left(\ell_{\infty}\right)=B_{p}\left(\mathcal{L}\left(\ell_{1}, \mathbb{C}\right)\right) \hookrightarrow \mathcal{L}\left(\ell_{1}, B_{p}\right)=\ell_{\infty}\left(B_{p}\right)$.
Let us consider the function $f(z)=\frac{1}{(1-z)^{1 / p}}$. Clearly

$$
\|f\|_{B_{p}}^{p} \sim \int_{0}^{1}\left(\frac{1}{2 \pi} \int_{-\pi}^{\pi} \frac{1}{\left|1-r e^{i \theta}\right|} d \theta\right) d r \sim \int_{0}^{1} \log \frac{1}{1-r} d r<\infty
$$

Now let $\left(\zeta_{n}\right)$ be a dense sequence in the unit circle, and define $f_{n}(z)=f\left(\zeta_{n} z\right)$ for each n and $F(z)=\left(f_{n}(z)\right)_{n \in \mathbb{N}}$.
By the density of $\left(\zeta_{n}\right)$ one gets

$$
\|F(z)\|_{\ell_{\infty}}=\sup _{n}\left|f_{n}(z)\right|=\sup _{n}\left|f\left(\zeta_{n} z\right)\right|=M_{\infty}(f,|z|)=\frac{1}{(1-|z|)^{1 / p}}
$$

for every $z \in \mathbb{D}$. Then, despite $\left(f_{n}\right)$ obviously belongs to $\ell_{\infty}\left(B_{p}\right)$, we get that the vector valued function F does not belong to $B_{p}\left(\ell_{\infty}\right)$ since

$$
\int_{0}^{1} M_{p}^{p}(F, r) d r=\int_{0}^{1} \frac{1}{1-r} d r=\infty .
$$

Let us now introduce an interesting ideal of operators that play an important role in understanding the interpretation of vector-valued Bergman functions as operators.

Definition 4.6. Let X and Y be Banach spaces and $1 \leq p<\infty$. A linear operator $T \in \mathcal{L}(X, Y)$ is said to be p-summing (denoted $\left.T \in \Pi_{p}(X, Y)\right)$ if there is a constant $C>0$ such that for every $k \in \mathbb{N}$ and $x_{1}, x_{2}, \ldots, x_{k} \in X$ we have

$$
\left(\sum_{i=1}^{k}\left\|T\left(x_{i}\right)\right\|^{p}\right)^{1 / p} \leq C \sup _{\left\|x^{*}\right\|_{X^{*}} \leq 1}\left(\sum_{i=1}^{k}\left|\left\langle x_{i}, x^{*}\right\rangle\right|^{p}\right)^{1 / p}
$$

Its norm is given by the infimum of the constants C satisfying the previous inequality and is denoted by $\pi_{p}(T)$.

The reader is referred to [13], [21], [19] or [18] for results and references on these classes of operators. We simply include the following remark to be used in the sequel.

Remark 4.7. (see for instance [21]) Let (Ω, Σ, μ) be a measure space, let $f: \Omega \rightarrow X$ be a measurable function such that $x^{*} f \in L_{p}(\mu)$ for all $x^{*} \in X^{*}$ and $T \in \Pi_{p}(X, Y)$. Then $T f: \Omega \rightarrow Y$ given by $T f(\omega)=T(f(\omega))$ belongs to $L_{p}(\mu, Y)$.

Proposition 4.8. Let $1 \leq p<\infty$. Then $B_{p}\left(\Pi_{p}(X, Y)\right) \subset \Pi_{p}\left(X, B_{p}(Y)\right)$ (via the mapping $F \mapsto T_{F}$).
There exist infinite dimensional Banach spaces X and Y such that

$$
B_{p}\left(\Pi_{p}(X, Y)\right) \neq \Pi_{p}\left(X, B_{p}(Y)\right)
$$

Proof. Let $x_{1}, x_{2}, \ldots, x_{n}$ be elements in X. Then

$$
\begin{aligned}
\sum_{k=1}^{n}\left\|T_{F} x_{k}\right\|_{B_{p}(Y)}^{p} & =\sum_{k=1}^{n} \int_{\mathbb{D}}\|F(z) x\|_{Y}^{p} d m(z) \\
& =\int_{\mathbb{D}} \sum_{k=1}^{n}\left\|F(z)\left(x_{k}\right)\right\|^{p} d m(z) \\
& \leq \int_{\mathbb{D}} \pi_{p}^{p}(F(z)) \sup _{\left\|x^{*}\right\|=1} \sum_{k=1}^{n}\left|\left\langle x^{*}, x_{k}\right\rangle\right|^{p} d m(z) \\
& =\|F\|_{B_{p}\left(\Pi_{p}(X, Y)\right)}^{p} \sup _{\left\|x^{*}\right\|=1} \sum_{k=1}^{n}\left|\left\langle x^{*}, x_{k}\right\rangle\right|^{p} .
\end{aligned}
$$

To see that the embedding is not surjective even for infinite dimensional Banach space we can take $p=2, X=\ell_{1}$ and $Y=\ell_{2}$. It is well known (see [18]) that $\Pi_{2}\left(\ell_{1}, H\right)=\mathcal{L}\left(\ell_{1}, H\right)$ for any Hilbert space (actually $\Pi_{1} \subseteq \Pi_{2}$, and Grothendieck theorem (see [13] or [18]) even says that $\left.\Pi_{1}\left(\ell_{1}, H\right)=\mathcal{L}\left(\ell_{1}, H\right)\right)$. Hence, in our situation $\Pi_{2}(X, Y)=\mathcal{L}(X, Y)$ and $\Pi_{2}\left(X, B_{2}(Y)\right)=\mathcal{L}\left(X, B_{2}(Y)\right)$. Therefore we simply need to show that $B_{2}\left(\ell_{\infty}\left(\ell_{2}\right)\right)$ is strictly contained in $\ell_{\infty}\left(B_{2}\left(\ell_{2}\right)\right)$.
Let us define now $f_{n}(z)=\frac{1}{\log (n+1)} \sum_{k=1}^{\infty}(1-1 / n)^{k} e_{k} z^{k}$ where e_{k} is the canonical basis of ℓ_{2}.

Using (2.1) one has that

$$
\left\|f_{n}\right\|_{B_{2}\left(\ell_{2}\right)}=\frac{1}{\log (n+1)}\left(\sum_{k=1}^{\infty} \frac{(1-1 / n)^{2 k}}{k+1}\right)^{1 / 2}
$$

Hence $\sup _{n}\left\|f_{n}\right\|_{B_{2}\left(\ell_{2}\right)}<\infty$.
On the other hand, for all $n \in \mathbb{N}$

$$
\begin{aligned}
\left\|f_{n}(z)\right\|_{\ell_{2}} & =\frac{1}{\log (n+1)}\left(\sum_{k=1}^{\infty}(1-1 / n)^{2 k}|z|^{2 k}\right)^{1 / 2} \\
& \geq C \frac{1}{\log (n+1)}\left(\sum_{k=n}^{\infty}|z|^{2 k}\right)^{1 / 2} \\
& \geq C \frac{1}{\log (n+1)} \frac{|z|^{n}}{\left(1-|z|^{2}\right)^{1 / 2}}
\end{aligned}
$$

This shows that $F \notin B_{2}\left(\ell_{\infty}\left(\ell_{2}\right)\right)=B_{2}\left(\Pi_{2}(X, Y)\right)$ while $\left(f_{n}\right) \in \ell_{\infty}\left(B_{2}\left(\ell_{2}\right)\right)$ and therefore $T_{F} \in \Pi_{2}\left(X, B_{2}(Y)\right)$.

Definition 4.9. Let X, Y be two complex Banach spaces and let $F(z)=\sum_{n=0}^{\infty} T_{n} z^{n}$ be a function in $\mathcal{H}(\mathbb{D}, \mathcal{L}(X, Y))$. We denote by $S_{F}: \mathcal{P}(X) \rightarrow Y$ the linear operator given by

$$
S_{F}(g)=\int_{\mathrm{D}} F(z)(g(\bar{z})) d m(z)=\sum_{n \geq 0} \frac{T_{n}\left(x_{n}\right)}{n+1}
$$

for $g=\sum_{n \geq 0} u_{n} \otimes x_{n}$.

Theorem 4.10. (see $[7]) \mathcal{B}(\mathcal{L}(X, Y))=\mathcal{L}\left(B_{1}(X), Y\right)$ (via the map $F \mapsto S_{F}$) with equivalent norms.

Proof. Theorem 3.14, Proposition 3.16 and $\mathcal{L}(X \hat{\otimes} Y, Z)=\mathcal{L}(X, \mathcal{L}(Y, Z))$ imply that

$$
\mathcal{L}\left(B_{1} \hat{\otimes} X, Y\right)=\mathcal{L}\left(B_{1}, \mathcal{L}(X, Y)\right)=\mathcal{B}(\mathcal{L}(X, Y))
$$

It is rather clear that the mapping which gives the isomorphism is actually $F \mapsto S_{F}$.

Proposition 4.11. Let $1<p<\infty$ and let X and Y be complex Banach spaces. Then $B_{p}(\mathcal{L}(X, Y))$ (resp. $\mathcal{B}_{0}(\mathcal{L}(X, Y))$) is isomorphically embedded in $\mathcal{K}\left(B_{p^{\prime}}(X), Y\right)$ (resp. $\mathcal{K}\left(B_{1}(X), Y\right)$), via the map $F \mapsto S_{F}$.

Proof. For the case $F \in \mathcal{B}_{0}(\mathcal{L}(X, Y))$, Theorem 4.10 gives $\|F\|_{\mathcal{B}(L(X, Y))} \approx\left\|S_{F}\right\|$. In the case $F \in B_{p}(\mathcal{L}(X, Y))$. Clearly

$$
\left\|S_{F}(g)\right\| \leq \int_{\mathrm{D}}\|F(z)\|\|g(\bar{z})\| d m(z) \leq\|F\|_{B_{p}(\mathcal{L}(X, Y))}\|g\|_{B_{p^{\prime}}(X)}
$$

So $\left\|S_{F}\right\| \leq C\|F\|_{B_{p}(\mathcal{L}(X, Y))}$. The compactness of S_{F} in both cases follows from the fact that $\mathcal{P}(X)$ is dense in the corresponding spaces and for polynomials F then S_{F} is finite rank operator.

Remark 4.12. Let X, Y be two complex Banach spaces. If $T: \mathcal{P}(X) \rightarrow Y$ is a linear operator such that the linear operators $T_{n}: X \rightarrow Y$ given by $T_{n}(x)=T\left(u_{n} \otimes x\right)$ are bounded and $\lim \sup _{n \rightarrow \infty}\left\|T_{n}\right\|^{1 / n} \leq 1$ then we can define the $\mathcal{L}(X, Y)$-valued analytic function

$$
F_{T}(z)=\sum_{n \geq 0}(n+1) T_{n} z^{n}
$$

It is worth mentioning that this is the inverse map of $F \mapsto S_{F}$, so that $F_{S_{F}}=F$ and $S_{F_{T}}=T$.

Definition 4.13. Let $1<p<\infty$, and let X be a complex Banach space and $T \in \mathcal{L}\left(B_{p^{\prime}}, X\right)$. We define $f_{T} \in \mathcal{H}(\mathbb{D}, X)$ given by

$$
f_{T}(z)=T\left(K_{z}\right)
$$

Remark 4.14. $T \in \mathcal{L}\left(B_{1}, X\right)$ if and only if $f_{T} \in \mathcal{B}(X)$ (see Proposition 3.16). If $p>2$ and $T \in \mathcal{L}\left(B_{p^{\prime}}, X\right)$ then $f_{T} \in B_{q}(X)$ for $1 \leq q<\frac{p}{2}$ (use Proposition 3.3).

We would like to find some properties of T to get that $f_{T} \in B_{p}(X)$.
For that purpose we need to use the following class of operators.

Definition 4.15. (see [6] and [5]) Let E be a Banach lattice and Y a Banach space. A linear operator $T \in \mathcal{L}(E, Y)$ is said to be positive p-summing (denoted $\left.T \in \Lambda_{p}(E, Y)\right)$ if there is a constant $C>0$ such that for every $k \in \mathbb{N}$ and positive elements $e_{1}, e_{2}, \ldots, e_{k} \in E$ we have

$$
\left(\sum_{i=1}^{k}\left\|T\left(e_{i}\right)\right\|^{p}\right)^{1 / p} \leq C \sup _{\left\|e^{*}\right\|_{E^{*}} \leq 1}\left(\sum_{i=1}^{k}\left|\left\langle e_{i}, e^{*}\right\rangle\right|^{p}\right)^{1 / p}
$$

Its norm is given by the infimum of the constants C satisfying the previous inequality and denoted by $\lambda_{p}(T)$.

Remark 4.16. In the case $p=1$ these operators are also known as cone absolutely summing (c.a.s) operators (see [20]).
In this case, $T \in \Lambda_{1}(E, Y)$ if and only if there is a constant $C>0$ such that for every $k \in \mathbb{N}$ and positive elements $e_{1}, e_{2}, \ldots, e_{k} \in E$ we have

$$
\begin{equation*}
\sum_{i=1}^{k}\left\|T\left(e_{i}\right)\right\| \leq C\left\|\sum_{i=1}^{k} e_{i}\right\| \tag{4.1}
\end{equation*}
$$

It is easy to see that $\Lambda_{p_{1}}(E, Y) \subset \Lambda_{p_{2}}(E, Y)$ if $p_{1}<p_{2}$, and it was shown in [5] that, for $E=L_{p}(\mu)$, we have $\Lambda_{r}(E, Y)=\Lambda_{1}(E, Y)$ for all $1 \leq r \leq p^{\prime}$.

Theorem 4.17. Let $1<p<\infty$ and X a Banach space.
(i) If $T \in \mathcal{L}\left(B_{p^{\prime}}, X\right)$ and $f_{T} \in B_{p}(X)$ then T is compact.
(ii) If $T \in \Pi_{p}\left(B_{p^{\prime}}, X\right)$ then $f_{T} \in B_{p}(X)$.
(iii) If $T \in \Lambda_{p}\left(L_{p^{\prime}}(m), X\right)$ and T_{1} denotes its restriction to $B_{p^{\prime}}$ then $f_{T_{1}} \in B_{p}(X)$.

Proof. To see (i) we show that $T=S_{f_{T}}$ and then (ii) in Proposition 4.11 gives the compactness.

Indeed, since $f_{T}(z)=T\left(K_{z}\right)=\sum_{n=0}^{\infty}(n+1) T u_{n} z^{n}$, we have for any $m \in \mathbb{N}$

$$
S_{f_{T}}\left(u_{m}\right)=\int_{\mathrm{D}} \sum_{n=0}^{\infty}(n+1) T u_{n} \bar{z}^{n} z^{m} d m(z)=T\left(u_{m}\right) .
$$

To prove (ii) let us first observe that if $\phi \in B_{p}$

$$
\langle K(z), \phi\rangle=\int_{D} K_{z}(w) \phi(\bar{w}) d m(w)=\phi(z)
$$

Hence it follows that the function $K: \mathbb{D} \rightarrow B_{p^{\prime}}$ verifies, for all $\phi \in\left(B_{p^{\prime}}\right)^{*}$, that $z \mapsto$ $\langle K(z), \phi\rangle$ belongs to $L_{p}(m)$. Now Remark 4.7 gives that $f_{T}(z)=T\left(K_{z}\right) \in L_{p}(m, X)$.
To see (iii) let us observe first that the measure $G(E)=T\left(\chi_{E}\right)$ belongs to $V_{p}(m, X)$.

Indeed, for any partition π we have

$$
\begin{aligned}
\sum_{A \in \pi} \frac{\|G(A)\|^{p}}{m(A)^{p-1}} & =\sum_{A \in \pi}\left\|T\left(\frac{\chi_{A}}{m(A)^{1 / p^{\prime}}}\right)\right\|^{p} \\
& \leq \lambda_{p}^{p}(T) \sup \left\{\sum_{A \in \pi} \left\lvert\,\left(\int_{A} g(z) d m(z) \frac{1}{m(A)^{1 / p^{\prime}}}{ }^{p}:\|g\|_{p}=1\right\}\right.\right. \\
& =\lambda_{p}^{p}(T) \sup \left\{\left\|\sum_{A \in \pi} \frac{\int_{A} g(z) d m(z)}{m(A)} \chi_{A}\right\|_{p}^{p}:\|g\|_{p}=1\right\} \\
& \leq \lambda_{p}^{p}(T)
\end{aligned}
$$

Given $z \in \mathbb{D}$ we get, taking $G_{c}(E)=G(\bar{E})$,

$$
f_{T_{1}}(z)=T\left(K_{z}\right)=\int_{\mathrm{D}} K_{z}(w) d G(w)=\int_{\mathrm{D}} K_{z}(\bar{w}) d G_{c}(w)=P G_{c}(z)
$$

and then $F_{T}=P G_{c} \in B_{p}(X)$ according to Theorem 3.8.
Theorem 4.18. Let $1<p<\infty$, and let X be a complex Banach space and $F \in$ $B_{1}(X)$. Then $F \in B_{p}(X)$ if and only if the linear operator $\Phi_{F}(\phi)=\int_{\mathrm{D}} F(z) \phi(\bar{z}) d m(z)$ defined on the subspace of simple functions extends to an operator in $\Lambda_{p}\left(L_{p^{\prime}}(m), X\right)$.
Moreover $\|F\|_{B_{p}(X)} \sim \lambda_{p}\left(\Phi_{F}\right)$.
Proof. Let us assume that $F \in B_{p}(X)$, which ensures that $\Phi_{F} \in \mathcal{L}\left(L_{p^{\prime}}(m), X\right)$. Now take positive functions $\phi_{1}, \phi_{2}, \ldots, \phi_{n} \in L_{p^{\prime}}(m)$. We have that

$$
\begin{aligned}
\sum_{k=1}^{n}\left\|\Phi_{F} \phi_{k}\right\|^{p} & =\sum_{k=1}^{n}\left|\int_{\mathbb{D}} F(\bar{z}) \phi_{k}(z) d m(z)\right|^{p} \\
& \leq\|F\|_{B_{p}(X)}^{p} \sum_{k=1}^{n}\left(\int_{\mathbb{D}} \frac{\|F(z)\|}{\|F\|_{B_{p}(X)}} \phi_{k}(z) d m(z)\right)^{p} \\
& \leq\|F\|_{B_{p}(X)}^{p} \sup _{\|\psi\|_{p}=1} \sum_{k=1}^{n}\left|\left\langle\psi, \phi_{k}\right\rangle\right|^{p} .
\end{aligned}
$$

This shows that $\lambda_{p}\left(\Phi_{F}\right) \leq C\|F\|_{B_{p}(X)}$.
To see the converse let us observe that $f_{S}=F$, where S denotes the restriction of Φ_{F} to $B_{p^{\prime}}$. Indeed, for all $z \in \mathbb{D}$

$$
S\left(K_{z}\right)=\Phi_{F}\left(K_{z}\right)=\int_{\mathbb{D}} F(w) K_{z}(\bar{w}) d m(w)=F(z)
$$

Now (iii) in Theorem 4.17 gives that $F \in B_{p}(X)$ and $\|F\|_{B_{p}(X)} \leq C \lambda_{p}\left(\Phi_{F}\right)$.

From Theorem 3.16 we have that $\mathcal{B}(X)=\mathcal{L}\left(B_{1}, X\right)$. The next result covers the cases $1<p<\infty$.

Corollary 4.19. Let $1<p<\infty$. Then

$$
\left.B_{p}(X)=\left\{T: B_{p^{\prime}} \rightarrow X: T P \in \Lambda_{p}\left(L_{p^{\prime}}(m), X\right)\right)\right\}
$$

Moreover $\lambda_{p}(T P) \approx\left\|f_{T}\right\|_{B_{p}(X)}$.
Proof. If $T P$ is positive p-summing then (iii) in Theorem 4.17 gives that $F \in B_{p}(X)$ for $F(z)=T\left(K_{z}\right)$.

To see the converse, assume that $F \in B_{p}(X)$. Let Φ_{F} as in Theorem 4.18 and let T be its restriction to $B_{p^{\prime}}$. Now take the vector measure defined by $G(E)=T\left(P\left(\chi_{E}\right)\right)$ and denote $G_{c}(E)=G(\bar{E})$ for all measurable set E. We have that

$$
\begin{aligned}
G_{c}(E) & =T\left(\int_{\bar{E}} K(., \bar{w}) d m(w)\right)=T\left(\int_{E} K(., w) d m(w)\right) \\
& =\int_{E} T(K(., w)) d m(w)=\int_{E} \tilde{\Phi}_{F}\left(K_{w}\right) d m(w)=\int_{E} F(w) d m(w)
\end{aligned}
$$

Therefore $d G_{c}=F d m$.
This obviously implies that $T P(\phi)=\int_{\mathbb{D}} F(z) \phi(\bar{z}) d m(z)$ for all $\phi \in L_{p^{\prime}}(m)$, and, in particular

$$
\|T P(\phi)\| \leq \int_{\mathbb{D}}\|F(z)\| \phi(\bar{z}) d m(z)
$$

for all positive $\phi \in L_{p^{\prime}}(m)$.
A simple computation using (4.1) now shows that $T P$ is cone abolutely summing and hence also positive p-summing.

5. $\quad B_{p}(X)$ is complemented in $\ell_{p}(X)$.

A classical result in the theory of Bergman spaces is the isomorphism between B_{p} and ℓ_{p} for each $p \geq 1$ (see [21]). It is enough to see that B_{p} is isomorphic to a complemented subspace of ℓ_{p}, since then it is automatically isomorphic to ℓ_{p}. In the vector case, Theorem 3.14 gives the isomorphism for $p=1$:

Theorem 5.1. For any complex Banach space $X, B_{1}(X)$ is isomorphic to $\ell_{1}(X)$.
Proof. $B_{1}(X)$ is isomorphic to $B_{1} \hat{\otimes} X$, and then to $\ell_{1} \hat{\otimes} X=\ell_{1}(X)$.

As for $p>1$, we will show next that $B_{p}(X)$ is isomorphic to a complemented subspace of $\ell_{p}(X)$. The proof follows similar ideas to the ones used to get a so-called atomic decomposition of B_{p} (see [22], theorem 4.4.6).
For each $z \in \mathbb{D}$, let φ_{z} the involutive Möbius transformation fixing the unit disc and verifying $\varphi_{z}(0)=z$ and $\varphi_{z}(z)=0$, that is

$$
\varphi_{z}(w)=\frac{z-w}{1-\bar{z} w} .
$$

The Bergman metric between z and w is defined by

$$
\beta(z, w)=\frac{1}{2} \log \frac{1+\left|\varphi_{z}(w)\right|}{1-\left|\varphi_{z}(w)\right|}
$$

Note that $\left|\varphi_{z}(w)\right|$ is the hyperbolic tangent of $\beta(z, w)$.
This distance β is not bounded on \mathbb{D}, and for any $z \in \mathbb{D}$ and $r>0$ the β-ball

$$
E(z, r)=\{w \in \mathbb{D} ; \beta(w, z)<r\}
$$

is the euclidean disc with center $\frac{1-s^{2}}{1-s^{2}|z|^{2}} z$ and radius $\frac{1-|z|^{2}}{1-s^{2}|z|^{2}} s$, where $s=\tanh r$.
One relevant connection between Bergman metric and Bloch spaces is the following result:

Theorem 5.2. (see [22], 5.1.6.) $\beta(z, w) \sim \sup \left\{|f(z)-f(w)| ;\|f\|_{\mathcal{B}} \leq 1\right\}$ (with constants independent from z and w in \mathbb{D}).

In particular this allows us to get the following remark.
Corollary 5.3. If $F \in \mathcal{B}(X)$ then $F: \mathbb{D} \rightarrow X$ is a Lipschitz map with respect to the Bergman metric.

Proof. A look at Proposition 3.16 gives that $F(z)=T\left(K_{z}\right)$ for some $T \in \mathcal{L}\left(B_{1}, X\right)$. Hence

$$
\begin{aligned}
\|F(z)-F(w)\| & \leq C\|T\|\left\|K_{z}-K_{w}\right\|_{B_{1}} \\
& \left.\leq C\|T\| \sup \left|\xi\left(K_{z}-K_{w}\right)\right| ; \xi \in B_{1}^{*}\right\} \\
& \sim \sup \left\{|f(z)-f(w)| ;\|f\|_{\mathcal{B}}=1\right\} \\
& \sim \beta(z, w) .
\end{aligned}
$$

The key point in order to relate $B_{p}(X)$ to $\ell_{p}(X)$ is the use of sequences in \mathbb{D} with good separation properties with respect to Bergman metric. The next lemma resumes some well known results (see for instance [22]):

Lemma 5.4. There exists a number $N \in \mathbb{N}$ such that, for any $r \leq 1$, we can take a sequence $\left(\lambda_{n}\right)$ in \mathbb{D} and a decomposition of \mathbb{D} into a disjoint union of measurable sets E_{n} such that
(i) $E\left(\lambda_{n}, r / 4\right) \subseteq E_{n} \subseteq E\left(\lambda_{n}, r\right)$ for every n,
(ii) every point in \mathbb{D} belongs to no more than N discs from $\left\{E\left(\lambda_{n}, 2 r\right)\right\}$,
(iii) $\left|E_{n}\right| \sim\left|E\left(\lambda_{n}, r\right)\right| \sim\left|E\left(\lambda_{n}, 2 r\right)\right| \sim\left(1-\left|\lambda_{n}\right|^{2}\right)^{2} \sim|E(w, r)|$ for any $w \in E\left(\lambda_{n}, 2 r\right)$ and
(iv) $1-\left|\lambda_{n}\right|^{2} \leq C\left(1-|z|^{2}\right)$ for each $z \in E\left(\lambda_{n}, 2 r\right)$.

The well known fact that, for all $0<p<\infty,|f|^{p}$ is a subharmonic function with respect to β-balls for any analytic function f, also holds true in the vector valued setting.

Lemma 5.5. Let X be any complex Banach space, let $f \in \mathcal{H}(\mathbb{D}, X)$ and $p>0$. There exists a constant $C>0$ such that we have

$$
\|f(z)\|^{p} \leq \frac{C}{|E(z, r)|} \int_{E(z, r)}\|f(w)\|^{p} d m(w)
$$

for any $r \leq 1$ and $z \in \mathbb{D}$.
Proof. From the scalar valued case we get $C>0$ such that

$$
\left|x^{*} f(z)\right|^{p} \leq \frac{C}{|E(z, r)|} \int_{E(z, r)}\left|x^{*} f(w)\right|^{p} d m(w) \leq \frac{C}{|E(z, r)|} \int_{E(z, r)}\|f(w)\|^{p} d m(w)
$$

for all $r \leq 1$ and $z \in \mathbb{D}$.
Now take the supremum over the unit ball of X^{*} to finish the proof.
Corollary 5.6. Let $r<1$ and $p>1$, and let X be a Banach space. Let $Q_{r}=$ $Q_{r, p, X}: B_{p}(X) \rightarrow L_{p}(m, X)$ be defined by

$$
Q_{r}(f)=\sum_{n=1}^{\infty} f\left(\lambda_{n}\right) \chi_{E_{n}}
$$

Then Q_{r} is a bounded operator.
Proof. By Lemmas 5.5 and 5.4

$$
\begin{aligned}
\sum_{n=1}^{\infty}\left|E_{n}\right|\left\|f\left(\lambda_{n}\right)\right\|^{p} & \leq C \sum_{n=1}^{\infty} \int_{E\left(\lambda_{n}, r\right)}\|f(z)\|^{p} d m(z) \\
& =\int_{\mathbb{D}}\|f(z)\|^{p} \sum_{n=1}^{\infty} \chi_{E\left(\lambda_{n}, r\right)}(z) d m(z) \\
& \leq C N \int_{\mathbb{D}}\|f(z)\|^{p} d m(z)
\end{aligned}
$$

This shows the boundedness of $Q_{r, p, X}$.
Lemma 5.7. Let $r \leq 1$. The linear operator

$$
f \mapsto \sum_{n=1}^{\infty}\left(f-f\left(\lambda_{n}\right)\right) \chi_{E_{n}}
$$

is bounded from $B_{p}(X)$ to $L_{p}(m, X)$, and its norm is less or equal than $C \tanh r$.
Proof. Let $z \in E_{n}$, and observe that

$$
\left\|f(z)-f\left(\lambda_{n}\right)\right\|=\left\|\int_{\left[\lambda_{n}, z\right]} f^{\prime}(w) d w\right\| \leq\left(\sup _{w \in\left[\lambda_{n}, z\right]}\left\|f^{\prime}(w)\right\|\right)\left|z-\lambda_{n}\right|
$$

Since $E(w, r) \subset E\left(\lambda_{n}, 2 r\right)$ for any $z \in E_{n}$ and $w \in\left[\lambda_{n}, z\right]$, by Lemma 5.5 and the properties of $\left(\lambda_{n}\right)$ we have that

$$
\left\|f^{\prime}(w)\right\|^{p} \leq \frac{C}{|E(w, r)|} \int_{E(w, r)}\left\|f^{\prime}\right\|^{p} d m \leq \frac{C}{\left|E_{n}\right|} \int_{E\left(\lambda_{n}, 2 r\right)}\left\|f^{\prime}\right\|^{p} d m
$$

Hence if $w \in\left[\lambda_{n}, z\right]$

$$
\left\|f(z)-f\left(\lambda_{n}\right)\right\|^{p} \leq \frac{C}{\left|E_{n}\right|}\left(\int_{E\left(\lambda_{n}, 2 r\right)}\left\|f^{\prime}\right\|^{p} d m\right)\left|z-\lambda_{n}\right|^{p}
$$

Let $s=\tanh r$. As $E\left(\lambda_{n}, r\right)$ is a disc with center $z_{0}=\frac{1-s^{2}}{1-s^{2}\left|\lambda_{n}\right|^{2}} \lambda_{n}$ and radius $R=\frac{1-\left|\lambda_{n}\right|^{2}}{1-s^{2}\left|\lambda_{n}\right|^{2}} s$, for any z in it

$$
\left|z-\lambda_{n}\right| \leq R+\left|\lambda_{n}-z_{0}\right|=\frac{1-\left|\lambda_{n}\right|^{2}}{1-s^{2}\left|\lambda_{n}\right|^{2}} s\left(1+s\left|\lambda_{n}\right|\right) \leq C s\left(1-\left|\lambda_{n}\right|^{2}\right)
$$

and then

$$
\left\|f(z)-f\left(\lambda_{n}\right)\right\|^{p} \leq \frac{C}{\left|E_{n}\right|} s^{p}\left(\int_{E\left(\lambda_{n}, 2 r\right)}\left\|f^{\prime}\right\|^{p} d m\right)\left(1-\left|\lambda_{n}\right|^{2}\right)^{p}
$$

Therefore

$$
\int_{E_{n}}\left\|f(z)-f\left(\lambda_{n}\right)\right\|^{p} d m(z) \leq C s^{p}\left(1-\left|\lambda_{n}\right|^{2}\right)^{p} \int_{E\left(\lambda_{n}, 2 r\right)}\left\|f^{\prime}\right\|^{p} d m
$$

We use now that $\left(1-\left|\lambda_{n}\right|^{2}\right)^{p} \leq C\left(1-|z|^{2}\right)^{p}$ for each $z \in E\left(\lambda_{n}, 2 r\right)$, and then

$$
\int_{E_{n}}\left\|f(z)-f\left(\lambda_{n}\right)\right\|^{p} d m(z) \leq C s^{p} \int_{E\left(\lambda_{n}, 2 r\right)}\left(1-|z|^{2}\right)^{p}\left\|f^{\prime}(z)\right\|^{p} d m(z)
$$

Hence

$$
\sum_{n=1}^{\infty} \int_{E_{n}}\left\|f(z)-f\left(\lambda_{n}\right)\right\|^{p} d m(z) \leq C N s^{p} \int_{\mathbb{D}}\left(1-|z|^{2}\right)^{p}\left\|f^{\prime}(z)\right\|^{p} d m(z)
$$

which is bounded by $C s^{p}\|f\|_{B_{p}(X)}^{p}$ in view of Theorem 2.5.
Corollary 5.8. There exist $r_{0}>0$ such that $P Q_{r, p, X}: B_{p}(X) \rightarrow B_{p}(X)$ is an isomorphism for all $r<r_{0}, 1<p<\infty$ and all Banach spaces X.

Proof. We shall show this by noting that, if I denotes the identity in $B_{p}(X)$, then $\left\|I-P Q_{r}\right\|$ tends to zero as $r \rightarrow 0$. Recall that then, if r is such that $\left\|I-P Q_{r}\right\|<1$, the inverse of $P Q_{r}$ is just $\sum_{n=0}^{\infty}\left(I-P Q_{r}\right)^{n}$.
Now from Lemma 5.7 one has that $I-P Q_{r} \in \mathcal{L}\left(B_{p}(X), B_{p}(X)\right)$ and $\left\|I-P Q_{r}\right\| \leq$ $C\|P\| \tanh r$.

Theorem 5.9. For every $p>1$ and every complex Banach space X, the Bergman space $B_{p}(X)$ is isomorphic to a complemented space of $\ell_{p}(X)$.

Proof. We take r small enough to have that $P Q_{r}$ is an isomorphism on $B_{p}(X)$. Then the identity in $B_{p}(X)$ factorizes as $I=\left(P Q_{r}\right)^{-1} P Q_{r}$. Now write $\tilde{Q}_{r}: B_{p}(X) \rightarrow \ell_{p}(X)$ for the operator given by

$$
\tilde{Q}_{r}(f)=\left(\left|E_{n}\right|^{1 / p} f\left(\lambda_{n}\right)\right)
$$

and $J: \ell_{p}(X) \rightarrow L_{p}(m, X)$ for the one given by

$$
J\left(\left(x_{n}\right)\right)=\sum_{n=1}^{\infty}\left|E_{n}\right|^{-1 / p} x_{n} \chi_{E_{n}}
$$

Since J is an embedding and \tilde{Q}_{r} is bounded due to Corollary 5.6 we can factorize the identity as $I=\left(P Q_{r}\right)^{-1} P J \tilde{Q}_{r}$ and therefore $B_{p}(X)$ is isomorphic to the image of \tilde{Q}_{r} in $\ell_{p}(X)$.

Theorem 5.10. Let $r<1, p>1$ and X be a Banach space. Let $P_{r}=P_{r, p, X}$ the linear operator $P_{r}: V_{p}(m, X) \rightarrow B_{p}(X)$ defined by

$$
P_{r}(G)=\sum_{n=1}^{\infty} K_{\lambda_{n}} \otimes G\left(\bar{E}_{n}\right)
$$

Then the linear operator P_{r} is bounded.
Moreover $\left\|P_{r, p, X}\right\|=\left\|Q_{r, p^{\prime}, X^{*}}\right\|$.
Proof. For any polynomial $g \in \mathcal{P}\left(X^{*}\right)$ we have that

$$
\left\langle\sum_{n=1}^{\infty} K_{\lambda_{n}} \otimes G\left(\bar{E}_{n}\right), g\right\rangle=\sum_{n=1}^{\infty} G\left(\bar{E}_{n}\right) g\left(\lambda_{n}\right)=\left\langle\sum_{n=1}^{\infty} g\left(\lambda_{n}\right) \chi_{E_{n}}, G\right\rangle=\left\langle Q_{r, p^{\prime}, X^{*}}(g), G\right\rangle
$$

Since $V_{p}(m, X)$ is isometrically embedded in $\left(L_{p^{\prime}}\left(m, X^{*}\right)\right)^{*}$ it follows that

$$
\left|\left\langle\sum_{n=1}^{\infty} K_{\lambda_{n}} \otimes G\left(E_{n}\right), g\right\rangle\right| \leq\|G\|_{V_{p}(m, X)}\left\|\sum_{n=1}^{\infty} g\left(\lambda_{n}\right) \chi_{E_{n}}\right\|_{L_{p^{\prime}}\left(m, X^{*}\right)}
$$

Now Corollary 5.6 gives that $\left\|P_{r, p, X}\right\| \leq\left\|Q_{r, p^{\prime}, X^{*}}\right\|$.
A similar argument shows that $Q_{r, p^{\prime}, X}^{*}=P_{r, p, X^{*}}$, giving the other inequality.
Let us now compare \bar{P}_{r} and the Bergman projection on $V_{p}(m, X)$.
Theorem 5.11. Let $p>1$ and X be a Banach space. Then
(i) $\lim _{r \rightarrow 0} P_{r}=P$.
(ii) The restriction of P_{r} to $B_{p}(X)$ given by

$$
P_{r}(g)=\sum_{n=1}^{\infty} K_{\lambda_{n}} \otimes \int_{\bar{E}_{n}} g(z) d m(z)
$$

is an isomorphism for r close enough to zero.

Proof. An easy computation shows that $\langle P(G), g\rangle=\langle g, G\rangle$ for any $G \in V_{p}(m \cdot X)$ and $g \in \mathcal{P}\left(X^{*}\right)$.
Therefore for all $G \in V_{p}(m, X)$ and $g \in \mathcal{P}\left(X^{*}\right)$ we have

$$
\left\langle\left(P-P_{r}\right)(G), g\right\rangle=\left\langle g-\sum_{n=1}^{\infty} g\left(\lambda_{n}\right) \chi_{E_{n}}, G\right\rangle
$$

Now applying Lemma 5.7 we get $\left\|P-P_{r}\right\| \leq C \tanh r$ and (i) follows.
(ii) is proved the same way as Corollary 5.8.

Note that $\beta(z, w)=\beta(\bar{z}, \bar{w})$, and then $\left(\overline{\lambda_{n}}\right)$ and $\left(\bar{E}_{n}\right)$ satisfy the same estimates and properties as $\left(\lambda_{n}\right)$ and $\left(E_{n}\right)$.

Theorem 5.12. Let X be a Banach space and $p>1$. For each $f \in B_{p}(X)$ we denote

$$
S_{r}(f)=\sum_{n=1}^{\infty}\left|E_{n}\right| K_{\lambda_{n}} \otimes f\left(\bar{\lambda}_{n}\right)
$$

Then $f=\lim _{r \rightarrow 0} S_{r}(f)$ in B_{p}.
Proof. We shall see that $S_{r}=S_{r, p, X}: B_{p}(X) \rightarrow B_{p}(X)$ are bounded operators and $\lim _{r \rightarrow 0} S_{r}=I$.
Let us denote by \bar{Q}_{r} the operator associated to $\left(\bar{\lambda}_{n}\right)$ and $\left(\bar{E}_{n}\right)$, that is $\bar{Q}_{r}(f)=$ $\sum_{n=1}^{\infty} f\left(\bar{\lambda}_{n}\right) \chi_{\bar{E}_{n}}$. We actually have $S_{r}=P_{r} \bar{Q}_{r}$ and

$$
\left\|I-P_{r} \bar{Q}_{r}\right\| \leq\left\|I-P \bar{Q}_{r}\right\|+\left\|P \bar{Q}_{r}-P_{r} \bar{Q}_{r}\right\| \leq\left\|I-P \bar{Q}_{r}\right\|+\left\|P-P_{r}\right\|\left\|Q_{r}\right\| .
$$

The result follows from Corollary 5.8 and Theorem 5.11.

Acknowledgements

Both authors have been partially supported by Proyecto D.G.E.S. PB98-0146.

References

[1] J.M. Anderson, J. Clunie and Ch. Pommerenke, On Bloch functions and normal functions, J. Reine Angew. Math. 270, (1974), 12-37.
[2] J.M. Anderson, A.L. Shields, Coefficient multipliers of Bloch functions, Trans. Amer. Math. Soc. 224, (1976), 256-265.
[3] S. Axler, Bergman spaces and their operators, Survey on some recent results on Operator Theory (eds. J.B. conway and B.B. Morrel), Pitman Res. Notes math. 171, (1988), 1-50.
[4] J.L Arregui, O. Blasco, Multipliers of vector-valued Bergman spaces, (to appear).
[5] O. Blasco, Positive p-summing operators on L^{p}-spaces, Proc. Amer. Math. Soc. 100, (1987), 275-280.
[6] O. Blasco, Positive p-summing operators, vector measures and tensor products, Proc. Edinburgh. Math. Soc. 31, (1988), 179-184.
[7] O. Blasco, Spaces of vector valued analytic functions and applications, London Math. Soc. Lecture Notes Series 158, (1990), 33-48.
[8] O. Blasco, A characterization of Hilbert spaces in terms of multipliers between spaces of vector valued analytic functions, Michigan Math. J. 42, (1995), 537-543.
[9] O. Blasco, Vector valued analytic functions of bounded mean oscillation and geometry of Banach spaces, Illinois J. 41 , (1997), 532-558.
[10] O. Blasco, Remarks on vector-valued BMOA and vector-valued multipliers, Positivity 4 (2000), 339-356.
[11] A. Defant and K. Floret, Tensor Norms and Operator Ideals, North-Holland, Amsterdam, (1993).
[12] J. Diestel, J.J. Uhl, Vector measures, American Mathematical Society, Mathematical Surveys, Number 15, R. I., (1977).
[13] J. Diestel, H. Jarchow, A. Tonge Absolutely summing operators, Cambridge University Press, New York, (1995).
[14] N. Dinculeanu, Vector measures, International Series of Monographs in Pure and Applied Mathematics, Volume 95, Pergamon Press, (1967).
[15] P. Duren, Theory of H^{p}-spaces Academic Press, New York, (1970).
[16] J.B. Garnett, Bounded analytic functions, Academic Press, New York, (1981).
[17] P.R. Halmos, Measure theory, Van Nostrand, New York, (1950).
[18] G. Pisier, Factorization of operators and geometry of Banach spaces, CBM 60, Amer. Math. Soc. Providence R.I., (1985).
[19] A. Pietsch, Operator Ideals , North-Holland, Amsterdam, (1980).
[20] H.H. Schaefer, Banach lattices and positive operators, Springer-Verlag, New York, (1974).
[21] P. Wojtaszczyk, Banach spaces for analysts, Cambridge Univ. Press, New York, (1991).
[22] K. Zhu, Operators on Bergman spaces, Marcel Dekker, Inc., New York, (1990).
[23] A. Zygmund, Trigonometric series, Cambrigde Univ. Press, New York, (1959).

Departamento de Matemáticas
Universidad de Zaragoza 50005 Zaragoza, Spain
E-mail:
arregui@posta.unizar.es
Departamento de Análisis Matemático
Universidad de Valencia
46100 Burjassot, Spain
E-mail:
oblasco@uv.es

[^0]: 1991 Mathematics Subject Classification. 46B20, 46E40
 Keywords and phrases. Spaces of vector-valued analytic functions, Bergman kernels, vector measures, bounded and summing operators, duality and projections in Banach spaces.

