# Hölder inequality for functions that are integrable with respect to bilinear maps. 

Oscar Blasco<br>oscar.blasco@uv.es<br>Department of Mathematics<br>Universidad de Valencia<br>Burjassot 46100 (Valencia), Spain

J.M. Calabuig<br>jmcalabu@mat.upv.es<br>Department of Applied Math.<br>Universidad Politécnica de Valencia<br>Valencia 46022, Spain

30th August 2006


#### Abstract

Let $(\Omega, \Sigma, \mu)$ be a finite measure space, $1 \leq p<\infty, X$ be a Banach space $X$ and $\mathbf{u}: X \times Y \rightarrow Z$ be a bounded bilinear map. We say that an $X$-valued function $f$ is $p$-integrable with respect to u whenever $\sup _{\|y\|=1} \int_{\Omega}\|\mathrm{u}(f(w), y)\|^{p} d \mu<\infty$. We get an analogue to Hölder's inequality in this setting.


Key words and phrases. Vector-valued functions, Pettis and Bochner integrals, bilinear maps. 2000 Mathematical Subjects Classifications. Primary 42B30, 42B3, Secondary $47 B 35$

## 1 Introduction

Throughout the paper $1 \leq p<\infty,(\Omega, \Sigma, \mu)$ will be a finite complete measure space, $X, Y$ and $Z$ will stand for Banach spaces over $\mathbb{K}(\mathbb{R}$ or $\mathbb{C})$, and $u: X \times Y \rightarrow Z$ will denote a bounded bilinear map. We denote by $L^{0}(X)$ and $L_{\text {weak }}^{0}(X)$ the spaces of strongly and weakly measurable functions with values in $X$ and by $L_{\mathrm{weak}^{*}}^{0}\left(X^{*}\right)$ the space of weak*-measurable functions with values in $X^{*}$. We write $L^{p}(X), L_{\text {weak }}^{p}(X)$ and $L_{\mathrm{weak}^{*}}^{p}\left(X^{*}\right)$ for the space of functions in $L^{0}(X), L_{\text {weak }}^{0}(X)$ and $L_{\mathrm{weak}^{*}}^{0}\left(X^{*}\right)$ such that $\|f\| \in L^{p}$, $\left\langle f, x^{*}\right\rangle \in L^{p}$ for $x^{*} \in X^{*}$ and $\langle x, f\rangle \in L^{p}(\mu)$ for $x \in X$ respectively. Finally we use the notation $\mathcal{S}(X)$ for the space of $X$-valued simple functions and by $P^{p}(X)$ for the space of Pettis $p$-integrable functions $P^{p}(X)=L_{\text {weak }}^{p}(X) \cap L^{0}(X)$.

Let us start mentioning the following basic examples of bilinear maps:

$$
\begin{array}{cc}
\mathcal{B}_{X}: X \times \mathbb{K} \rightarrow X, & \mathcal{B}_{X}(x, \lambda)=\lambda x \\
\mathcal{D}_{X}: X \times X^{*} \rightarrow \mathbb{K}, & \mathcal{D}_{X}\left(x, x^{*}\right)=\left\langle x, x^{*}\right\rangle \\
\left(\mathcal{D}_{1}\right)_{X}: X^{*} \times X \rightarrow \mathbb{K}, & \left(\mathcal{D}_{1}\right)_{X}\left(x^{*}, x\right)=\left\langle x, x^{*}\right\rangle, \tag{3}
\end{array}
$$

In this paper we shall consider some spaces of $X$-valued functions which are $p$-integrable with respect to a bounded bilinear map $\mathrm{u}: X \times Y \rightarrow Z$, that is to say $X$-valued functions $f$ satisfying the condition $\mathrm{u}(f, y) \in L^{p}(Z)$ for all $y \in Y$. The cases $L^{p}(X), L_{\text {weak }}^{p}(X)$ and $L_{\text {weak* }}^{p}\left(X^{*}\right)$ correspond to the previous notion applied to the examples above.

Some other classes have been around for a long time for cases such us

$$
\begin{equation*}
\pi_{Y}: X \times Y \rightarrow X \hat{\otimes} Y, \quad \pi_{Y}(x, y)=x \otimes y \tag{4}
\end{equation*}
$$

$$
\begin{align*}
\tilde{\mathcal{O}}_{Y}: X \times \mathcal{L}(X, Y) \rightarrow Y, & \tilde{\mathcal{O}}_{Y}(x, T)=T(x)  \tag{5}\\
\mathcal{O}_{Y, Z}: \mathcal{L}(Y, Z) \times Y \rightarrow Z, & \mathcal{O}_{Y, Z}(T, y)=T(y) \tag{6}
\end{align*}
$$

A systematic study of theses spaces for general bilinear maps has been initiated in [6] and used to extend the results on boundedness from $L^{p}(Y)$ to $L^{p}(Z)$ of operator-valued kernels by M. Girardi and L. Weiss [10] corresponding to the bilinear map $\mathcal{O}_{Y, Z}$ to the case where $K: \Omega \times \Omega^{\prime} \rightarrow X$ is measurable and the integral operators are defined by

$$
T_{K}(f)(w)=\int_{\Omega^{\prime}} \mathbf{u}\left(K\left(w, w^{\prime}\right), f\left(w^{\prime}\right)\right) d \mu^{\prime}\left(w^{\prime}\right)
$$

The reader is also referred to [7] for an introduction of Fourier Analysis in the bilinear context. This allows to extend the results in $[2,4,5]$ regarding convolution by means of bilinear maps and Fourier coefficients for functions in these wider classes.

The aim of this paper is the consideration of Hölder inequality in this general contex.
It is well known and easy to see the following analogues of Hölder's inequality in the vector-valued setting: Let $1 \leq p_{1}, p_{2}, p_{3} \leq \infty$ and $\frac{1}{p_{1}}+\frac{1}{p_{2}}=\frac{1}{p_{3}}$.
(1) If $f \in L_{\text {weak }}^{p_{1}}(X)$ and $g \in L^{p_{2}}$ then $f g \in L_{\text {weak }}^{p_{3}}(X)$.
(2) If $f \in P^{p_{1}}(X)$ and $g \in L^{p_{2}}$ then $f g \in P^{p_{3}}(X)$.
(3) If $f \in L^{p_{1}}(X)$ and $g \in L^{p_{2}}$ then $f g \in L^{p_{3}}(X)$.
(4) If $f \in L^{p_{1}}(X)$ and $g \in L^{p_{2}}\left(X^{*}\right)$ then $\langle f, g\rangle \in L^{p_{3}}$.
(5) If $f \in L^{p_{1}}(\mathcal{L}(X, Y))$ and $g \in L^{p_{2}}(X)$ then $f(\cdot)(g(\cdot)) \in L^{p_{3}}(Y)$.

We shall try to understand the situation when one considers integrability with respect to general bilinear maps.

Let us mention some notions that were relevant for developing the general theory (see [6]). Given $x \in X$ and $y \in Y$ we shall be denoting by $\mathrm{u}_{x} \in \mathcal{L}(Y, Z)$ and $\mathrm{u}^{y} \in \mathcal{L}(X, Z)$ the linear operators $\mathrm{u}_{x}(y)=$ $\mathrm{u}(x, y)$ and $\mathbf{u}^{y}(x)=\mathrm{u}(x, y)$. A triple $(Y, Z, \mathbf{u})$ is called admissible for $X$ if the map $x \rightarrow \mathbf{u}_{x}$ is injective from $X \rightarrow \mathcal{L}(Y, Z)$ and $X$ is said to be $(Y, Z, \mathrm{u})$-normed (or normed by u ) if there exists $C>0$ such that for all $\|x\| \leq C\left\|\mathrm{u}_{x}\right\|, x \in X$.

Given a bounded bilinear map $\mathrm{u}: X \times Y \rightarrow Z$, we can define the "adjoint" $\mathrm{u}^{*}: X \times Z^{*} \rightarrow Y^{*}$ by the formula

$$
\left\langle y, \mathbf{u}^{*}\left(x, z^{*}\right)\right\rangle=\left\langle\mathbf{u}(x, y), z^{*}\right\rangle .
$$

Note that for the just mentioned examples we have:

$$
\mathcal{B}_{X}^{*}=\mathcal{D}_{X},\left(\pi_{Y}\right)^{*}=\widetilde{\mathcal{O}}_{Y^{*}} \text { and }\left(\mathcal{O}_{Y, Z}\right)^{*}\left(T, z^{*}\right)=\mathcal{O}_{Z^{*}, Y^{*}}\left(T^{*}, z^{*}\right)
$$

Let us start with the following definitions:
Definition 1 (see [6]) We say that $f: \Omega \rightarrow X$ belongs to $L_{\mathrm{u}}^{0}(X)$ if $\mathrm{u}(f, y) \in L^{0}(Z)$ for any $y \in Y$. We write $\mathcal{L}_{\mathrm{u}}^{p}(X)$ for the space of functions $f$ in $L_{\mathrm{u}}^{0}(X)$ such that

$$
\|f\|_{\left.\mathcal{L}_{\mathbf{u}(X)}^{p}\right)}:=\sup \left\{\|\mathbf{u}(f, y)\|_{L^{p}(Z)}:\|y\|=1\right\}<\infty .
$$

A function $f \in \mathcal{L}_{\mathrm{u}}^{p}(X)$ is said to belong to $L_{\mathrm{u}}^{p}(X)$ if there exists a sequence of simple functions $\left(s_{n}\right)_{n} \in \mathcal{S}(X)$ such that

$$
s_{n} \rightarrow f \text { a.e. } \quad \text { and } \quad\left\|s_{n}-f\right\|_{\mathcal{L}_{u}^{p}(X)} \rightarrow 0 .
$$

For $f \in L_{\mathrm{u}}^{p}(X)$ we write $\|f\|_{L_{\mathrm{u}}^{p}(X)}$ instead of $\|f\|_{\mathcal{L}_{\mathrm{u}}^{p}(X)}$. Clearly one has that

$$
\|f\|_{L_{\mathrm{u}}^{p}(X)}=\lim _{n \rightarrow \infty}\left\|s_{n}\right\|_{L_{\mathrm{u}}^{p}(X)} .
$$

In particular

$$
\begin{gathered}
L_{\mathcal{B}_{X}}^{0}(X)=L^{0}(X), L_{\mathcal{D}_{X}}^{0}(X)=L_{\text {weak }}^{0}(X) \text { and } L_{\mathcal{D}_{1, X}}^{0}\left(X^{*}\right)=L_{\text {weak* }}^{0}(X) \\
\mathcal{L}_{\mathcal{B}_{X}}^{p}(X)=L^{p}(X), \mathcal{L}_{\mathcal{D}_{X}}^{p}(X)=L_{\text {weak }}^{p}(X) \text { and } \mathcal{L}_{\left(\mathcal{D}_{1}\right)_{X}}^{p}\left(X^{*}\right)=L_{\text {weak* }}^{p}\left(X^{*}\right) \\
\left.L_{\mathcal{B}_{X}}^{p}(X)=L^{p}(X) \text { and } L_{\mathcal{D}_{X}}^{p}(X)=P^{p}(X) \text { (see [11], page } 54 \text { for the case } p=1\right)
\end{gathered}
$$

Observe that $L^{p}(X) \subseteq L_{\mathrm{u}}^{p}(X)$ for any u and that, in general, $L_{\mathrm{u}}^{p}(X) \subsetneq \mathcal{L}_{\mathrm{u}}^{p}(X)$ (see [8] page 53, for the case $\left.\mathrm{u}=\mathcal{D}_{X}\right)$. It was shown in $[6]$ that $\mathcal{L}_{\mathrm{u}}^{p}(X) \subset L_{\text {weak }}^{p}(X)$ if and only if $X$ is u -normed.

Clearly $f \in L_{\mathrm{u}}^{0}(X)$ and $g \in L^{0}(Y)$ implies that $\mathrm{u}(f, g) \in L^{0}(Z)$. Hence a natural question that arises is the following:

Question 1. Does $\mathrm{u}(f, g)$ belong to $L^{p_{3}}(Z)$ for any $f \in \mathcal{L}_{\mathrm{u}}^{p_{1}}(X)$ and $g \in L^{p_{2}}(Y)$ for $\frac{1}{p_{1}}+\frac{1}{p_{2}}=\frac{1}{p_{3}}$.?
The answer is negative for infinite dimensional Banach spaces $X$.
Indeed, take $p_{1}=p_{2}=2$ and $p_{3}=1$, let $X$ be an infinite dimensional Banach space, $Y=X^{*}$ and $Z=\mathbb{K}$ and $\mathrm{u}=\mathcal{D}_{X}$. Take $\left(x_{n}\right) \in \ell_{\text {weak }}^{2}(X) \backslash \ell^{2}(X)$. This allows to find $\left(x_{n}^{*}\right) \in \ell^{2}\left(X^{*}\right)$ such that $\sum_{n}\left|\left\langle x_{n}, x_{n}^{*}\right\rangle\right|=\infty$. Consider now $\Omega=[0,1]$ with the Lebesgue measure, $I_{k}=\left(2^{-k}, 2^{-k+1}\right]$ and define the functions $f=\sum_{k=1}^{\infty} 2^{\frac{k}{2}} x_{k} \mathbf{1}_{I_{k}}$ and $g=\sum_{k=1}^{\infty} 2^{\frac{k}{2}} x_{k}^{*} \mathbf{1}_{I_{k}}$. It is clear that $f \in \mathcal{L}_{\mathcal{D}_{X}}^{2}(X)$ with $\|f\|_{\mathcal{L}_{\mathcal{D}_{X}}^{2}(X)}^{2}=\sup \left\{\sum_{n=1}^{\infty}\left|\left\langle x_{n}, x^{*}\right\rangle\right|^{2}:\left\|x^{*}\right\|=1\right\}$ and $g \in L^{2}\left(X^{*}\right)$ with $\|g\|_{L^{2}\left(X^{*}\right)}^{2}=\sum_{n=1}^{\infty}\left\|x_{n}^{*}\right\|^{2}$ but $\mathrm{u}(f, g)=\sum_{k=1}^{\infty} 2^{k}\left\langle x_{k}, x_{k}^{*}\right\rangle \mathbf{1}_{I_{k}} \notin L^{1}$.

One might think that the difficulty comes from allowing the functions to belong to $\mathcal{L}_{\mathrm{u}}^{p_{1}}(X)$ instead of $L_{\mathrm{u}}^{p_{1}}(X)$. Let us then modify the question:

Question 2. Does $\mathrm{u}(f, g)$ belong to $L^{p_{3}}(Z)$ for any $f \in L_{\mathrm{u}}^{p_{1}}(X)$ and $g \in L^{p_{2}}(Y)$ for $\frac{1}{p_{1}}+\frac{1}{p_{2}}=\frac{1}{p_{3}}$ ?
The answer is again negative.
Assume the contrary. Hence there exists $M>0$ such that

$$
\begin{equation*}
\|u(s, t)\|_{L^{1}(Z)} \leq M\|s\|_{L_{u}^{2}(X)}\|t\|_{L^{2}(Y)} \tag{7}
\end{equation*}
$$

for any $s \in \mathcal{S}(X)$ and $t \in \mathcal{S}(Y)$.
Select $X=Y=\ell^{2}, Z=\ell^{1}$ and $\mathrm{u}: \ell^{2} \times \ell^{2} \rightarrow \ell^{1}$ given by $\mathrm{u}\left(\left(\lambda_{n}\right)_{n},\left(\beta_{n}\right)_{n}\right)=\left(\lambda_{n} \beta_{n}\right)_{n}$. Let us now consider $s_{N}=t_{N}=\sum_{k=1}^{N} 2^{\frac{k}{2}} e_{k} \mathbf{1}_{I_{k}}$ where $e_{k}$ is the canonical basis and $I_{k}$ are chosen as in the previous example. Hence $\mathbf{u}\left(s_{N}, y\right)=\sum_{k=1}^{N} 2^{\frac{k}{2}} \beta_{k} e_{k} \mathbf{1}_{I_{k}}$ for $y=\left(\beta_{n}\right)_{n} \in \ell^{2}$. Therefore $\left\|s_{N}\right\|_{L_{\mathrm{u}}^{2}\left(\ell^{2}\right)} \leq 1$, $\left\|s_{N}\right\|_{L^{2}\left(\ell^{2}\right)}=\sqrt{N}$ and $\left\|\mathrm{u}\left(s_{N}, s_{N}\right)\right\|_{L^{1}\left(\ell^{1}\right)}=N$. This contradicts (7).

Modifying the previous argument with $Z=\mathbb{K}$ and $u=\mathcal{D}_{X}$ one can even show that there exist $f \in L_{\mathrm{u}}^{p_{1}}(X)$ and $g \in L^{p_{2}}(Y)$ such that $\mathrm{u}(f, g) \notin L_{\text {weak }}^{p_{3}}(Z)$.

The objective of this paper is to present an analogue to Hölder inequality in the setting of vectorvalued functions that are integrable with respect to bilinear maps. We shall then study the following general problem: Let $1 \leq p_{1}, p_{2}, p_{3} \leq \infty$ and $\frac{1}{p_{1}}+\frac{1}{p_{2}}=\frac{1}{p_{3}}$ and let $\mathrm{u}: X \times Y \rightarrow Z$ be a bounded bilinear map. If $\mathrm{u}_{1}: X \times X_{1} \rightarrow X_{2}$ and $\mathrm{u}_{2}: Y \times Y_{1} \rightarrow Y_{2}$ are bounded bilinear maps, find $\mathrm{u}_{3}: Z \times Z_{1} \rightarrow Z_{2}$ such that for any $f \in \mathcal{L}_{\mathrm{u}_{1}}^{p_{1}}(X)$ and $g \in \mathcal{L}_{\mathrm{u}_{2}}^{p_{2}}(Y)$ one has $\mathbf{u}(f, g) \in \mathcal{L}_{\mathrm{u}_{3}}^{p_{3}}(Z)$.

## 2 A bilinear version of Hölder's Inequality.

The notion that will fit to our purposes is the following.
Definition 2 We say that $\left(\mathrm{u}, \mathrm{u}_{1}, \mathrm{u}_{2}\right)$ is a compatible triple if $\mathrm{u}: X \times Y \rightarrow Z, \mathrm{u}_{1}: X \times X_{1} \rightarrow X_{2}$ and $\mathrm{u}_{2}: Y \times Y_{1} \rightarrow Y_{2}$ are bounded bilinear maps and there exist a Banach space $F$ and two bounded bilinear maps $\mathcal{P}: X_{2} \times Y_{2} \rightarrow F$ and $\widetilde{\mathcal{P}}: Z \times\left(X_{1} \hat{\otimes} Y_{1}\right) \rightarrow F$ such that

$$
\widetilde{\mathcal{P}}\left(\mathbf{u}(x, y), x_{1} \otimes y_{1}\right)=\mathcal{P}\left(\mathbf{u}_{1}\left(x, x_{1}\right), \mathbf{u}_{2}\left(y, y_{1}\right)\right)
$$

for all $x \in X, y \in Y, x_{1} \in X_{1}$ and $y_{1} \in Y_{1}$.

A general procedure of construction of such compatible triples of bilinear maps can be obtained as follows:

Proposition 1 Let $U$ be a Banach space, $\mathrm{u}_{1}: X \times X_{1} \rightarrow U$ and $\mathrm{u}_{2}: Y \times Y_{1} \rightarrow U^{*}$ be bounded bilinear maps. Define the bilinear map $\mathrm{u}_{\mathrm{u}_{1}, \mathrm{u}_{2}}: X \times Y \rightarrow \mathcal{L}\left(X_{1}, Y_{1}^{*}\right)$ by the formula

$$
\left\langle\mathbf{u}_{\mathbf{u}_{1}, \mathbf{u}_{2}}(x, y)\left(x_{1}\right), y_{1}\right\rangle=\left\langle\mathbf{u}_{1}\left(x, x_{1}\right), \mathbf{u}_{2}\left(y, y_{1}\right)\right\rangle
$$

for $x \in X, y \in Y, x_{1} \in X_{1}$ and $y_{1} \in Y_{1}$.
Then $\left(\mathrm{u}_{\mathrm{u}_{1}, \mathrm{u}_{2}}, \mathrm{u}_{1}, \mathrm{u}_{2}\right)$ is a compatible triple.
Proof. Using that $\mathcal{L}\left(X_{1}, Y_{1}^{*}\right)=\left(X_{1} \hat{\otimes} Y_{1}\right)^{*}$ we also can write

$$
\left\langle\mathbf{u}_{\mathbf{u}_{1}, \mathbf{u}_{2}}(x, y), x_{1} \otimes y_{1}\right\rangle=\left\langle\mathbf{u}_{1}\left(x, x_{1}\right), \mathbf{u}_{2}\left(y, y_{1}\right)\right\rangle .
$$

This shows that $\left(\mathrm{u}_{\mathrm{u}_{1}, \mathrm{u}_{2}}, \mathrm{u}_{1}, \mathrm{u}_{2}\right)$ is compatible by selecting $F=\mathbb{K}, \mathcal{P}=\mathcal{D}_{X}: U \times U^{*} \rightarrow \mathbb{K}$ and $\widetilde{\mathcal{P}}=\left(\mathcal{D}_{1}\right)_{X_{1} \hat{\otimes} Y_{1}}: \mathcal{L}\left(X_{1}, Y_{1}^{*}\right) \times\left(X_{1} \hat{\otimes} Y_{1}\right) \rightarrow \mathbb{K}$.

Let us now give some more concrete examples of compatible triples:
Example $1\left(\mathrm{u}, \mathcal{B}_{X}, \mathcal{B}_{Y}\right)$ is a compatible triple for any $\mathrm{u}: X \times Y \rightarrow Z$.
In particular, $\left(\mathcal{D}_{X}, \mathcal{B}_{X}, \mathcal{B}_{X^{*}}\right)$ or $\left(\mathcal{O}_{X, Y}, \mathcal{B}_{X}, \mathcal{B}_{Y}\right)$ are compatible triples.
Indeed, if $\mathrm{u}: X \times Y \rightarrow Z \mathrm{u}_{1}=\mathcal{B}_{X}: X \times \mathbb{K} \rightarrow X$ and $\mathrm{u}_{2}=\mathcal{B}_{Y}: Y \times \mathbb{K} \rightarrow Y$ then select $F=Z$, $\mathcal{P}=\mathrm{u}: X \times Y \rightarrow Z$ and $\widetilde{\mathcal{P}}=\mathcal{B}_{Z}: Z \times \mathbb{K} \rightarrow Z$. Observe that $\widetilde{\mathcal{P}}(\mathrm{u}(x, y), \lambda \beta)=\mathcal{P}(\mathcal{B}(x, \lambda), \mathcal{B}(y, \beta))$.

Example $2\left(\mathrm{u}, \mathrm{u}^{*}, \mathcal{B}_{Y}\right)$ is a compatible triple.
Indeed, if $\mathrm{u}: X \times Y \rightarrow Z, \mathrm{u}_{1}=\mathrm{u}^{*}: X \times Z^{*} \rightarrow Y^{*}$ given by

$$
\left\langle y, \mathbf{u}_{1}\left(x, z^{*}\right)\right\rangle=\left\langle\mathbf{u}(x, y), z^{*}\right\rangle
$$

and $\mathrm{u}_{2}=\mathcal{B}_{Y}: Y \times \mathbb{K} \rightarrow Y$ then we can select $F=\mathbb{K}, \mathcal{P}=\left(\mathcal{D}_{1}\right)_{Y}: Y^{*} \times Y \rightarrow \mathbb{K}$ and $\widetilde{\mathcal{P}}=\mathcal{D}_{Z}: Z \times Z^{*} \rightarrow \mathbb{K}$.

Example $3\left(\pi_{Y}, \mathcal{B}_{X}, \widetilde{\mathcal{O}}_{X^{*}}\right)$ is a compatible triple.
Indeed, if $\mathrm{u}=\pi_{Y}: X \times Y \rightarrow X \hat{\otimes} Y, \mathrm{u}_{1}=\mathcal{B}_{X}: X \times \mathbb{K} \rightarrow X$ and $\mathrm{u}_{2}=\widetilde{\mathcal{O}}_{X^{*}}: Y \times \mathcal{L}\left(Y, X^{*}\right) \rightarrow X^{*}$ then we can take $F=\mathbb{K}, \mathcal{P}=\mathcal{D}_{X}: X \times X^{*} \rightarrow \mathbb{K}$ and $\widetilde{\mathcal{P}}=\mathcal{D}_{X \hat{\otimes} Y}: X \hat{\otimes} Y \times \mathcal{L}\left(Y, X^{*}\right) \rightarrow \mathbb{K}$. The compatibility now follows from

$$
\widetilde{\mathcal{P}}(\mathrm{u}(x, y), \lambda T)=\langle x \otimes y, \lambda T\rangle=\langle\lambda x, T y\rangle=\mathcal{P}\left(\mathrm{u}_{1}(x, \lambda), \mathrm{u}_{2}(y, T)\right)
$$

Example 4 Let $\mathcal{C}: \mathcal{L}(X, Z) \times \mathcal{L}\left(Y, Z^{*}\right) \rightarrow \mathcal{L}\left(Y, X^{*}\right)$ be given by $(T, S) \rightarrow T^{*} S$. Then $\left(\mathcal{C}, \mathcal{O}_{X, Z}, \mathcal{O}_{Y, Z^{*}}\right)$ is a compatible triple.
Indeed, if $\mathrm{u}_{1}=\mathcal{O}_{X, Z}: \mathcal{L}(X, Z) \times X \rightarrow Z$ and $\mathrm{u}_{2}=\mathcal{O}_{Y, Z^{*}}: \mathcal{L}\left(Y, Z^{*}\right) \times Y \rightarrow Z^{*}$ then we can take $F=\mathbb{K}$, $\mathcal{P}=\mathcal{D}_{Z}: Z \times Z^{*} \rightarrow \mathbb{K}$ and $\widetilde{\mathcal{P}}=\left(\mathcal{D}_{1}\right)_{X \hat{\otimes} Y}: \mathcal{L}\left(Y, X^{*}\right) \times X \hat{\otimes} Y \rightarrow \mathbb{K}$ given by $\widetilde{\mathcal{P}}(T, x \otimes y)=\langle x, T y\rangle$.

Observe that the compatibility follows from the formula

$$
\widetilde{\mathcal{P}}(\mathcal{C}(T, S), x \otimes y)=\left\langle x, T^{*} S y\right\rangle=\langle T x, S y\rangle=\mathcal{P}\left(\mathbf{u}_{1}(T, x), \mathbf{u}_{2}(S, y)\right) .
$$

Theorem 1 (Hölder's inequality I) Let $1 \leq p_{1}, p_{2}, p_{3}<\infty$ such that $\frac{1}{p_{1}}+\frac{1}{p_{2}}=\frac{1}{p_{3}}$. Assume that $\left(\mathrm{u}, \mathrm{u}_{1}, \mathrm{u}_{2}\right)$ is a compatible triple for some $F, \mathcal{P}$ and $\widetilde{\mathcal{P}}$.
(1) If $f \in \mathcal{L}_{\mathbf{u}_{1}}^{p_{1}}(X)$ and $g \in \mathcal{L}_{\mathbf{u}_{2}}^{p_{2}}(Y)$ then $\mathbf{u}(f, g) \in \mathcal{L}_{\widetilde{\mathcal{P}}}^{p_{3}}(Z)$.
(2) If $f \in L_{\mathbf{u}_{1}}^{p_{1}}(X)$ and $g \in L_{\mathbf{u}_{2}}^{p_{2}}(Y)$ then $\mathbf{u}(f, g) \in L_{\widetilde{\mathcal{P}}}^{p_{3}}(Z)$.

Moreover $\|\mathbf{u}(f, g)\|_{\mathcal{L}_{\tilde{\mathcal{F}}}^{p_{3}}(Z)} \leq\|\mathcal{P}\|\|f\|_{\mathcal{L}_{\mathbf{u}_{1}}^{p_{1}}(X)}\|g\|_{\mathcal{L}_{\mathbf{u}_{2}}^{p_{2}}(Y)}$.
Proof. (1) Let us first show that if $f \in L_{\mathbf{u}_{1}}^{0}(X)$ and $g \in L_{\mathbf{u}_{2}}^{0}(Y)$ then $h=\mathbf{u}(f, g) \in L_{\widetilde{\mathcal{P}}}^{0}(Z)$.
Indeed, if $x_{1} \in X_{1}$ and $y_{1} \in Y_{1}$ then $\widetilde{\mathcal{P}}\left(h, x_{1} \otimes y_{1}\right)=\mathcal{P}\left(\mathbf{u}_{1}\left(f, x_{1}\right), \mathbf{u}_{2}\left(g, y_{1}\right)\right)$. Now since $\mathbf{u}_{1}\left(f, x_{1}\right) \in$ $L^{0}\left(X_{2}\right), \mathrm{u}_{2}\left(g, y_{1}\right) \in L^{0}\left(Y_{2}\right)$ and $\mathcal{P}$ is continuous then $\widetilde{\mathcal{P}}\left(h, x_{1} \otimes y_{1}\right) \in L^{0}(F)$. For general $\varphi \in X_{1} \hat{\otimes} Y_{1}$, assume $\varphi=\sum_{n} x_{1}^{n} \otimes y_{1}^{n}$ with $\sum_{n}\left\|x_{1}^{n}\right\|\left\|y_{1}^{n}\right\|<\infty$. Then, using the continuity of $\mathcal{P}$ and $\widetilde{\mathcal{P}}$, one has

$$
\widetilde{\mathcal{P}}(h, \varphi)=\lim _{N \rightarrow \infty} \sum_{k=1}^{N} \widetilde{\mathcal{P}}\left(\mathbf{u}_{1}\left(f, x_{1}^{k}\right), \mathrm{u}_{2}\left(g, y_{1}^{k}\right)\right) \in L^{0}(F)
$$

Assume $f \in \mathcal{L}_{\mathbf{u}_{1}}^{p_{1}}(X)$ and $g \in \mathcal{L}_{\mathrm{u}_{2}}^{p_{2}}(Y)$. Let us show that $h \in \mathcal{L}_{\widetilde{\mathcal{P}}}^{p_{3}}(Z)$.
If $x_{1} \in X_{1}$ and $y_{1} \in Y_{1}$ then

$$
\begin{aligned}
\left(\int_{\Omega}\left\|\widetilde{\mathcal{P}}\left(h, x_{1} \otimes y_{1}\right)\right\|^{p_{3}} d \mu\right)^{\frac{1}{p_{3}}} & =\left(\int_{\Omega}\left\|\mathcal{P}\left(\mathbf{u}_{1}\left(f, x_{1}\right), \mathbf{u}_{2}\left(g, y_{1}\right)\right)\right\|^{p_{3}} d \mu\right)^{\frac{1}{p_{3}}} \\
& \leq\|\mathcal{P}\|\left(\int_{\Omega}\left(\left\|\mathbf{u}_{1}\left(f, x_{1}\right)\right\|\left\|\mathbf{u}_{2}\left(g, y_{1}\right)\right\|\right)^{p_{3}} d \mu\right)^{\frac{1}{p_{3}}} \\
& \leq\|\mathcal{P}\|\left(\int_{\Omega}\left\|\mathbf{u}_{1}\left(f, x_{1}\right)\right\|^{p_{1}} d \mu\right)^{\frac{1}{p_{1}}}\left(\int_{\Omega}\left\|\mathrm{u}_{2}\left(g, y_{1}\right)\right\|^{p_{2}} d \mu\right)^{\frac{1}{p_{2}}} \\
& \leq\|\mathcal{P}\|\|f\|_{\mathcal{L}_{\mathbf{u}_{1}}^{p_{1}}(X)}\|g\|_{\mathcal{L}_{\mathbf{u}_{2}}^{p_{2}}(Y)}\left\|x_{1}\right\|\left\|y_{1}\right\| .
\end{aligned}
$$

In general, for each $\varphi=\sum_{n} x_{1}^{n} \otimes y_{1}^{n} \in X_{1} \hat{\otimes} Y_{1}$, one has $\widetilde{\mathcal{P}}\left(h, \sum_{n} x_{1}^{n} \otimes y_{1}^{n}\right)=\sum_{n} \widetilde{\mathcal{P}}\left(h, x_{1}^{n} \otimes y_{1}^{n}\right)$. Therefore

$$
\begin{aligned}
\left(\int_{\Omega}\left\|\widetilde{\mathcal{P}}\left(h, \sum_{n} x_{1}^{n} \otimes y_{1}^{n}\right)\right\|^{p_{3}} d \mu\right)^{\frac{1}{p_{3}}} & \leq \sum_{n}\left(\int_{\Omega}\left\|\mathcal{P}\left(\mathbf{u}_{1}\left(f, x_{1}^{n}\right), \mathbf{u}_{2}\left(g, y_{1}^{n}\right)\right)\right\|^{p_{3}} d \mu\right)^{\frac{1}{p_{3}}} \\
& \leq\|\mathcal{P}\|\left(\sum_{n}\left\|x_{1}^{n}\right\|\left\|y_{1}^{n}\right\|\right)\|f\|_{\mathcal{L}_{\mathbf{u}_{1}}^{p_{1}}(X)}\|g\|_{\mathcal{L}_{\mathrm{u}_{2}}^{p_{2}}(Y)} .
\end{aligned}
$$

This gives $\|\mathrm{u}(f, g)\|_{\mathcal{L}_{\mathfrak{F}}^{p_{3}}(Z)} \leq\|\mathcal{P}\|\|f\|_{\mathcal{L}_{\mathbf{u}_{1}}^{p_{1}}(X)}\|g\|_{\mathcal{L}_{\mathrm{w}_{2}}^{p_{2}}(Y)}$.
(2) Assume that $f$ and $g$ are simple functions. If $f=\sum_{k} x_{k} \mathbf{1}_{E_{k}} \in \mathcal{S}(X)$ and $g=\sum_{p} y_{p} \mathbf{1}_{F_{p}} \in \mathcal{S}(Y)$ then

$$
h=\mathrm{u}(f, g)=\sum_{k, p} \mathrm{u}\left(x_{k}, y_{p}\right) \mathbf{1}_{E_{k} \cap F_{p}} \in \mathcal{S}(Z) .
$$

Now, if we take $f \in L_{\mathbf{u}_{1}}^{p_{1}}(X)$ and $g \in L_{\mathbf{u}_{2}}^{p_{2}}(Y)$ then there exist $\left(f_{n}\right)_{n} \subseteq \mathcal{S}(X)$ and $\left(g_{n}\right)_{n} \subseteq \mathcal{S}(Y)$ such that $f_{n} \rightarrow f$ a.e., $g_{n} \rightarrow g$ a.e., $\left\|f_{n}-f\right\|_{L_{u_{1}}^{p_{1}}(X)} \rightarrow 0$ and $\left\|g_{n}-g\right\|_{L_{u_{2}}^{p_{2}}(Y)} \rightarrow 0$. Clearly $\mathrm{u}\left(f_{n}, g_{n}\right)$ are simple functions and converge to $\mathrm{u}(f, g)$ a.e.

Due to the previous result

$$
\begin{aligned}
\left\|\mathrm{u}\left(f_{n}, g_{n}\right)-\mathrm{u}(f, g)\right\|_{\mathcal{L}_{\tilde{\mathcal{P}}}^{p_{3}}(Z)} & \leq\left\|\mathrm{u}\left(f_{n}-f, g_{n}\right)\right\|_{\mathcal{L}_{\tilde{\mathcal{P}}}^{p_{3}}(Z)}+\left\|\mathrm{u}\left(f, g_{n}-g\right)\right\|_{\mathcal{L}_{\tilde{\mathcal{P}}}^{p_{3}}(Z)} \\
& \leq\|\mathcal{P}\|\left\|f_{n}-f\right\|_{\mathcal{L}_{u_{1}}^{p_{1}}(X)}\left\|g_{n}\right\|_{\mathcal{L}_{\mathbf{u}_{2}}^{p_{2}}(Y)} \\
& +\|\mathcal{P}\|\|f\|_{\mathcal{L}_{\mathbf{u}_{1}}^{p_{1}}(X)}\left\|g_{n}-g\right\|_{\mathcal{L}_{\mathrm{u}_{2}}^{p_{2}}(Y)}
\end{aligned}
$$

Taking limits the proof is completed.
Let us point out a little improvement that can be achieved for the compatible triples in Proposition 1. Let us recall the following fact that will be used in the proof.

Lemma 1 Let $X$ be a Banach space, $1 \leq p<\infty$ and $\left(x_{n}^{*}\right)_{n} \subseteq X^{*}$. Then

$$
\sup \left\{\left(\sum_{n}\left|\left\langle x_{n}^{*}, x^{* *}\right\rangle\right|^{p}\right)^{\frac{1}{p}}:\left\|x^{* *}\right\|=1\right\}=\sup \left\{\left(\sum_{n}\left|\left\langle x, x_{n}^{*}\right\rangle\right|^{p}\right)^{\frac{1}{p}}:\|x\|=1\right\}
$$

Corollary 1 (Hölder's inequality II) Let $X, X_{1}, Y, Y_{1}$ and $U$ be Banach spaces and $1 \leq p_{1}, p_{2}, p_{3}<\infty$ such that $\frac{1}{p_{1}}+\frac{1}{p_{2}}=\frac{1}{p_{3}}$. Let $\mathrm{u}_{1}: X \times X_{1} \rightarrow U, \mathrm{u}_{2}: Y \times Y_{1} \rightarrow U^{*}$ be bounded bilinear maps and let $\mathrm{u}_{\mathrm{u}_{1}, \mathrm{u}_{2}}=\tilde{\mathrm{u}}: X \times Y \rightarrow \mathcal{L}\left(X_{1}, Y_{1}^{*}\right)$ be defined by the formula

$$
\left\langle\tilde{\mathbf{u}}(x, y)\left(x_{1}\right), y_{1}\right\rangle=\left\langle\mathbf{u}_{1}\left(x, x_{1}\right), \mathbf{u}_{2}\left(y, y_{1}\right)\right\rangle .
$$

If $f \in L_{\mathbf{u}_{1}}^{p_{1}}(X)$ and $g \in L_{\mathbf{u}_{2}}^{p_{2}}(Y)$ then $\tilde{\mathrm{u}}(f, g) \in P^{p_{3}}\left(\mathcal{L}\left(X_{1}, Y_{1}^{*}\right)\right)$.
Moreover $\|\tilde{\mathrm{u}}(f, g)\|_{L_{\text {weak }}^{p_{3}}\left(\mathcal{L}\left(X_{1}, Y_{1}^{*}\right)\right)} \leq\|f\|_{L_{\mathrm{u}_{1}}^{p_{1}}(X)}\|g\|_{L_{\mathrm{u}_{2}}^{p_{2}}(Y)}$.
Proof. Assume first that $f$ and $g$ are simple functions. If $f=\sum_{k} x_{k} \mathbf{1}_{E_{k}} \in \mathcal{S}(X)$ and $g=\sum_{p} y_{p} \mathbf{1}_{F_{p}} \in$ $\mathcal{S}(Y)$ then $h=\tilde{\mathrm{u}}(f, g)=\sum_{k, p} \tilde{\mathrm{u}}\left(x_{k}, y_{p}\right) \mathbf{1}_{E_{k} \cap F_{p}} \in \mathcal{S}\left(\mathcal{L}\left(X_{1}, Y_{1}^{*}\right)\right)$. Note that $\mathcal{L}\left(X_{1}, Y_{1}^{*}\right)=\left(X_{1} \hat{\otimes} Y_{1}\right)^{*}$. Hence from Lemma 1

$$
\begin{aligned}
\|h\|_{L_{\text {weak }}^{p_{3}}\left(\left(X_{1} \hat{\otimes} Y_{1}\right)^{*}\right)} & =\sup \left\{\left(\sum_{k, p}\left|\left\langle\tilde{\mathrm{u}}\left(x_{k}, y_{p}\right), \psi\right\rangle\right|^{p_{3}} \mu\left(E_{k} \cap F_{p}\right)\right)^{\frac{1}{p_{3}}}:\|\psi\|_{\left(X_{1} \hat{\otimes} Y_{1}\right)^{* *}}=1\right\} \\
& =\sup \left\{\left(\sum_{k, p}\left|\left\langle\varphi, \tilde{\mathrm{u}}\left(x_{k}, y_{p}\right)\right\rangle\right|^{p_{3}} \mu\left(E_{k} \cap F_{p}\right)\right)^{\frac{1}{p_{3}}}:\|\varphi\|_{X_{1} \hat{\otimes} Y_{1}}=1\right\} \\
& =\|h\|_{L_{\text {weak* }}^{p_{3}}\left(\left(X_{1} \hat{\otimes} Y_{1}\right)^{*}\right)^{2}}
\end{aligned}
$$

We conclude, using Theorem 1, that

$$
\|h\|_{L_{\text {weak }}^{p_{3}}\left(\mathcal{L}\left(X_{1}, Y_{1}^{*}\right)\right)} \leq\|f\|_{L_{u_{1}}^{p_{1}}(X)}\|g\|_{L_{\mathrm{u}_{2}}^{p_{2}}(Y)} .
$$

Now, if we take $f \in L_{\mathbf{u}_{1}}^{p_{1}}(X)$ and $g \in L_{\mathbf{u}_{2}}^{p_{2}}(Y)$ then there exist $\left(f_{n}\right)_{n} \subseteq \mathcal{S}(X)$ and $\left(g_{n}\right)_{n} \subseteq \mathcal{S}(Y)$ such that $f_{n} \rightarrow f$ a.e., $g_{n} \rightarrow g$ a.e., $\left\|f_{n}-f\right\|_{L_{\mathrm{u}_{1}}^{p_{1}}(X)} \rightarrow 0$ and $\left\|g_{n}-g\right\|_{L_{\mathrm{u}_{2}}^{p_{2}}(Y)} \rightarrow 0$. Clearly $\tilde{\mathrm{u}}\left(f_{n}, g_{n}\right) \rightarrow \tilde{\mathrm{u}}(f, g)$ a.e. and therefore $\tilde{\mathrm{u}}(f, g)$ is strongly measurable and

$$
\left|\left\langle\tilde{\mathrm{u}}\left(f_{n}, g_{n}\right), \psi\right\rangle\right|^{p_{3}} \rightarrow|\langle\tilde{\mathrm{u}}(f, g), \psi\rangle|^{p_{3}} \text { a.e. }
$$

for all $\psi \in\left(X_{1} \hat{\otimes} Y_{1}\right)^{* *}$.
To see that $\tilde{\mathrm{u}}(f, g) \in P^{p_{3}}\left(\mathcal{L}\left(X_{1}, Y_{1}^{*}\right)\right)$ it suffices to show that $\tilde{\mathrm{u}}(f, g) \in L_{\text {weak }}^{p_{3}}\left(\mathcal{L}\left(X_{1}, Y_{1}^{*}\right)\right)$.
Then using $\left(X_{1} \hat{\otimes} Y_{1}\right)^{*}=\mathcal{L}\left(X_{1}, Y_{1}^{*}\right)$, Fatou's Lemma and the inequality for simple functions we have that

$$
\begin{aligned}
& \|\tilde{\mathrm{u}}(f, g)\|_{L_{\text {weak }}^{p_{3}}\left(\left(X_{1} \hat{\otimes} Y_{1}\right)^{*}\right)}^{p_{3}}=\sup \left\{\int_{\Omega}|\langle\tilde{\mathrm{u}}(f, g), \psi\rangle|^{p_{3}} d \mu:\|\psi\|_{\left(X_{1} \hat{\otimes} Y_{1}\right)^{* *}}=1\right\} \\
& =\sup \left\{\int_{\Omega} \lim _{n}\left|\left\langle\tilde{\mathrm{u}}\left(f_{n}, g_{n}\right), \psi\right\rangle\right|^{p_{3}} d \mu:\|\psi\|_{\left(X_{1} \hat{\otimes} Y_{1}\right)^{* *}}=1\right\} \\
& \leq \sup \left\{\liminf _{n} \int_{\Omega}\left|\left\langle\tilde{\mathrm{u}}\left(f_{n}, g_{n}\right), \psi\right\rangle\right|^{p_{3}} d \mu:\|\psi\|_{\left(X_{1} \hat{\otimes} Y_{1}\right)^{* *}}=1\right\} \\
& \leq \liminf _{n}\left\|\tilde{\mathrm{u}}\left(f_{n}, g_{n}\right)\right\|_{L_{\text {weak }}^{p_{3}}\left(\left(X_{1} \hat{\otimes} Y_{1}\right)^{* *}\right)}^{p_{3}} \\
& \leq \underset{n}{\liminf }\left\|f_{n}\right\|_{L_{u_{1}}(X)}^{p_{3}}\left\|g_{n}\right\|_{L_{u_{2}}^{p_{2}}(Y)}^{p_{p_{3}}} \\
& =\|f\|_{L_{u_{1}}^{p_{1}}(X)}^{p_{3}}\|g\|_{L_{u_{2}}^{p_{2}}(Y)}^{p_{p_{3}}} .
\end{aligned}
$$

Applying Theorem 1 to the examples given above one obtains the following applications.
Corollary 2 Let $1 \leq p_{1}, p_{2}, p_{3}<\infty$ such that $\frac{1}{p_{3}}=\frac{1}{p_{1}}+\frac{1}{p_{2}}$.
Let u: $X \times Y \rightarrow Z$ be a bounded bilinear map.
(1) If $f \in L^{p_{1}}(X)$ and $g \in L^{p_{2}}\left(X^{*}\right)$ then $\langle f, g\rangle \in L^{p_{3}}$.
(2) If $f \in L^{p_{1}}(X)$ and $g \in L_{\widetilde{\mathrm{u}}_{*}}^{p_{2}}(Y)$ then $\mathrm{u}(f, g) \in L_{\text {weak }}^{p_{3}}(Z)$, where $\widetilde{\mathrm{u}}_{*}: Y \times Z^{*} \rightarrow X^{*}$ is given by $\left\langle x, \widetilde{\mathrm{u}}_{*}\left(y, z^{*}\right)\right\rangle=\left\langle\mathbf{u}(x, y), z^{*}\right\rangle$.
(3) If $f \in L_{\mathrm{u}}^{p_{1}}(X)$ and $g \in L^{p_{2}}\left(Z^{*}\right)$ then $\mathrm{u}^{*}(f, g) \in L_{\mathrm{weak}^{*}}^{p_{3}}\left(Y^{*}\right)$, where $\mathbf{u}^{*}: X \times Z^{*} \rightarrow Y^{*}$ is given by $\left\langle y, \mathbf{u}^{*}\left(x, z^{*}\right)\right\rangle=\left\langle\mathbf{u}(x, y), z^{*}\right\rangle$.
(4) If $f \in L_{\widetilde{\mathcal{O}}_{Y^{*}}}^{p_{1}}(X)$ and $g \in L^{p_{2}}(Y)$ then $f \otimes g \in L_{\text {weak }}^{p_{3}}(X \hat{\otimes} Y)$.
(5) If $f \in L_{\mathcal{O}_{X, Z}}^{p_{1}}(\mathcal{L}(X, Z))$ and $g \in L_{\mathcal{O}_{Y, Z^{*}}}^{p_{2}}\left(\mathcal{L}\left(Y, Z^{*}\right)\right)$ and if we put $f^{*}(t)=f(t)^{*} \in \mathcal{L}\left(Z^{*}, X^{*}\right)$ then $f^{*} g \in L_{\text {weak }^{*}}^{p_{3}}\left(\mathcal{L}\left(Y, X^{*}\right)\right)$.
Acknowledgements. The authors gratefully acknowledges support by Proyecto BMF2005-08350-C0303 and MTN2004-21420-E.

## References

[1] Amann.,H., Operator-valued Fourier multipliers,vector-vaued Besov spaces and applications, Math. Nachr. 186 (1997), 15-56.
[2] Arregui, J.L., Blasco, O., On the Bloch space and convolutions of functions in the $L^{p}$-valued case, Collect. Math. 48 (1997), 363-373.
[3] Arregui, J.L., Blasco, O., Convolutions of three functions by means of bilinear maps and applications, Illinois J. Math. 43 (1999), 264-280.
[4] Blasco, O., Convolutions by means of bilinear maps, Contemp. Math. 232 (1999), 85-103.
[5] Blasco, O., Bilinear maps and convolutions, Research and Expositions in Math. 24 (2000), 45-55.
[6] Blasco, O., Calabuig, J., Vector-valued functions integrable with respect to bilinear maps, Submitted.
[7] Blasco, O., Calabuig, J., Fourier Analysis with respect to bilinear maps, Submitted.
[8] Diestel J, Uhl J. J., Vector measures, American Mathematical Society Mathematical Surveys, Number 15, (1977).
[9] García-Cuerva, J, Rubio de Francia, J.L., Weighted norm inequalities and relatedtopics, NorthHolland, Amsterdam (1985).
[10] Girardi, M.; Weis, L., Integral operators with operator-valued kernels, J. Math. Anal. Appl. 290 (2004), 190-212.
[11] Ryan R. A., Introduction to tensor products of Banach spaces, Springer Monographs in Mathematics. Springer (2002).

