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1 Introduction

This paper contains a little extended writting of the lectures that I gave at the
Department of Mathematics of the Joensuu University during the summer
school hold in May 2003. These lecture notes are based upon results in two
papers in collaboration with J.L. Arregui (see [5] and [6]), although some
proofs have been changed and extended to make them as selfcontained as
possible.

In these notes we denote by (D, dA(z)) the Lebesgue measure space over
the disc D = {|z| < 1} where dA(z) stands for the normalized area measure,
that is dA(z) = 1

π
dxdy = 1

π
drdθ in rectangular and polar coordinates respec-

tively. Throughout X will be a complex Banach space, 1 ≤ p < ∞, p′ stands
for the conjugate exponent of p, i.e. 1/p+ 1/p′ = 1 and, as usual, C denotes
a constant that may vary from line to line.

For 1 ≤ p, q ≤ ∞, we consider the spaces �(p, q,X) of sequences (xn)n ⊂
X such that (‖(xn)n∈Ik

‖�p)k ∈ �q, where Ik = {n ∈ N; 2k−1 ≤ n < 2k} for

k ∈ N and I0 = {0}, and we denote ‖(xn)‖p,q =
( ∑∞

k=0(
∑

n∈Ik
‖xn‖p)q/p

)1/q
.

We keep the notation �p(X) for the space �(p, p,X).
We write Lp(D, X) for the Bochner space of measurable functions such

that (
∫
D
‖f(z)‖pdA(z))

1
p < ∞ and we will denote by Bp(D, X) the Bergman

space of functions F ∈ H(D, X) ∩ Lp(D, X) where H(D, X) stands for the
space of X-valued holomorphic functions in the unit disc f(z) =

∑∞
n=0 xnz

n

for some sequence (xn) ∈ X.
The notes are divided into four sections.

∗The author have been partially supported by Proyecto BFM2002-04013-C02-01

1



In Section 2 we simply introduce the spaces Bp(D, X) and prove some gen-
eralities about them. Section 3 contains the duality (Bp(D, X))∗ = Bp′(D, X∗)
and in Section 4 we give some results on Taylor coefficients of vector valued
functions in Bp(D, X) and introduce the properties of Bergman type and co-
type. Given 1 ≤ p ≤ 2 ≤ q ≤ ∞, a Banach space X is said to have Bergman
type p (respec. Bergman cotype q ) if there exists a C > 0 such that

||( xn

n1/p
)1≤n≤N ||p′,p ≤ C||f ||Bp(D,X)

(respec.

||f ||Bq(X) ≤ C||( xn

n1/q
)1≤n≤N ||q′,q)

for all N ∈ N, x1, ..., xN in X and f(z) =
∑N

n=0 xnz
n..

It is shown that, for 1 ≤ p ≤ 2, spaces of Fourier type p must also have
Bergman type p and Bergman cotype p′ where 1/p + 1/p′ = 1.

In Section 5 we consider the notion of operator-valued multiplier and
prove some resuts about the subject. A sequence of bounded operators (Tn)n
in L(X, Y ) is said to be a multiplier between Bp(D, X) and �1(Y ), to be
denoted (Tn) ∈ (Bp(D, X), �1(Y )), if the sequence (Tn(xn)) belongs to �1(Y )
for any function f(z) =

∑∞
n=0 xnz

n in Bp(D, X).
Of course, this is equivalent to the existence of a constant C > 0 such

that
N∑

n=0

||Tn(xn)|| ≤ C||
N∑

n=0

xnz
n||Bp(X) (1)

for any N ∈ N and x0, x1, ..., xN elements in X.
The infimum of the constants C verifying (1) is the multiplier norm, which

coincides with the operator norm between Bp(D, X) and �1(Y ) respectively.
We shall analyze for different values of p and under certain geometric

properties the spaces (Bp(D, X), �1(Y )). The reader is referred to [6] and
[14] for many other multiplier results vector-valued functions and a to [27,
28, 10, 9, 12] for a collection of scalar-valued results related to them.

2 Generalities

Definition 2.1 Let 1 ≤ p < ∞ A function f ∈ H(D, X) is said to belong to
Bp(D, X) if

‖F‖Bp(X) = (
∫

D

‖f(z)‖dA(z))
1
p < ∞.
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Using the notation Mp(f, r) = (
∫ 2π
0 ‖f(reit)‖p dt

2π
)1/p we can write

‖f‖pBp(X) =
∫ 1

0
2Mp(f, r)

prdr. (2)

Proposition 2.2 If f ∈ H(D, X) then

f(z) =
1

R2

∫
|w−z|<R

f(w)dA(w) (3)

for all |z| < 1 and 0 < R < 1 − |z|.

Proof: The formula follows easily from the Cauchy formula and integration
in polar coordinates.

Let us collect the first elementary properties of these spaces.

Proposition 2.3 Let 1 ≤ p < ∞ and let X be a complex Banach space.
(i) Bp(D, X) is a closed subspace of Lp(D, X), that is Bp(D, X) is a Ba-

nach space.
(ii) If f ∈ Bp(D, X) then limr→1 ‖f−fr‖Bp(D,X) = 0, where fr(z) = f(rz).
(iii) The X-valued analytic polynomials P(X) are dense in Bp(D, X).

Proof:
(i) Let (fn) be a sequence of holomorphic functions in Lp(D, X) converging

to f in Lp(D, X). Let us show that f ∈ H(D, X). Given r < 1 and |z| < r,
from (3)

‖fn(z) − fm(z)‖ =
1

(1 − r)2
‖

∫
|w−z|<1−r

(fn(w) − fm(w))dA(w)‖

≤ 1

(1 − r)2

∫
|w−z|<1−r

‖fn(w) − fm(w)‖dA(w)

=
1

(1 − r)2
‖fn − fm‖Lp(X).

This clearly gives that (fn) converges uniformly on compact sets to f and
therefore f ∈ H(D, X).

(ii) From (2) we have

‖f − fr‖pBp(X) ≈
∫ 1

0
Mp

p (f − fr, s)ds.
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Taking into account that Mp
p (f − fr, s) ≤ sup

|z|=s
‖f(z) − f(rz)‖p one gets

lim
r→1

Mp
p (f − fr, s) = 0 (0 < s < 1).

Since
Mp

p (f − fr, s) ≤ 2Mp
p (f, s)

we can apply the dominated convergence theorem to get ‖f − fr‖Bp(X) → 0
as r → 1.

(iii) Now given ε > 0 we first choose 0 < r < 1 such that ‖f−fr‖Bp(X) <
ε
2

and then we take a Taylor polynomial such that supz∈D‖f(rz) − P (z)‖ < ε
2

to get ‖f − P‖Bp(X) < ε.

Proposition 2.4 Let 1 ≤ p < ∞ and f(z) =
∑∞

n=0 xnz
n. Then f ∈ Bp(D, X)

if and only if f1(z) = f(z)−f(0)
z

∈ Bp(D, X).
Morerover, there exists A < 1 such that

A(‖f(0)‖ + ‖f1‖Bp(X)) ≤ ‖f‖Bp(X) ≤ ‖f(0)‖ + ‖f1‖Bp(X).

Proof: Since f(z) = f(0) + zf1(z) we get ‖f‖Bp(X) ≤ ‖f(0)‖ + ‖f1‖Bp(X).
To get the other inequality, note that xn = (n + 1)

∫
D
f(w)w̄ndA(w) for

n ≥ 0. This allows to estimate ‖xn‖ ≤ (n+1)‖f‖Bp(X). Hence, since f1(z) =∑∞
n=0 xn+1z

n, we obtain

(
∫

D

‖f1(z)‖pdA(z))1/p ≤

(
∫
|z|<1/2

‖f1(z)‖pdA(z))1/p + (
∫
1/2≤|z|<1

‖f1(z)‖pdA(z))1/p ≤

≤ 1

41/p
(

∞∑
n=0

(n + 1)

2n
)‖f‖Bp(X) + 2(

∫ 1

1/2
(‖f(0)‖ + Mp(f, r))

prdr)1/p.

This gives ‖f1‖Bp(X) ≤ C‖f‖Bp(X), and taking A = 1/(C + 1), the proof is
finished.

Theorem 2.5 Let f ∈ H(D, X), n ∈ N, 1 ≤ p < ∞. Then f ∈ Bp(D, X) if
and only if the function z �→ (1 − |z|2)nf (n)(z) ∈ Lp(D, X).
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Proof: Let us show that for any g ∈ H(D, X) and k ≥ 0, the function
(1− |z|2)kg(z) belongs to Lp(D, X) if and only if (1− |z|2)k+1g′(z) also does.
Then a recurrence argument gives the statement.

Note that (1 − |z|2)k+1g′(z) ∈ Lp(D, X) if and only if

∫
D

(1 − |z|2)pk+p‖zg′(z)‖pdA(z) < ∞.

Let us denote h(z) = zg′(z) =
∑∞

n=0 nxnz
n, and observe that for each

r < 1 one has that hr2 = gr ∗ λr, where λ(z) = z
(1−z)2

.

Since M1(λ, r) = r
1−r2

and Mp(h, r
2) ≤ M1(λ, r)Mp(g, r), one gets that

∫
D

(1 − |z|2)pk+p‖zg′(z)‖pdA(z) =
∫ 1

0
4r3(1 − r4)pk+pMp

p (h, r2)dr

≤ C
∫ 1

0
r(1 − r2)pkMp

p (g, r)dr

= C
∫

D

(1 − |z|2)pk‖g(z)‖pdA(z).

Conversely, let us take g such that (1 − r2)k+1Mp(g
′, r) ∈ Lp((0, 1), dr).

We may assume that
∫ 1
0 (1 − r)(k+1)pMp

p (g′, r)dr = 1 and also that g(0) = 0.
Since Mp(g, r) ≤

∫ r
0 Mp(g

′, s)ds we have

∫
D

(1 − |z|2)kp‖g(z)‖pdA(z) =
∫ 1

0
2r(1 − r2)kpMp

p (g, r)dr

≤
∫ 1

0
2r(1 − r2)kp(

∫ r

0
Mp(g

′, s)ds)pdr

≤ C
∫ 1

0
(1 − r)kp(

∫ r

0
Mp(g

′, s)ds)pdr.

For p = 1 we get

∫
D

(1 − |z|2)k‖g(z)‖dA(z) ≤ C
∫ 1

0
(1 − r)k(

∫ r

0
M1(g

′, s)ds)dr

= C
∫ 1

0
(1 − s)k+1M1(g

′, s)ds = C.

For p > 1, we write for each t ∈ (0, 1)

It =
∫ t

0
(1 − r)kp(

∫ r

0
Mp(g

′, s)ds)pdr.
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Let u(r) = − 1

pk + 1
(1 − r)pk+1 and v(r) = (

∫ r

0
Mp(g

′, s)ds)p.

Since u(t)v(t) < 0 y v(0) = 0, we have

It =
∫ t

0
u′(r)v(r)dr ≤ −

∫ t

0
u(r)v′(r)dr

That is

It ≤ p

pk + 1

∫ t

0
(1 − r)pk+1Mp(g

′, r)(
∫ r

0
Mp(g

′, s)ds)p−1dr

=
p

pk + 1

∫ t

0
(1 − r)k+1Mp(g

′, r)(1 − r)(p−1)k(
∫ r

0
Mp(g

′, s)ds)p−1dr.

Then the assumption and Hölder’s inequality shows that It ≤ CI
1/p′

t . Hence
It ≤ C for all t and the proof is finished.

Proposition 2.6 Let f(z) =
∑∞

k=0 xkz
k ∈ B1(D, X) and n ∈ N. Then

∫
D

f(z)z̄ndA(z) =
∫

D

(1 − |z|2)f ′(z)z̄n−1dA(z) =
xn

n + 1
.

Proof: Since f ∈ L1(D, X)

∫
D
f(z)z̄ndA(z) =

∞∑
k=0

(
∫
D
zkz̄ndA(z))xk

= xn

∫
D

|z|2ndA(z) = xn

∫ 1

0
2r2n+1dr =

xn

n + 1
.

Theorem 2.5 gives that (1 − |z|)2f ′(z) ∈ L1(D, X) and arguing as above

∫
D
(1 − |z|2)f ′(z)z̄n−1dA(z) =

∞∑
k=1

(
∫
D
(1 − |z|2)zk−1z̄n−1dA(z))kxk

= nxn

∫
D

(1 − |z|2)|z|2n−2dA(z)

= 2nxn

∫ 1

0
(1 − r2)r2n−1dr

= nxn

∫ 1

0
(1 − r)rn−1dr =

xn

n + 1
.
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Proposition 2.7 If f ∈ B1(D, X) then

f(z) =
∫

D

f(w)

(1 − zw̄)2
dA(w) = 2

∫
D

(1 − |w|2)f(w)

(1 − zw̄)3
dA(w)

for all |z| < 1.

Proof: Note that 1
(1−zw̄)2

=
∑∞

n=0(n + 1)znw̄n where the series is ab-
solutely convergent for each z ∈ D, then the first formula follows from Propo-
sition 2.6.

Taking derivatives we also have 2w̄
(1−zw̄)3

=
∑∞

n=0(n+ 1)(n+ 2)znw̄n+1 and
the series also converges absolutely. Hence

2
∫

D

(1 − |w|2)f(w)

(1 − zw̄)3
dA(w) =

∞∑
n=0

(n + 1)(n + 2)zn
∫

D

(1 − |w|2)f(w)w̄ndA(w)

=
∞∑
n=0

(n + 1)(n + 2)xnz
n

∫
D

(1 − |w|2)|w|2ndA(w)

=
∞∑
n=0

(n + 1)(n + 2)xnz
n

∫ 1

0
(1 − r)rndr

=
∞∑
n=0

xnz
n = f(z).

3 Duality

In this section we shall get the duality result between the spaces Bp(D, X)
and Bp′(D, X∗) without conditions on the Banach space X. Let us start with
some preliminary results.

Proposition 3.1 Let 1 ≤ p < ∞, z ∈ D and x∗ ∈ X∗.
(i) The point evaluation δz is a bounded linear operator from Bp(D, X)

into X with norm ‖δz‖ ≤ (1 − |z|)
−2
p .

(ii) δz ⊗ x∗ belongs to (Bp(D, X))∗ and ‖δz ⊗ x∗‖ ≤ (1 − |z|)
−2
p ‖x∗‖.

Proof: (i) follows by applying Hölder’s inequality in the formula (3) and
taking limits as R goes to 1 − |z|.

(ii) It is immediate from (i).

We need the following estimates.
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Lemma 3.2 Let α > 1 . Then Jα(r) =
∫ π
−π

dt
|1−reit|α ∼ 1

(1−r)α−1 as r → 1.

Proof: Note that for |t| < π we have

|1 − reit|α = ((1 − r)2 + 4r sin2 t/2)α/2 ≈ ((1 − r)2 + 4r|t|2)α/2.

Use that

∫ π

−π

dt

((1 − r)2 + 4r|t|2)α/2
=

1

r1/2(1 − r)α−1

∫ 2r1/2π
1−r

0

dt

(1 + t2)α/2
.

This gives Jα(r) ≈ 1
(1−r)α−1 for α > 1.

Lemma 3.3 Let α > −1 and β > α + 1 .

Then Iα,β(r) =
∫ 1

0

(1 − s)α

(1 − rs)β
ds ∼ 1

(1 − r)β−α−1
as r → 1 .

Proof: Let us rewrite the integral as follows

Iα,β(r) =
∫ 1

0

(1 − s)α

((1 − s) + (1 − r)s)β
ds

=
∫ 1

0

uα

(u + (1 − r)(1 − u))β
du

=
1

(1 − r)β

∫ 1

0

uα

( u
1−r

+ (1 − u))β
du

=
1

(1 − r)β−α−1

∫ 1
1−r

0

vα

(1 + rv)β
dv

This gives Iα,β(r) ≈ 1
(1−r)β−α−1 for β − α > 1.

Combining Lemmas 3.2 and 3.3 we obtain

Corollary 3.4 Let β−α > 2 and Aα,β(r) =
∫
D

(1−|w|2)α

|1−rw|β dA(w) for β > 0 and
α > −1. Then

Aα,β(r) ∼
1

(1 − r)β−α−2
(r → 1).
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Theorem 3.5 Let 1 < p < ∞ and define

T (φ) =
∫

D

φ(w)

|1 − w̄z|2dA(w).

Then T is a bounded operator on Lp(D).

Proof: Therefore

|T (φ)(z)| ≤
∫

D

(1 − |w|)
1

pp′ |φ(w)|
|1 − zw̄|2(1 − |w|)

1
pp′

dA(w)

≤ (
∫

D

|φ(w)|p(1 − |w|)
1
p′

|1 − zw̄|2 dA(w))
1
p (

∫
D

(1 − |w|)
−1
p

|1 − zw̄|2 dA(w))
1
p′

Now, using Corollary 3.4 for α = −1
p

and β = 2, we have

(
∫

D

(1 − |w|)
−1
p

|1 − zw̄|2 dA(w))
1
p′ ≤ C

1

(1 − |z|)
1

pp′

Now

∫
D

‖T (φ)(z)‖pdA(z) ≤
∫

D

∫
D

(1 − |w|)
1
p′ |φ(w)|p

|1 − zw̄|2 dA(w)(1 − |z|)
−1
p′ dA(z)

≤
∫

D

(1 − |w|)
1
p′ |φ(w)|p(

∫
D

(1 − |z|)
−1
p′

|1 − zw̄|2 dA(z))dA(w)

Applying again Corollary 3.4 for α = −1
p′ and β = 2, we conclude that

‖T (φ)‖p ≤ C‖φ‖p.

Theorem 3.6 Let 1 < p < ∞. Then (Bp(D, X))∗ = Bp′(D, X∗) with equiv-
alent norms.

Proof: Let us define J : Bp′(D, X∗) → (Bp(D, X))∗ given by

J(f)(g) =
∫

D

〈f(z), g(z̄)〉dA(z). (4)

It is linear and clearly bounded with ‖J‖ ≤ 1.
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Let us see that J is injective. Indeed, assume that f(z) =
∑∞

n=0 x
∗
nz

n ∈
Bp′(D, X∗) and J(f) = 0. Hence if un(z) = (n + 1)zn then, for any n ∈ N

and x ∈ X, we have

J(f)(x⊗ un) =< (n + 1)
∫

D

f(z)z̄ndA(z), x >=< x∗
n, x >= 0.

This implies that f = 0.
Let us now show that J is surjective. Given Φ ∈ (Bp(D, X))∗ we define

f(z) =
∞∑
n=0

x∗
nz

n (5)

where x∗
n ∈ X∗ are given by

< x∗
n, x >= Φ(x⊗ un), (6)

for un(z) = (n + 1)zn.
Due to the fact that ‖x∗

n‖ ≤ ‖Φ‖‖un‖Bp ≈ ‖Φ‖ 1
(n+1)1/p , one gets f ∈

H(D, X).
To see that f ∈ Bp′(D, X∗), we use that

‖f‖Lp′ (X) = sup{|
∫

D

〈f(z), g(z̄)〉dA(z)| : ‖g‖Lp(X) = 1}.

Hence

〈f(z), g(z̄)〉 =
∞∑
n=0

Φ(un ⊗ g(z̄)zn = Φ(
∞∑
n=0

unz
n ⊗ g(z̄)) = Φ(Kz ⊗ g(z̄)),

where Kz(w) = 1
(1−wz)2

stands for the Bergman kernel.

In particular we have that
∫
D
〈f(z), g(z̄)〉dA(z) = Φ(

∫
D
Kzg(z̄)dA(z)).

This gives that

|
∫

D

〈f(z), g(z̄)〉dA(z)| ≤ ‖Φ‖‖
∫

D

|Kz|‖g(z̄)‖dA(z)‖p = ‖Φ‖‖T (‖g‖)‖p.

An application of Theorem 3.5 gives ‖f‖Lp(X) ≤ C‖Φ‖.
Since J(f)(un ⊗ x) = 〈x∗

n, x〉 = Φ(un ⊗ x) for all n ≥ 0 and x ∈ X we get
that J(f) = Φ and the proof is finished.

Remark 3.1 The reader is referred to the papers [5, 8, 9] for some duality
results in the case p = 1.
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4 Taylor coefficients of functions in Bp(D, X).

Proposition 4.1 Let 1 ≤ p < ∞ and f(z) =
∑∞

n=0 xnz
n ∈ Bp(D, X). Then

(i) ‖xn‖ = o(n1/p).

(ii)
∑∞

n=1
‖xn‖p

n2 < ∞.

Proof: For each n and r ∈ (0, 1), we have that

xnr
n =

1

2π

∫ π

−π
f(reiθ)e−inθdθ.

This implies that for any n ∈ N and 0 < r < 1 we have

‖xn‖rn ≤ M1(f, r). (7)

Since Mp(f, ·) is increasing in (0, 1), from (7) one gets that

(1 − r)||xn||prnp ≤ (1 − r)Mp
p (f, r) ≤

∫ 1

r
Mp

p (f, s)ds

for each r ∈ (0, 1).
Hence, for any n, by taking r = 1 − 1/n, we see that

1

n
‖xn‖p ∼

1

n
‖xn‖p

(
1 − 1

n

)np ≤
∫ 1

1−1/n
Mp

p (f, s)ds.

This shows that
‖xn‖
n1/p

→ 0.

Now observe that the norm in Bp(D, X) can be estimated from below as
follows

∞∑
n=1

∫ 1−1/(n+1)

1−1/n
Mp

p (f, r)dr ≥
∞∑
n=1

∫ 1−1/(n+1)

1−1/n
‖xn‖prnpdr

≥ C
∞∑
n=1

‖xn‖p
1

n(n + 1)
(1 − 1

n
)np

∼
∞∑
n=1

‖xn‖p
n2

.

Actually Proposition 4.1 can be easily improved by considering a new
family of vector-valued sequence spaces.
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Definition 4.2 Let 1 ≤ p, q ≤ ∞, and X be a Banach space. �(p, q,X)
denotes the space of sequences (xn)n ⊂ X such that (‖(xn)n∈Ik

‖�p)k ∈ �q,
where Ik = {n ∈ N; 2k−1 ≤ n < 2k} for k ∈ N and I0 = {0}.

For 1 ≤ p, q ≤ ∞, the spaces �(p, q,X) become Banach spaces under the
norm ‖ · ‖p,q given by, for 1 < p, q < ∞

‖(xn)‖p,q =
( ∞∑

k=0

(
∑
n∈Ik

‖xn‖p)q/p
)1/q

,

‖(xn)‖p,∞ = sup
k≥0

(
∑
n∈Ik

‖xn‖p)1/p ,

‖(xn)‖∞,q =
( ∞∑

k=0

sup
n∈Ik

‖xn‖q
)1/q

.

Of course �(p, p,X) = �p(X) for 1 ≤ p ≤ ∞ and, as usual, when X = C

we simply write �(p, q).

Now we list some useful reformulations for the norms in the spaces �(p, q).

Lemma 4.3 (see [12],or [31]) Let (αn) be a sequence of nonnegative numbers
and 0 < q, β < ∞. Then

(
αn

)
∈ �(1,∞) ⇔

∞∑
n=1

nβαnr
n = O((

1

1 − r
)β) . (8)

(
αn

)
∈ �(1, q) ⇔

∫ 1

0
(1 − r)βq−1(

∞∑
n=1

nβαnr
n)qdr < ∞. (9)

In particular, ∫ 1

0
(

∞∑
n=1

αnr
n)qdr ∼

∞∑
k=1

(
∑
n∈Ik

αn

n1/q
)q . (10)

Proof:
To see (8) assume first that

(
αn

)
∈ �(1,∞). This implies that

∞∑
n=0

nβαnr
n ≤ C

∞∑
k=0

2kβ
∑
n∈Ik

αnr
2k

≤ (sup
k

∑
n∈Ik

αn)(
∞∑
k=0

2kβr2k

)

12



≤ C(sup
k

∑
n∈Ik

αn)(
∞∑
n=0

nβ−1rn)

≤ (sup
k

∑
n∈Ik

αn)
C

(1 − r)β
.

Conversely, for fixed N ∈ N, take r = 1 − 1/N to obtain

CNβ ≥
N∑

n=0

nβαn(1 − 1

N
)n

≥ C(
N∑

n=0

nβαn)(1 − 1

N
)N

≥ C(
N∑

n=0

nβαn).

Therefore
∑

n∈Ik
nβαn ≤ C2kβ, which gives

(
αn

)
∈ �(1,∞).

To prove (9) we have the case q = 1 trivialy, since

∫ 1

0
(1 − r)β−1(

∞∑
n=1

nβαnr
n)dr =

∞∑
n=1

(
∫ 1

0
(1 − r)β−1rndr)nβαn ≈

∞∑
n=1

αn.

Now define the operator T by T ((αn)n) = (1−r)β
∑∞

n=1 n
βαnr

n. We have
just shown that T : �(1, 1) → L1((0, 1), dr

1−r
) is bounded. Now (8) gives the

boundedness of T : �(1,∞) → L∞((0, 1), dr
1−r

). Now we can use interpolation

to obtain T : �(1, q) → Lq((0, 1), dr
1−r

), which means

∫ 1

0
(1 − r)βq−1(

∞∑
n=1

nβαnr
n)qdr ≤ C

∞∑
k=0

(
∑
n∈Ik

αn)
q.

The converse inequality is simpler,

∞∑
k=0

(
∑
n∈Ik

αn)
q ≤ C

∞∑
k=0

(
∫ 1−2−(k+1)

1−2−k
2kβq(1 − r)βq−1r2k

dr)(
∑
n∈Ik

αn)
q

≤ C
∫ 1

0
(1 − r)βq−1(

∞∑
k=0

(
∑
n∈Ik

nβαnr
n)q)dr.

13



Theorem 4.4 Let 1 ≤ p < ∞. There exist C1, C2 > 0 such that

C1

∥∥∥( xn

n1/p
)
∥∥∥
∞,p

≤ ||f ||Bp(D,X) ≤ C2

∥∥∥( xn

n1/p
)
∥∥∥
1,p

for any f ∈ Bp(D, X) with Taylor coefficients (xn).

Proof: Since ||f ||Bp(D,X) ≤ (
∫ 1
0 Mp

∞(f, r)dr)1/p and M∞(f, r) ≤ ∑∞
n=0 ||xn||rn

then (10) implies

||f ||Bp(D,X) ≤ (
∫ 1

0
(

∞∑
n=0

||xn||rn)pdr)1/p ≤ C
∥∥∥( xn

n1/p
)
∥∥∥
1,p

.

For the other inequatily, we observe that

∫ 1

0
Mp

p (f, r)dr ≥
∞∑
k=0

∫ 1−2−(k+1)

1−2−k
Mp

p (f, r)dr

≥
∞∑
k=0

∫ 1−2−(k+1)

1−2−k
(sup
n∈Ik

rnp‖xn‖p)dr

≥
∞∑
k=0

(1 − 2−k)p2
k+1

2−(k+1) sup
n∈Ik

‖xn‖p.

Therefore

||f ||pBp(D,X) ≥
∞∑
k=0

2−k sup
n∈Ik

‖xn‖p ∼
∞∑
k=0

(
sup
n∈Ik

‖xn‖p
n

)
∼ ||( xn

n1/p
)||p∞,p.

Corollary 4.5 Let 1 ≤ p < ∞ and f(z) =
∑∞

n=0 xnz
2n

. Then

||f ||Bp(D,X) ≈ (
∞∑
n=0

||xn||p2−n)1/p.

Theorem 4.6 Let X be a Hilbert space and f(z) =
∑∞

n=0 xnz
n ∈ B2(D, X).

Then

||f ||B2(X) = (
∞∑
n=0

‖xn‖2

n + 1
)1/2. (11)
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Proof: Since for Hilbert-valued functions we have Plancherel’s theorem at
our disposal we get

||f ||2B2(X) = 2
∫ 1

0

∞∑
n=0

‖xn‖2r2nrdr =
∞∑
n=0

‖xn‖2

n + 1
.

Proposition 4.7 Let 1 ≤ p ≤ 2 ≤ q < ∞ and let X be a Hilbert space.
Then there exist positive constants Cp, C

′
p and C ′′

q such that

||( xn

n1/p
)||p′,p ≤ Cp||f ||Bp(D,X), (12)

(
∞∑
n=1

‖xn‖p
n3−p

)1/p ≤ C ′
p||f ||Bp(D,X) (13)

and
||f ||Bq(X) ≤ C ′′

q ||(
xn

n1/q
)||q′,q (14)

for all finite sequences (xn) ∈ X and f(z) =
∑∞

n=0 xnz
n.

Proof: (12) follows by interpolation between Theorem 4.4 for p = 1 and
(11).

Let us see that (13) actually follows from (12).

∞∑
n=1

||xn||p
n3−p

≤ C
∞∑
k=0

(
∑
n∈Ik

||xn||p)2−k(3−p)

≤ C
∞∑
k=0

(
∑
n∈Ik

||xn||p
′
)p/p

′
2k(1−p/p′)2−k(3−p)

= C
∞∑
k=0

(
∑
n∈Ik

||xn||p
′
)p/p

′
2−k

≈ ||( xn

n1/p
)||pp′,p.

(14) is the dual estimate of (12). Indeed, if f(z) =
∑∞

n=0 xnz
n then

||f ||Bq(X) = sup{|
∫
D
〈f(w), g(w̄)〉dA(w)| : g ∈ P(X∗), ‖g‖Bq′ (X

∗) = 1}

= sup{|
∞∑
n=0

〈xn, x
∗
n〉

n + 1
| : g(z) =

∑
x∗
nz

n ∈ P(X∗), ‖g‖Bq′ (X
∗) = 1}

≤ sup{
∞∑
n=0

‖xn‖‖x∗
n‖

n + 1
: g(z) =

∑
x∗
nz

n ∈ P(X∗), ‖g‖Bq′ (X
∗) = 1}

15



≤ sup{
∑
k≥0

∑
n∈Ik

‖xn‖
(n + 1)1/q

‖x∗
n‖

(n + 1)1/q′
: ‖g‖Bq′ (X

∗) = 1}

≤ sup{
∑
k≥0

(
∑
n∈Ik

‖xn‖q′

(n + 1)q′/q
)1/q′(

∑
n∈Ik

‖x∗
n‖q

(n + 1)q/q′
)1/q : ‖g‖Bq′ (X

∗) = 1}

≤ Cq

( ∑
k≥0

(
∑
n∈Ik

‖xn‖q′

(n + 1)q′/q
)q/q

′)1/q
.

The previous estimates do not hold for general Banach spaces.

Proposition 4.8 Let 1 < p ≤ 2 ≤ q < ∞.
(i) For any r > p′ there exists f ∈ Bp(D, �r) such that

∑∞
n=1

‖xn‖p

n3−p = ∞
where f(z) =

∑∞
n=0 xnz

n.
(ii) For any s < q′ there exists (xn) ∈ �(q′, q, �s) such that if f(z) =∑∞

n=0 xnz
n then f /∈ Bq(D, �s) .

Proof: Let β > 1, α > 0 and consider X = �β and Fα,β(z) =
∑∞

n=1 xnz
n

with xn = nαen where (en) stands for the canonical basis of �β.

Hence ‖xn‖ = nα and ‖Fα,β(z)‖ = (
∑∞

n=1 n
αβ|z|βn)1/β ≈ C(1 − |z|)−α− 1

β .
Then

(
xn

n1/p
) ∈ �(p′, p, �β) if and only if α < 1/p− 1/p′ (15)

and
Fα,β ∈ Bp(D, �β) if and only if α < 1/p− 1/β. (16)

Assume 1 < p ≤ 2 and take α = 1/p − 1/p′ and f = Fα,β. Now (16)

implies that f ∈ Bp(D, �r) but
∑∞

n=1
‖xn‖p

n3−p =
∑∞

n=1
1
n

= ∞.
Assume 2 ≤ q < ∞, s < q′ and take α = 1/q − 1/s and f = Fα,β. Now

(15) and (16) give that ( xn

n1/q ) ∈ �(q′, q, �s) but f /∈ Bq(D, �s).

The previous proposition leads to the following definitions:

Definition 4.9 Let X be a complex Banach space and 1 ≤ a ≤ 2. X is said
to have Bergman type a if there exists a constant Ca > 0 such that

||( xn

n1/a
)||a′,a ≤ Ca||f ||Ba(X) (17)

for all f(z) =
∑∞

n=0 xnz
n ∈ Ba(D, X),

16



Remark 4.1 Any Banach space has Bergman type 1 (see Theorem 4.4).

Definition 4.10 Let X be a complex Banach space and 2 ≤ b ≤ ∞. X is
said to have Bergman cotype b if there exists a constant Cb > 0 such that

||f ||Bb(X) ≤ Cb||(
xn

n1/b
)||b′,b (18)

for all (xn) ∈ �(b′, b,X) where f(z) =
∑∞

n=0 xnz
n.

Let us show that they are dual notions.

Proposition 4.11 Let 1 < a ≤ 2 and X be a Banach space. Then X has
Bergman type a if and only if X∗ has Bergman cotype a′.

Proof: Observe first that

∞∑
n=0

〈x∗
n, xn〉
n + 1

=
∫

D

〈f(z), g(z̄)〉dA(z), (19)

for any g(z) =
∑∞

n=0 x
∗
nz

n, f(z) =
∑∞

n=0 xnz
n and any of those being a

polynomial.
Let us assume X has Bergman type a, take (x∗

n) ∈ �(a, a′, X∗) and define
f(z) =

∑∞
n=0 x

∗
nz

n.
Then, for any X-valued polynomial g(z) =

∑∞
n=0 xnz

n, using (19) one
gets

|
∫

D

〈f(z), g(z̄)〉dA(z)| ≤ ||( xn

(n + 1)1/a′
)||a′,a||(

x∗
n

(n + 1)1/a
)||a,a′

≤ C||g||Ba(X)||(
x∗
n

n1/a
)||a,a′ .

By the duality (Ba(X))∗ = Ba′(X
∗) one has

||f ||Ba′ (X
∗) = sup{|

∫
D

〈f(z), g(z̄)〉dA(z)| : g ∈ P(X), ||g||Ba(X) = 1}.

Therefore ||f ||Ba′ (X
∗) ≤ C||( x∗

n

n1/a )||a,a′ .
Let us assume X∗ has Bergman cotype a′ and take f(z) =

∑∞
n=0 xnz

n.
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For any (x∗
n)n such that ||(x∗

n)||a,a′ = 1, using (19), for any N ∈ N we
have

|
N∑

n=0

〈n−1/axn, x
∗
n〉| ≤ ||f ||Ba(X)||

∞∑
n=0

(n + 1)n−1/axnz
n||Ba′ (X

∗)

≤ C||f ||Ba(X)||(
n + 1

n
x∗
n)||a,a′

≤ C||f ||Ba(X).

Now use

∥∥∥( xn

n1/a
)
∥∥∥
a′,a

= sup{|
N∑

n=0

〈n−1/axn, x
∗
n〉| :

∥∥∥(x∗
n)

∥∥∥
a,a′

= 1, N ∈ N},

to get that X has Bergman type a.

Let 1 ≤ p ≤ 2. A Banach space X is said to have Fourier type p if there
exists a constant C such that

(
∞∑

n=−∞
||f̂(n)||p′)1/p′ ≤ C||f ||Lp(X) (20)

for all function f ∈ Lp(T, X).
It was first introduced by J. Peetre (see [32]). We refer the reader to the

survey [23] for a complete study and references about this property.
We just point out here the equivalent formulation:
There exists a constant C > 0 such that for all (xn) ∈ �p(X) the function

f(t) =
∑∞

n=−∞ xne
int belongs to Lp′(T, X) and

||f ||Lp′ (X) ≤ C||(xn)||p. (21)

It is not difficult to see that X has Fourier type p if and only if X∗ does
have it. The main examples are Lr(µ) for any p ≤ r ≤ p′ or interpolation
spaces between any Banach space X0 and any Hilbert space X1, [X0, X1]θ
where 1/p = 1 − θ/2.

Theorem 4.12 Let 1 < p ≤ 2. If X has Fourier type p then X has Bergman
type p and Bergman cotype p′.
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Proof: Using ( 10) we have

∞∑
k=1

(
∑
n∈Ik

‖xn‖p′

np′/p
)p/p

′ ≈
∫ 1

0
(

∞∑
n=1

‖xn‖p
′
rnp

′
)p/p

′
dr.

Since X has Fourier type p

∥∥∥( xn

n1/p
)
∥∥∥p
p′,p

≤ C
∫ 1

0

( ∞∑
n=1

‖xn‖p
′
rp

′n
)p/p′

dr ≤ C
∫ 1

0
Mp

p (f, r)dr .

To get that X has Bergman cotype p′, one can either use the dual formu-
lation of Bergman type of X∗ or repeat the previous argument using now

Mp′(f, r) ≤ C
( ∑∞

n=1 ‖xn‖prnp
)1/p

.

Corollary 4.13 Let X0 be a complex Banach space, X1 be a Hilbert space
and let 0 < θ < 1. Then [X0, X1]θ has Bergman type p = 2

2−θ
adn Bergbman

cotype p′ = 2
θ
.

In particular, for any σ-finite measure µ we have Lp(µ) has Bergman type
min{p, p′} and Bergman cotype max{p, p′}.

5 Vector-valued multipliers on vector-valued

Bergman spaces

Theorem 5.1 Let X and Y two complex Banach spaces. A sequence (Tn) ∈
(B1(X), �1(Y )) if and only if the sequence (nTn) defines a bounded operator
from X to �(1,∞, Y ).

Proof: Assume that (Tn) ∈ (B1(X), �1(Y )). In particular (Tn(x)) ∈
(B1, �1(Y )) for all x ∈ X . Now for each z ∈ D we define Kz(w) = 1

(1−wz)3
.

Since ||Kz||B1 ≈ 1
1−|z| , the assumption implies that

∞∑
n=0

n2||Tn(x)|||z|n ≤ C

1 − |z|

for each z ∈ D and ||x|| ≤ 1. Invoking now ( 8) one gets that (n||Tn(x)||) ∈
�(1,∞, Y ), or equivalently x → (nTn(x)) is a bounded operator from X into
�(1,∞, Y ).
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Let us assume now, that

sup
||x||≤1

sup
k≥0

∑
n∈Ik

n||Tn(x)|| = A < ∞.

Then, if f(z) =
∑n

n=1 xnz
n, using Theorem 4.4 one gets

∞∑
n=0

||Tn(xn)|| =
∞∑
k=0

∑
n∈Ik

||Tn(
xn

||xn||
)||||xn||

≤
∞∑
k=0

(
∑
n∈Ik

n||Tn(
xn

||xn||
)||)supn∈Ik

||xn||
n

≤ sup
k≥0

∑
n∈Ik

n||Tn(
xn

||xn||
)||

∞∑
k=0

(supn∈Ik

||xn||
n

)

≤ A(
∞∑
k=0

supn∈Ik

||xn||
n

) ≤ A||f ||B1(X)

Theorem 5.2 Let 1 ≤ p ≤ 2 and let X be a complex Banach space. The
following statements are equivalent:

(i) X has Bergman type p.
(ii) For any other Banach space Y ,

{(Tn) : (n1/pTn) ∈ �(p, p′,L(X, Y ))} ⊂ (Bp(X), �1(Y )).

Proof: Let us assume X has Bergman type p. Now (ii) follows from
the embedding Bp(X) ⊂ {(xn) : (n−1/pxn) ∈ �(p′, p,X)}.

Assume (ii) for Y = C. Then any (x∗
n) such that ||(n1/px∗

n)||p,p′ < ∞ gives
a multiplier in (Bp(X), �1) . Therefore there exists C > 0 such that

∞∑
n=0

|〈x∗
n, xn〉| ≤ C||f ||Bp(X)||(n1/px∗

n)||p,p′

for any f(z) =
∑∞

n=0 xnz
n.

From duality now one gets ||(n−1/pxn)||p′,p ≤ C||f ||Bp(X).

Theorem 5.3 Let 2 ≤ q < ∞ and let X be a complex Banach space of
Bergman cotype q. Then for any other Banach space Y ,

(Bq(X), �1(Y )) ⊂ {(Tn) : (n1/qTn) ∈ �(q, q′,L(X, Y ))}.
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Proof: The assumption means that {(xn) : ( xn

n1/q ) ∈ �(q′, q,X)} ⊂ Bq(X).

Therefore (Tn) ∈ (Bq(X), �1(Y )) gives (n1/qTn) ∈ (�(q′, q,X), �1(Y )). Using
now that ‖Tn‖ ≈ ‖Tn(x

′
n)‖ for some ‖x′

n‖ = 1 we get

‖(n1/q‖Tn‖)‖q,q′ ≈ ‖(n1/q‖Tn(x
′
n)‖)‖q,q′ ≈

∑
n

‖Tn(n
1/pλnx

′
n)‖

for some (λn) ∈ l(q′, q) of norm 1. Taking xn = n1/qλnx
′
n for n ∈ N we have

n−1/qxn ∈ l(q′, q,X) with norm bounded by a constant. This finishes the
proof.

Recall the well known notion of Rademacher type (see [31]).
For 1 ≤ p ≤ 2 a Banach space X is said to have Rademacher type p if

there exists a constant C such that

∫ 1

0
||

n∑
j=1

xjrj(t)||dt ≤ C(
n∑

j=1

‖xj‖p)1/p

for any finite family x1, x2, . . . xn of vectors in X where rj stand for the
Rademacher functions on [0, 1].

It is known and easy to see that Fourier type p implies Rademacher type
p.

Theorem 5.4 Let 1 ≤ p < ∞, 1 ≤ a ≤ 2, and let X be a complex Banach
space of Rademacher type a and Y be any Banach space. Then

(Bp(X), �1(Y )) ⊂ {(Tn) : (n1/pTn) ∈ �(a′, p′,L(X, Y ))}.

Proof: Let T̃ :Bp(X) → �1(Y ) the bounded linear operator defined
by (Tn) as a multiplier, i.e. T̃ f = (Tnxn) for every X-valued polynomial
f(z) =

∑∞
n=0 xnz

n.
For any t ∈ [0, 1], let ft the polynomial given by ft(z) =

∑∞
n=0 rn(t)xnz

n,
where (rn) is the sequence of Rademacher functions.

It’s clear that ‖T̃ ft‖ = ‖T̃ f‖ for every t, and then

‖(Tnxn)‖p1 = ‖T̃ f‖p1 =
∫ 1

0
‖T̃ ft‖pdt ≤ ‖T̃‖p

∫ 1

0
‖ft‖pBp(X)dt

=
‖T̃‖p
2π

∫ 1

0

∫ π

−π

∫ 1

0
‖

∞∑
n=0

rn(t)xnr
neinθ‖pdtdθdr .
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Since X is of type a, we have for every θ that

∫ 1

0
‖

∞∑
n=0

rn(t)xnr
neinθ‖pdt ≤ C(

∞∑
n=0

‖xn‖arna)p/a ,

and integrating this in [−π, π] we get

‖(Tnxn)‖p1 ≤ C‖T̃‖p
∫ 1

0
(

∞∑
n=0

‖xn‖arna)p/adr.

Now (9) yields

‖(Tnxn)‖pq ≤ C
∫ 1

0
(

∞∑
n=0

‖xn‖arn)p/adr ≤ C
∑
k

( ∑
n∈Ik

‖xn‖a
na/p

)p/a
,

which gives ‖(Tnxn)‖ ≤ C
∥∥∥( xn

n1/p
)
∥∥∥
�(a,p,X)

.

We have thus shown that (n1/pTn) ∈ (�(a, p,X), �1(Y )), and a simple
argument as above this gives (n1/pTn) ∈ �(a′, p′,L(X, Y )).

Theorems 5.2 and 5.4 give a characterization of the multipliers from
B2(D, X) to �1(Y ) whenever X is a Hilbert space.

Corollary 5.5 Let X be a Hilbert space. Then (Tn) ∈ (B2(X), �1(Y )) if and
only if the sequence (

√
n ‖Tn‖) ∈ �2.
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