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1 Introduction and notation

Two of the basic operators in Harmonic Analysis are the well-known ”Hilbert
transform” and ”Hardy-Littlewood maximal operator”. The Hardy-Littlewood
maximal function is defined in Rn by

Mf(x) = sup
x∈Q

1
|Q|

∫
|f(y)|dy,

where Q is a cube in Rn and |Q| stands for the Lebesgue measure of the cube.
The Hilbert transform is defined in R by several equivalent ways:

Hf(x) =
1
π

lim
ε→0

∫
|y|>ε

f(x− y)
y

dy,

Hf(x) = lim
t→0

Qt ∗ f(x),

where Qt is the conjugate Poisson kernel, Qt(x) = 1
π

x
x2+t2 or

(Hf )̂(ξ) = −isgn(ξ)f̂(ξ).

Their boundedness properties in the Lebesgue spaces are rather well-
known and its possible generalizations to higher dimension, other spaces or its
vector-valued analogues have been a source of creativity for mathematicians
over the decades.

These operators are known to be of weak-type (1, 1),

|{x : |Hf(x)| > λ}| ≤ C
‖f‖1

λ
(1)
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|{x : |Mf(x)| > λ}| ≤ C
‖f‖1

λ
(2)

and of strong-type (p, p)

‖Hf‖p ≤ C‖f‖p, 1 < p < ∞, (3)

‖Mf‖p ≤ C‖f‖p, 1 < p ≤ ∞. (4)

The endpoint results for p = 1 and p = ∞ for the Hilbert transform lead
to two very important spaces in Harmonic Analysis, namely BMO(R) and
H1(R).

BMO(R) consists of locally integrable functions such that supQ oscp(f,Q) <
∞ for some (or equivalently for all) 0 < p < ∞, where

oscp(f,Q) = (
1
|Q|

∫
Q

|f(x)− fQ|pdx)1/p

and fQ = 1
|Q|

∫
Q

f(x)dx for a cube Q in R.
The space can also be described by means of the sharp maximal function

of f ([FS]),

f#(x) = sup
x∈Q

1
|Q|

∫
Q

|f(x)− fQ|dx.

Of course, f ∈ BMO(R) if and only if f# ∈ L∞(R) and the ”norm” in BMO
is then given by ‖f#‖∞.

Let us also recall that BMO(R) is the dual space of H1(R) ([FS, C])
where H1 is the Hardy space defined in terms of atoms, i.e. that is the space
of integrable functions f =

∑
k λkak, λk ∈ R,

∑
k |λk| < ∞ and where ak

belong to L∞(R), supp(ak) ⊂ Qk for some cube Qk,
∫

Qk
a(x)dx = 0 and

|a(x)| ≤ 1
|Qk| . The norm is now given by the infimum of

∑
k |λk| over all

possible decompositions of f .
With these definitions out of the way, we can now mention that the Hilbert

transform maps H1(R) into L1(R) and L∞(R) into BMO(R), i.e.

‖Hf‖BMO ≤ C‖f‖∞, (5)

‖Hf‖1 ≤ C‖f‖H1 . (6)

There is another rather relevant connection between BMO and the com-
mutator between multiplication operators and singular integrals. It was first
shown by Coifman, Rochberg and Weiss ([CRW]) that,denoting Hb(f) =
bH(f)−H(bf), one has

b ∈ BMO(R) if and only if Hb : L2(R) → L2(R) is bounded . (7)

There have been several directions in which results from (1) to (7) have
been extended and developed. One approach, which goes back to the early
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fifties, was the consideration of convolution operators with kernels similar in
higher dimensions. The big contribution to the general theory of operators
that share similar properties with the Hilbert transform is due to the work of
A. Calderón and A. Zygmund (see [CZ]).

I took some time for people to isolate the properties that were needed in
the kernel in order to apply similar techniques to other classes of operators.

After some preliminary stages (see [S], [H]) in the case of convolution
kernels, the theory was then extended to non-convolution operators (see [CM]
or [J]).

Following Coifman and Meyer we shall say that T is a generalized Calderón-
Zygmund operator if it has following properties:

(i) T is bounded on L2(Rn),
(ii) there exists a locally integrable function k from Rn×Rn \ {(x, x) : x ∈

Rn} into C such that

Tf(x) =
∫

k(x, y)f(y)dy (8)

for every bounded and compactly supported function f and x /∈ supp f ,
(iii) there exists ε > 0 such that the kernel satisfies

|k(x, y)| ≤ C

|x− y|
, (9)

|k(x, y)− k(x′, y)| ≤ C
|x− x′|ε

|x− y|n+ε
, |x− y| ≥ 2|x− x′|, (10)

|k(x, y)− k(x, y′)| ≤ C
|y − y′|ε

|x− y|n+ε
, |x− y| ≥ 2|y − y′|. (11)

In general, for generalized Calderón-Zygmund operators one does not have
the identity

Tf(x) = lim
ε→0

∫
|x−y|>ε

k(x, y)f(y)dy, f ∈ S(Rn). (12)

The operators where (12) happens to hold true were called Calderón-Zygmung
type singular integrals.

For such operators one defines the corresponding maximal operator

T ∗(f)(x) = sup
ε>0

|
∫
|x−y|>ε

K(x, y)f(y)dy|.

Let us collect in the following theorem the boundedness properties of such
operators.

Theorem 1.1 Let T be a Calderón-Zygmund type singular operator defined
on Rn. Then

|{x : |Tf(x)| > λ}| ≤ C
‖f‖1

λ
,
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‖Tf‖1 ≤ C‖f‖H1 ,

‖Tf‖p ≤ C‖f‖p, 1 < p < ∞,

‖Tf‖BMO ≤ C‖f‖∞,

|{x : |T ∗f(x)| > λ}| ≤ C
‖f‖1

λ
,

‖T ∗f‖p ≤ C‖f‖p 1 < p < ∞.

It is known (see [D] Theorem 5.12) that to get the boundedness and the
weak-type (1, 1) for such operator conditions (9),(10) and (11) can be replaced
by the Hörmander type ones∫

|x−y|≥2|x−x′|
|k(x, y)− k(x′, y)| ≤ C, (13)∫

|x−y|≥2|y−y′|
|k(x, y)− k(x, y′)| ≤ C. (14)

Another direction, which we shall consider throughout this paper, is the
vector-valued consideration of the problem.

There are two different points of view. One is to consider sequences of func-
tions (fj), rather than for a single one, and ask ourselves whether inequalities
like

‖(
∑

j

|Hfj |r)1/r‖p ≤ C‖(
∑

j

|fj |r)1/r‖p (15)

hold true for some values 0 < p, r < ∞.
Another one is to analyze whether inequalities like

‖(
∑

j

|Tjf |r)1/r‖p ≤ C‖f‖p (16)

hold true for some values 0 < p, r < ∞, where Tj are Calderón-Zygmund
operators with some assumptions.

These results, nowadays, fit in a theory of general vector-valued functions,
when allowing either the function or the kernel to take values in Banach
spaces.

A systematic study and its applications to Littlewood-Paley theory or
maximal functions was first started in the work of Benedek, Calderón and
Panzone ([BCP]) and then continued by Rubio de Francia, Ruiz and Torrea
([RRT].

The vector-valued theory also has some applications in a more abstract
setting and interplays with the geometry of Banach spaces when analyzing
the properties on the Banach space for several classical results to hold true in
the Banach-valued setting.

One of the most important vector-valued extension is the following: Let
X be a Banach space and consider f =

∑m
k=1 φkxk where φk ∈ Lp(R) and

xk ∈ X. We can now define the vector-valued Hilbert transform
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Hf(x) =
1
π

lim
ε→0

∫
|y|>ε

f(x− y)
y

dy =
m∑

k=1

H(φk)xk ∈ X.

The main question is to know whether the operator, defined on Lp(R)⊗X,
extends continuously to Lp

X(R). A positive answer for X = `r answers the
question in (15). In this direction it is not difficult to see that for X = `1(N)
the operator H ⊗ Id is not bounded on L2

`1(R). However it follows from a
general `2-valued extension result due to Marcinkiewicz and Zygmund (see
[GR],Theorem 2.7) that (15) holds for the case X = `2(N). The description of
the property on the space X for the boundedness of the vector-valued Hilbert
transform goes back to the work of Burkholder and Bourgain (see [Bu1, Bo1]
) who proved to be equivalent to the boundedness of the unconditional mar-
tingale differences transform and, since then on called the UMD property.

From this point of view, and realizing that the boundedness on L2 is
equivalent to the one in any Lp for 1 < p < ∞, one can say that (15) holds
for 1 < p, r < ∞ because `r has the UMD property in the case 1 < r < ∞.

The UMD property became rather relevant, due to the interplay of the
Hilbert transform with orther areas whenever functions were allowed to take
values in Banach spaces.

Another example of the use of vector-valued analysis in connection with
classical operators comes from the Banach-lattice-valued extension of the
Hardy-Littlewood maximal function ([GMT]). A Banach function space L
is said to have the Hardy-Littlewood property if

ML(f)(x) = sup
x∈Q

1
|Q|

∫
Q

|f(x)|dx,

where the supremum is taken in the lattice structure. Several characterization
and results concerning this property were achieved in [GMT, GMT2].

I would like to point out here that Carlos Segovia got interested in the in-
terplay between the geometry of Banach spaces and the vector-valued analysis
and we refer the reader to his work in [HMST] for a combination of techniques
from Ap theory, Harmonic Analysis and the use of Hardy-Littlewood property
in Banach lattices.

As for the Hilbert transform, given a Banach space X and a Calderón-
Zygmund operator T with scalar-valued kernel k one defines the vector-valued
extension

TXf(x) =
m∑

k=1

T (φk)xk ∈ X

for f =
∑m

k=1 φkxk where φk ∈ Lp(R) and xk ∈ X.
Next generalization in the theory comes from the fact that the expression∫

k(x, y)f(y)dy for vector valued functions f also makes sense for operator-
valued kernels, with the obvious interpretation.

Let now A and B be Banach spaces and denote by L(A,B) the space of
bounded linear operators from A to B. Following Segovia and Torrea (see
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[ST1]) we shall say that T is a L(A,B)-Calderón-Zygmund type operator if
it has following properties:

(i) T : Lp(Rn, A) → Lp(Rn, B) is bounded for some 1 < p < ∞ and
(ii) there exists a locally integrable function k from Rn×Rn \ {(x, x) : x ∈

Rn} into L(A,B) such that

Tf(x) =
∫

k(x, y)f(y)dy

for every A-valued bounded and compactly supported function f and x /∈
supp f .

Several properties can be imposed on these kernels in order to obtain the
corresponding boundedness properties in different spaces:∫

|x−y|≥2|x−x′|
‖k(x, y)− k(x′, y)‖dy ≤ C, (Hy)

∫
|x−y|≥2|y−y′|

‖k(x, y)− k(x, y′)‖dx ≤ C, (Hx)

‖k(x, y)− k(x′, y)‖ ≤ C
|x− x′|ε

|x− y|n+ε
, |x− y| ≥ 2|x− x′|, (CZy)

‖k(x, y)− k(x, y′)‖ ≤ C
|y − y′|ε

|x− y|n+ε
, |x− y| ≥ 2|y − y′|. (CZx)

Note that (CZy) (respect. (CZx) ) implies (Hy) (respect. (Hx)).
Throughout the paper we shall work on Rn endowed with the Lebesgue

measure dx and use the notation |A| =
∫

A
dx. Given a Banach space (X, ‖ ·

‖) and 1 ≤ p < ∞ we shall denote by Lp
X(Rn) the space of Bochner p-

integrable functions endowed with the norm ‖f‖Lp
X

= (
∫

Rn ‖f(x)‖pdx)1/p and
by L∞c (Rn, X) the closure of the compactly supported functions in L∞X (Rn).

We use the notation Mf and f# for the Hardy-Littlewood maximal func-
tion and the sharp maximal function of f , i.e.

M(f)(x) = sup
x∈Q

1
|Q|

∫
Q

‖f(x)‖dx,

f#(x) = sup
x∈Q

1
|Q|

∫
Q

‖f(x)− 1
|Q|

∫
Q

f(y)dy‖dx).

We shall denote Mq(f) = M(‖f‖q)1/q for 1 < q < ∞. We shall use the
following results shown by Fefferman and Stein (see [FS, GR]):

f#(x) ≈ sup
x∈Q

inf
cQ∈X

1
|Q|

∫
Q

‖f(x)− cQ‖dx. (17)

If M(f) ∈ Lp0 for some 0 < p0 < ∞ then for 1 < p < ∞
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‖f‖Lp
X(Rn) ≤ C‖f#‖Lp(Rn). (18)

We write H1
X(Rn) for the Hardy space defined by X-valued atoms, con-

sisting of integrable functions f =
∑

k λkak where λk ∈ R,
∑

k |λk| < ∞ and
ak belong to L∞c (Rn, X), supp(ak) ⊂ Qk for some cube Qk,

∫
Qk

a(x)dx = 0
and ‖a(x)‖ ≤ 1

|Qk| .

Now BMOX(Rn) stands for the space of locally integrable functions such
that supQ oscp(f,Q) < ∞ for some (or equivalently for all) 1 ≤ p < ∞, where

oscp(f,Q) = (
1
|Q|

∫
Q

‖f(x)− fQ‖pdx)1/p

and fQ = 1
|Q|

∫
Q

f(x)dx for a cube Q in Rn.
The interested reader should be aware that the duality H1(X) and

BMO(X∗) and the formulations of the spaces of H1
X or BMOX by means

of the Hilbert transform are not longer true for infinite dimensional Banach
spaces X. One needs either the RNP on X∗ or the UMD property in X (see
[RRT, Bl1, Bl2]) for the corresponding results to hold true.

The following theorem exhibits the final achievements in the case L(A,B)-
valued kernels and goes back to the work of Benedek, Calderón and Panzone
for convolution kernels and to the work of Rubio, Ruiz and Torrea for non-
convolution ones.

Theorem 1.2 ([BCP], [RRT]) Let A,B be Banach spaces and let T be
L(A,B)-Calderón-Zygmund type operator satisfying (Hx) and (Hy). Then

(i) T is weak-type (1,1), i.e.

|{x : ‖Tf(x)‖B > λ}| ≤ C
‖f‖L1

A

λ
.

(ii) T is bounded from Lq
A(Rn) to Lq

B(Rn).

Throughout the literature many results appeared in connection with the
boundedness of commutators of Calderón-Zygmund type operators and mul-
tiplication by a function b given by Tb(f) = bT (f)− T (bf) on many different
spaces, in the weighted and vector-valued settings. Let me now mention some
result on operator-valued singular integrals which is one of the important
contributions of Carlos Segovia to this theory.

Theorem 1.3 ([ST1, Theorem 1]) Let A,B be Banach spaces and let T be an
L(A,B)-valued Calderón-Zygmund type operator such that the kernel satisfies
(CZy). Let ` → ¯̀ be a correspondence from L(A) to L(B) such that

˜̀T (f)(x) = T (`f)(x) (19)

and
k(x, y)` = ˜̀k(x, y). (20)
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If b is L(A)-valued, b ∈ BMOL(A)(Rn) and b̃ ∈ BMOL(B)(Rn) then

Tb(f) = bT (f)− T (bf)

is bounded from Lp
A(Rn) → Lp

B(Rn) for all 1 < p < ∞.

Also endpoint estimates for the commutator was a topic that attracted sev-
eral people on different directions (see [CP, HST, PP, P1, PT2]). The endpoint
estimates of the previous operator-valued result were later studied by E. Har-
boure, C. Segovia and J.L. Torrea (see Theorem A and Theorem 3.1 in [HST])
when b was assumed to be scalar-valued. We will not enter in this direction,
but from their results one concludes that non-constant scalar valued BMO
functions do not define bounded commutators from L∞c (Rn, A) to BMOB(Rn)
when kernel of the Calderón-Zygmund type operators are L(A,B)-valued and
also that, in general, Tb does not map H1

A(Rn) into L1
B(Rn).

We shall present a proof of these last theorems in a bit more general
situation and we recommend the interested reader to look for their appli-
cations to Maximal functions, Littlewood Paley theory and other topics in
[RRT] and the work by Carlos in [ST1] (see also Chapter V in ([GR]) and
([ST2, ST3, ST4, ST5] for similar results in related operators and applica-
tions.)

As usual we denote λQ for a cube centered at xQ (center of Q) and with
side length λ`(Q), and C will denote a constant that may vary from line to
line.

2 Theorems and proofs

Although the vector-valued theory has been developed for operator-valued
kernels, we shall see in what follows that most of the techniques used there
can also be applied in a bit more general situation.

Definition 2.1 Let A,B be Banach spaces and 1 < p < ∞. We say that T
is a (p,A, B)-Calderón Zygmund type operator if it is of weak-type (p, p),

|{x : ‖Tf(x)‖B > λ}| ≤ C
‖f‖p

Lp
A

λp
, (21)

and there exist a Banach space E, a bounded bilinear map u : E×A → B and
a locally integrable function k from Rn × Rn \ {(x, x) : x ∈ Rn} into E such
that

Tf(x) =
∫

u(k(x, y), f(y))dy (22)

for every A-valued simple function f and x /∈ supp f .
We then say that T has kernel k with respect to u.
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We shall use the notation from the previous section (Hx), (Hy), (CZx)
and (CZy) also when replacing the norm in L(A,B) by the norm in E.

As in the scalar case the basic ingredients in our proofs will be the
Calderón-Zygmund decomposition and Kolmogorov inequality.

Lemma 2.2 ([GR], Theorem 1.2) Let φ be a non-negative integrable function
and λ > 0. There exists a sequence of disjoint dyadic cubes {Qj} such that

φ(x) ≤ λ, a.a.x /∈ ∪jQj ,

| ∪j Qj | ≤
‖φ‖1

λ
,

λ <
1
|Qj |

∫
Qj

φ ≤ 2nλ.

We shall need the following Lemma due to Kolmogorov.

Lemma 2.3 Let 1 ≤ q < p and Q a cube. If T is any operator of weak-type
(p, p) then

(
1
|Q|

∫
Q

‖Tf(x)‖q
Bdx)1/q ≤ C(

1
|Q|

∫
Q

‖f(x)‖p
Adx)1/p.

Proof. Use the weak-type (p, p) condition to estimate∫
Q

‖Tf(x)‖qdx = q

∫ ∞

0

tq−1|{x ∈ Q : ‖Tf(x)‖ > t}|dt

≤ q

∫ ∞

0

tq−1 min{|Q|, Cp
‖f‖p

p

tp
}dt

= q

∫ C
‖f‖p

|Q|1/p

0

tq−1|Q|dt + q

∫ ∞

C
‖f‖p

|Q|1/p

Cp
‖f‖p

p

tp−q+1
dt

≤ C|Q|1−q/p‖f‖q
Lp

A
.ut

Proposition 2.4 Let A,B be Banach spaces. Let T be a (p, A,B)-Calderón
Zygmund type operator with kernel k with respect to u which satisfies (Hx).
Then

(i) T maps H1
A(Rn) to L1

B(Rn).
(ii) T is weak-type (1,1).

Proof. (i) It suffices to show that ‖T (a)‖L1
B
≤ C for any A-valued atom.

Let a be an integrable function supported on a cube Q and mean value
zero with ‖a(x)‖ ≤ 1

|Q| . Using Lemma 2.3 for q = 1,∫
2Q

‖Ta(x)‖dx ≤ C|Q|1−
1
p ‖a‖Lp

A
≤ C|Q|( 1

|Q|

∫
Q

‖a(x)‖pdx)1/p ≤ C.
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To analyze the other part we shall use (Hx). For each x /∈ 2Q then

Ta(x) =
∫

Q

u(k(x, y), a(y))dy =
∫

Q

u(k(x, y)− k(x, xQ), a(y))dy.

∫
Rn\2Q

‖Ta(x)‖Bdx ≤
∫

Rn\2Q

∫
Q

‖u(k(x, y)− k(x, xQ), a(y))‖dydx

≤
∫

Q

(
∫
|x−y|>2|y−xQ|

‖u‖‖k(x, y)− k(x, xQ)‖dx)‖a(y)‖dy

≤ C‖a‖L1
A
≤ C.

(ii) Let f ∈ L1
A(Rn) ∩ L∞c (Rn, A) and λ > 0. Now apply Lemma 2.2 to

‖f‖ and denote Ω = ∪jQj . This allows us to decompose f = g + b where

g =
∑

j

(
1
|Qj |

∫
Qj

f)χQj + fχRn\Ω (23)

and
b =

∑
j

(f − 1
|Qj |

∫
Qj

f)χQj
(24)

Observe that ‖g(x)‖ ≤ Cλ a.e. and ‖g‖L1
A
≤ ‖f‖L1

A
. Therefore

|{x : ‖Tf(x)‖B > λ}| ≤ |{x : ‖Tg(x)‖B > λ/2}|+ |{x : ‖Tb(x)‖B > λ/2}|

≤ C

λp
‖Tg‖p

Lp
B

+ |{x : ‖Tb(x)‖B > λ/2}|

≤ C

λp
‖g‖p

Lp
A

+ |{x : ‖Tb(x)‖B > λ/2}|

≤ C

λ

∫
‖g(x)‖Adx + |{x : ‖Tb(x)‖B > λ/2}|

≤ C

λ

∫
‖f(x)‖Adx + |{x : ‖Tb(x)‖B > λ/2}|.

As above, if a is an integrable function supported on a cube Q and mean
value zero then ∫

Rn\2Q

‖Ta(x)‖Bdx ≤ C‖a‖L1
A
.

In particular, denoting bj = (f − 1
|Qj |

∫
Qj

f)χQj
one has∫

Rn\2Qj

‖Tbj(x)‖dx ≤ C

∫
Qj

‖bj(y)‖dy ≤ 2C

∫
Qj

‖f(y)‖dy.

Using that fχΩ ∈ Lp
A(Rn) one easily gets that

∑
j bj converges in Lp

A(Rn).
This implies that



Some aspects of vector-valued singular integrals 11

{x : ‖Tb(x)−
N∑

j=1

Tbj(x)‖ > ε}| ≤ C
‖b−

∑N
j=1 bj‖p

Lp
A

εp

for any ε > 0, which shows that ‖Tb(x)‖B ≤
∑

j ‖Tbj(x)‖B a.e.
This allows us to conclude that, for Ω̃ = ∪j2Qj ,

|{x : ‖Tb(x)‖B > λ/2}| ≤ |Ω̃|+ 2
λ

∫
Rn\Ω̃

‖Tb(x)‖dx

≤ C|Ω|+ 2
λ

∑
j

∫
Rn\2Qj

‖Tbj(x)‖dx

≤ C|Ω|+ 2
λ

∑
j

∫
Qj

‖f(x)‖Adx

≤ C
‖f‖L1

A

λ
.ut

Proposition 2.5 Let A,B be Banach spaces. Let T be a (p, A,B)-Calderón
Zygmund type operator with kernel k with respect to u which satisfies (Hy).
Then T maps L∞c (Rn, A) to BMOB(Rn).

Proof. Let f be A-valued simple function and let Q be a cube in Rn, decom-
pose f = f1 + f2 where f1 = fχ2Q. Now write cQ = (T (f1))Q − T (f2)(xQ)
where xQ is the center of Q,

Tf(x)− cQ = T (f1)(x)− (T (f1))Q + T (f2)(x)− T (f2)(xQ).

Clearly, from Lemma 2.3,

1
|Q|

∫
Q

‖T (f1)(x)− (T (f1))Q‖dx ≤ 2
|Q|

∫
Q

‖T (f1)(x)‖dx

≤ C(
1
|Q|

∫
Q

‖f(x)‖pdx)1/p ≤ C‖f‖∞.

On the other hand, for x ∈ Q and y /∈ 2Q one has |x − y| ≥ 2|x − xQ|,
which implies

T (f2)(x)− T (f2)(xQ) =
∫

(2Q)c

u(k(x, y)− k(xQ, y), f2(y))dy.

Now the assumption (Hy) gives

‖T (f2)(x)− T (f2)(xQ)‖ ≤ ‖u‖
∫

(2Q)c

‖k(x, y)− k(xQ, y)‖‖f(y)‖dy

≤ C‖f‖∞
∫
|x−y|≥2|x−xQ|

‖k(x, y)− k(xQ, y)‖dy

≤ C‖f‖∞
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Therefore 1
|Q|

∫
Q
‖T (f)(x)−cQ‖dx ≤ C‖f‖∞. Which implies that ‖Tf‖BMO ≤

C‖f‖∞ for any f ∈ L∞c (Rn, A). ut

Using Propositions 2.4 and 2.5 together with interpolation one obtains the
following result.

Theorem 2.6 Let A,B be Banach spaces and let T be a (p, A,B)-Calderón-
Zygmund type operator and the kernel satisfies (Hx) and (Hy).

Then T extends to a bounded operator from Lq
A(Rn) to Lq

B(Rn) for all
1 < q < ∞.

Proof. We can use the interpolation results (see [Bl3, BX])

[H1
A(Rn), L∞c (Rn, A)]θ = Lp

A(Rn),
1
p

= 1− θ,

and
[L1

B(Rn), BMOB(Rn)]θ = Lp
B(Rn),

1
p

= 1− θ.ut

We shall now see that a condition slightly weaker than (CZy) allows to get
certain pointwise majoration which also gives the strong type in all 1 < q < ∞
for (p, A,B)-Calderón-Zygmund type operators.

Proposition 2.7 Let A,B be Banach spaces and let T be a (p, A,B)-Calderón-
Zygmund type operator with kernel k with respect to u. Assume the kernel
satisfies that there exist q > 1 and a sequence (Aj) such that

∑∞
j=1 Aj < ∞

where

sup
|x−x′|≤R

(2jR)n/q(
∫

2jR≤|x−y|<2j+1R

‖k(x, y)− k(x′, y)‖q′dy)1/q′ ≤ Aj . (25)

Then, for s = max{p, q},

T#f(x) ≤ CMs(f)(x)) (26)

for any A-valued bounded and compactly supported function f .

Proof. Let x ∈ Rn and let Q be a cube centered at x and radius R. Given
a compactly supported and bounded function f , we write f1 = fχ2Q and
f2 = f − f1.

Note that (22) gives for any z ∈ Q

Tf2(z) =
∫
|y−x|>2R

u(k(z, y), f2(y))dy

Denote cQ = T (f2)(x) Therefore for x′ ∈ Q
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‖Tf2(x′)− cQ‖ = ‖
∫
|y−x|>2R

u(k(x′, y)− k(x, y), f2(y))dy‖

= ‖
∫
|y−x|>2R

u(k(x′, y)− k(x, y), f2(y))dy‖

≤ ‖u‖
∫
|y−x|>2R

‖k(x′, y)− k(x, y)‖‖f2(y)‖dy

≤ ‖u‖
∞∑

j=1

∫
2jR≤|y−x|<2j+1R

‖k(x′, y)− k(x, y)‖‖f2(y)‖dy

≤ ‖u‖
∞∑

j=1

(2jR)−n/qAj(
∫

2jR≤|y−x|<2j+1R

‖f2(y)‖qdy)1/q

≤ C‖u‖
∞∑

j=1

Aj(
1

2(j+1)nRn

∫
|y−x|<2j+1R

‖f(y)‖qdy)1/q

≤ C‖u‖(
∑

j

Aj)Mqf(x)

Hence

1
|Q|

∫
Q

‖Tf(x′)− cQ‖dx′ ≤ 1
|Q|

∫
Q

‖Tf1(x′)‖dx′ + C‖u‖Mqf(x).

Using Lemma 2.3 one gets

1
|Q|

∫
Q

‖Tf1(x′)‖dx′ ≤ C(
1
|Q|

∫
2Q

‖f(y)‖pdy)1/p ≤ CMp(f)(x).

Therefore (Tf)#(x) ≤ C
(
Mp(f)(x) + Mq(f)(x)

)
≤ CMs(f)(x). ut

3 Commutators

Let us define a notion which is needed for our purposes.

Definition 3.1 Let T be a bounded operator from Lp
A(Rn) to Lp

B(Rn), and
let b1 and b2 be L(A) and L(B)- valued functions respectively. Define

Tb1,b2(f) = b2T (f)− T (b1f)

for any A-valued simple function f .

We shall be using the following basic assumptions for our general version
of the commutator theorem.
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Definition 3.2 Let T be a (p, A,B)-Calderón-Zygmund type operator with
kernel k with respect to u and let b1 and b2 be L(A) and L(B)- valued functions
respectively. We shall say that (b1, b2) has the commuting properties (CP )1
and (CP )2 if

(CP )1 b2(z)u(k(x, y), a) = u(k(x, y), b1(z)a), x, y, z ∈ Rn, x 6= y.
(CP )2 (b2)QT (aχA)(x′) = T ((b1)QaχA)(x′) for any Q cube, A ⊂ Q,

a ∈ A and x′ ∈ Q.

We would like to point out that (CP )1 produces the following cancelation
property.

Lemma 3.3 Let (b1, b2) satisfy (CP )1, let Q,Q′ be cubes in Rn and f1 and
f2 be simple A-valued with suppf1 ⊂ Q′ and suppf2 ⊂ (Q′)c. Then

(b2)QT (f1)(x) = T ((b1)Qf1)(x), x ∈ (Q′)c (27)

(b2)QT (f2)(x) = T ((b1)Qf2)(x), x ∈ Q′. (28)

Proof. We prove only (28), the other case follows in a similar way.
Recall that if F ∈ L1(Rn, X) and Φ ∈ L(X) for a given Banach space then

Φ(
∫

F (x)dx) =
∫

ΦF (x)dx. Hence

(b2)QT (f2)(x) = (b2)Q(
∫

(Q′)c

u(k(x, y), f2(y))dy

=
∫

(Q′)c

(b2)Qu(k(x, y), f2(y))dy

=
∫

(Q′)c

(
1
|Q|

∫
Q

b2(z)dz)u(k(x, y), f2(y))dy

=
∫

(Q′)c

(
1
|Q|

∫
Q

b2(z)u(k(x, y), f2(y)dz)dy

=
∫

(Q′)c

(
1
|Q|

∫
Q

u(k(x, y), b1(z)f2(y))dz)dy

=
∫

(Q′)c

u(k(x, y), (
1
|Q|

∫
Q

b1(z)dz)f2(y))dy

= T ((b1)Qf2)(x).ut

Example 3.4 Let S1 : A → B, S2 : B → B and S : A → B be bounded
operators such that S2S = SS1. Let u : C× A → B be given by (λ, a) → λSa

and k be a scalar-valued kernel. Define TS(
∑N

j=1 φkak) =
∑N

j=1 T (φk)S(ak)
where T is the scalar-valued Calderón-Zygmund operator with kernel k.

If b1(x) = b(x)S1 and b2(x) = b(x)S2 for some scalar valued functions b(x)
then (b1, b2) has the commuting properties (CP )1 and (CP )2. In this case one
has

Tb1,b2(f)(x) = b(x)S2(TSf(x))− TS(bS1f)(x).
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Example 3.5 Let A be a Banach space and let u : A∗ × A → C be given
by u(a∗, a) = 〈a∗, a〉. Let k be A∗-valued function and let T be a Calderón-
Zygmund operator from Lp

A(R) into Lp(R) with kernel k with respect to u.
If b1(x) = b(x)IdA and b2(x) = b(x) for a scalar valued b then (b1, b2) has

the commuting properties (CP )1 and (CP )2. In this case one has

Tb1,b2(f)(x) = b(x)Tf(x)− T (bf)(x).

Example 3.6 Let b(x) ∈ A∗ and let u : C×A → A given by (λ, a) → λa. Let
k(x, y) be a scalar valued function and T a Calderón-Zygmund operator with
kernel k and denote by TA = T ⊗ IdA. If b1(x)(a) = b2(x)(a) = 〈b(x), a〉a0 for
a fixed a0 ∈ A then (b1, b2) has the commuting properties (CP )1 and (CP )2.
In this case one has

Tb1,b2(f) = (〈b, TA(f)〉 − T (〈b, f〉)a0.

Let us start with the basic facts which follow from (CP )1 and (CP )2.

Lemma 3.7 Let (b1, b2) satisfy (CP )1 and (CP )2, let Q be cube in Rn and
f be simple A-valued. Then

(b2)QT (f)(x) = T ((b1)Qf)(x)x ∈ Q. (29)

Proof. Take f1 = fχQ and f2 = f − f1. and invoke Lemma 3.3 to ob-
tain (b2)QT (f2)χQ = T ((b1)Qf2)χQ. Now (CP )2 gives that (b2)QT (f1)χQ =
T ((b1)Qf1)χQ. ut

Another useful lemma which is essentially included in [HST] is the follow-
ing

Lemma 3.8 Let T be (p, A, B)-Calderón-Zygmund type operator with kernel
k with respect to u and which satisfes the assumption (CZy). If f is compactly
supported A-valued with suppf ⊂ (2Q)c then

‖T (f)(x)− T (f)(x′)‖ ≤ C‖u‖ |x− x′|ε

`(Q)ε

∞∑
j=2

2−jε

|Qj |

∫
Qj

‖f(y)‖dy, x, x′ ∈ Q

(30)
where we are denoting Qj = 2jQ

Proof. Note that if x, x′ ∈ Q then

T (f)(x)− T (f)(x′) =
∫

(2Q)c

u(k(x, y)− k(x′, y), f(y))dy.
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‖T (f)(x)− T (f)(x′)‖ ≤ ‖u‖
∫

(2Q)c

‖k(x, y)− k(x′, y)‖‖f(y)‖dy

≤ C‖u‖|x− x′|ε
∫

(2Q)c

‖f(y)‖
|x− y|n+ε

dy

≤ C‖u‖|x− x′|ε
∞∑

j=1

∫
Qj+1−Qj

‖f(y)‖
|x− y|n+ε

dy

≤ C‖u‖|x− x′|ε
∞∑

j=2

1
`(Qj)n+ε

∫
Qj

‖f(y)‖dy

≤ C‖u‖ |x− x′|ε

`(Q)ε

∞∑
j=2

2−jε 1
|Qj |

∫
Qj

‖f(y)‖dy.ut

We shall present now our result on commutators. It is just an adaptation
of the proof in [ST1] under slightly weaker assumptions.

Proposition 3.9 Let b1 ∈ BMO(Rn,L(A)) , b2 ∈ BMO(Rn,L(B)) and
1 < p < ∞. Let T be a (p, A,B)- Calderón-Zygmund type operator with
kernel k with respect to u which satisfies (CZy). Let (b1, b2) satisfy (CP )1
and (CP )2. Then, for any 1 < q < p < s < ∞, there exists Cq,s > 0 such that

Tb1,b2(f)#(x) ≤ Cq,s(‖b2‖BMOMq(Tf)(x) + ‖b1‖BMOMs(f)(x)).

Proof. Let f be a simple E-valued function. Let Q be a cube and denote
f1 = fχ2Q and f2 = f − f1. Put cQ = T ([(b1)Q − b1]f2)(xQ).

For each x ∈ Q one has, applying Lemma 3.7,

Tb1,b2f(x) = b2Tf(x)− T (b1f)(x) =

= [b2 − (b2)Q]Tf(x) + T ([(b1)Q − b1]f)(x) =

= [b2 − (b2)Q]Tf(x) + T ([(b1)Q − b1]f1)(x) + T ([(b1)Q − b1]f2)(x).

Hence

Tb1,b2f(x)− cQ =
3∑

i=1

σi(x)

where
σ1(x) = [b2 − (b2)Q]Tf(x),

σ2(x) = T ([(b1)Q − b1]f1)(x)

and
σ3(x) = T ([(b1)Q − b1]f2)(x)− T ([(b1)Q − b1]f2)(xQ).

Observe that for any q > 1 and 1/q + 1/q′ = 1 we can write

1
|Q|

∫
Q

‖σ1(x)‖dx ≤ oscq′(b2, Q)(
1
|Q|

∫
Q

‖Tf(x)‖qdx)1/q.
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For any s > p > q1 > 1 one can write, for 1/s + 1/r = 1/p, from Lemma
2.3,

1
|Q|

∫
Q

‖σ2(x)‖dx ≤ (
1
|Q|

∫
Q

‖T ([(b1)Q − b1]f1)(x)‖q1dx)1/q1

≤ C(
1
|Q|

∫
Q

‖(b1 − (b1)Q)f1(x)‖pdx)1/p

≤ Coscr(b1, Q)(
1
|Q|

∫
Q

‖f(x)‖sdx)1/s.

Using Lemma 3.8, and taking into account that ‖(b1)Q − (b1)2Q‖ ≤
Coscq1(b1, 2Q), we also can estimate, for a given s > 1,

‖σ3(x)‖ ≤ C
∞∑

j=2

2−jε 1
|Qj |

∫
Qj

‖(b1(y)− (b1)Q)f(y)‖dy

≤ C
∞∑

j=2

2−jε(
1
|Qj |

∫
Qj

‖b1(y)− (b1)Q‖s′dy)1/s′(
1
|Qj |

∫
Qj

‖f(y)‖sdy)1/s

≤ C
∞∑

j=2

2−jε(
j∑

k=2

oscs′(b1, Qk))(
1
|Qj |

∫
Qj

‖f(y)‖sdy)1/s

≤ C sup
j≥2

(
1
|Qj |

∫
Qj

‖f(y)‖sdy)1/s
( ∞∑

j=2

2−jε(
j∑

k=2

oscq′(b1, Qk))
)

≤ C‖b1‖BMO sup
j≥2

(
1
|Qj |

∫
Qj

‖f(y)‖sdy)1/s
∑

j

j2−jε

≤ C‖b1‖BMOMs(f)(x).

Hence, combining the previous estimates, one obtains

Tb1,b2(f)#(x) ≤ C‖b2‖BMOMq(Tf)(x) + C‖b1‖BMOMs(f)(x)).ut

Theorem 3.10 Let b1 ∈ BMO(Rn,L(A)) and b2 ∈ BMO(Rn,L(B)). Let
T be a (p, A, B)- Calderón-Zygmund type operator with kernel k with respect
to u which satisfy (Hx) and (CZy) and let (b1, b2) satisfy (CP )1 and (CP )2.
Then Tb1,b2 is bounded from Lq

A(Rn) to Lq
B(Rn) for any 1 < q < ∞.

Proof. First use Theorem 2.6 to obtain that T is a (s,A, B)- Calderón-
Zygmund type operator for all 1 < s < p. In fact T is bounded from Lr

A(Rn)
to Lr

A(Rn) for all 1 < r < ∞. Use, for a given 1 < q < ∞, Proposition 3.9 for
1 < q1, s1 < q, which, combining the boundedness of Mq1 and Ms1 in Lq

B(Rn)
and the boundedness of T from Lq

A(Rn) to Lq
B(Rn), imply that

‖Tb1,b2f‖Lq
B(Rn) ≤ C‖Tb1,b2(f)#‖Lq

B(Rn)

≤ C(‖b2‖BMO‖Mq1(Tf)‖Lq + C‖b1‖BMO‖Ms1(f)‖Lq )
≤ C(‖b2‖BMO‖T‖‖f‖Lq + C‖b1‖BMO‖f‖Lq ).ut
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[H] Hörmander, L. Estimates for translation invariant operators in Lp spaces, Acta
Math. 104, (1960), 93-140.
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