p-variation of vector measures with respect to bilinear maps.

O. BlascoJ.M. CalabuigOscar.Blasco@uv.esjmcalabu@mat.upv.esDepartment of Mathematics
Universitat de ValènciaDepartment of Applied Mathematics
Universitat Politècnica de ValènciaBurjassot 46100 (València), SpainValència 46022, Spain

January 17, 2008

Abstract

We introduce the spaces $V_{\mathbb{B}}^{p}(X)$ (resp. $\mathcal{V}_{\mathbb{B}}^{p}(X)$) of the vector measures $\mathfrak{F}: \Sigma \to X$ of bounded (p, \mathbb{B}) -variation (resp. of bounded (p, \mathbb{B}) -semivariation) with respect to a bounded bilinear map $\mathbb{B}: X \times Y \to Z$ and show that the spaces $L_{\mathbb{B}}^{p}(X)$ consisting in functions which are p-integrable with respect to \mathbb{B} , defined in [4], are isometrically embedded into $V_{\mathbb{B}}^{p}(X)$. We characterize $\mathcal{V}_{\mathbb{B}}^{p}(X)$ in terms of bilinear maps from $L^{p'} \times Y$ into Z and $V_{\mathbb{B}}^{p}(X)$ as a subspace of operators from $L^{p'}(Z^{*})$ into Y^{*} . Also we define the notion of cone absolutely summing bilinear maps in order to describe the (p, \mathbb{B}) -variation of a measure in terms of the cone-absolutely summing norm of the corresponding bilinear map from $L^{p'} \times Y$ into Z.

1 Notation and preliminaries.

Throughout the paper X denotes a Banach space, (Ω, Σ, μ) a positive finite measure space, \mathcal{D}_E the set of all partitions of $E \in \Sigma$ into a finite number of pairwise disjoint elements of Σ of positive measure and $\mathcal{S}_{\Sigma}(X)$ the space of simple functions, $\mathbf{s} = \sum_{k=1}^{n} x_k \mathbf{1}_{A_k}$, where $x_k \in X$, $(A_k)_k \in \mathcal{D}_{\Omega}$ and $\mathbf{1}_A$ denotes the characteristic function of the set $A \in \Sigma$. Also Y and Z denote Banach spaces over \mathbb{K} (\mathbb{R} or \mathbb{C}) and $\mathcal{B}: X \times Y \to Z$ a bounded bilinear map. We use the notation B_X for the closed unit ball of X, $\mathcal{L}(X, Y)$ for the space of bounded linear operators from X to Y and $X^* = \mathcal{L}(X, \mathbb{K})$.

For a vector measure $\mathcal{F}: \Sigma \to X$ we use the notation $|\mathcal{F}|$ and $||\mathcal{F}||$ for the non negative set functions $|\mathcal{F}|: \Sigma \to \mathbb{R}^+$ and $||\mathcal{F}||: \Sigma \to \mathbb{R}^+$ given by

$$|\mathcal{F}|(E) = \sup\{\sum_{A \in \pi} ||\mathcal{F}(A)||_X : \pi \in \mathcal{D}_E\}$$

and

$$\|\mathcal{F}\|(E) = \sup\{|\langle \mathcal{F}, x^* \rangle|(E) : x^* \in \mathcal{B}_{X^*}\}$$

^{*}The authors gratefully acknowledges support by Spanish Grants MTM2005-08350-C03-03 and MTN2004-21420-E. J.M. Calabuig was also supported by Generalitat Valenciana (project GV/2007/191).

respectively. In the case of operator-valued measures $\mathcal{F}: \Sigma \to \mathcal{L}(Y, Z)$ we use $|||\mathcal{F}|||$ for the strong-variation defined by

$$||\!| \mathcal{F} ||\!| (E) = \sup \{ \sum_{A \in \pi} ||\mathcal{F}(A)y||_Z : y \in \mathcal{B}_Y, \pi \in \mathcal{D}_E \}.$$

Given a norm τ defined on the space $Y \otimes X$ satisfying $||y \otimes x||_{\tau} \leq C||y|| \cdot ||x||$ we write $Y \otimes X$ for its completion. In [1] R. Bartle introduced the notion of Y-semivariation of a vector measure $\mathcal{F} : \Sigma \to X$ with respect to τ by the formula

$$\beta_Y(\mathfrak{F},\tau)(E) = \sup\{\|\sum_{A\in\pi} y_A \otimes \mathfrak{F}(A)\|_\tau : y_A \in \mathcal{B}_Y, \pi \in \mathcal{D}_E\}$$

for every $E \in \Sigma$. This is an intermediate notion between the variation and semivariation, since for every $E \in \Sigma$ we clearly have

$$\|\mathfrak{F}\|(E) \le \beta_Y(\mathfrak{F},\tau)(E) \le |\mathfrak{F}|(E).$$

If $Y \hat{\otimes}_{\epsilon} X$ and $Y \hat{\otimes}_{\pi} X$ stand for the injective and projective tensor norms respectively, then we actually have

$$\|\mathcal{F}\|(E) = \beta_Y(\mathcal{F}, \epsilon)(E) \le \beta_Y(\mathcal{F}, \tau)(E) \le \beta_Y(\mathcal{F}, \pi)(E) \le |\mathcal{F}|(E).$$

We refer the reader to [10] for a theory of integration of Y-valued functions with respect to X-valued measures of bounded Y-semivariation iniciated by B. Jefferies and S. Okada and to [3] for the study of this notion in the particular cases $X = L^p(\mu)$, $Y = L^q(\nu)$ and τ the norm in the space of vector-valued functions $L^p(\mu, L^q(\nu))$.

We are going to use notions of B-variation (or B-semivariation) which allow to obtain all the previous cases for particular instances of bilinear maps.

Recall that, for 1 , the*p*-variation and*p* $-semivariation of a vector measure <math>\mathcal{F}$ are defined by

$$|\mathcal{F}|_p(E) = \sup\{\left(\sum_{A \in \pi} \frac{\|\mathcal{F}(A)\|_X^p}{\mu(A)^{p-1}}\right)^{1/p} : \pi \in \mathcal{D}_E\}$$
(1)

and

$$\|\mathcal{F}\|_{p}(E) = \sup\{\left(\sum_{A \in \pi} \frac{|\langle \mathcal{F}(A), x^{*} \rangle|^{p}}{\mu(A)^{p-1}}\right)^{1/p} : x^{*} \in \mathcal{B}_{X^{*}}, \pi \in \mathcal{D}_{E}\}.$$
(2)

We denote $V^p(X)$ and $\mathcal{V}^p(X)$ the Banach spaces of vector-measures for which $|\mathcal{F}|_p(\Omega) < \infty$ and $||\mathcal{F}||_p(\Omega) < \infty$ respectively.

The limiting case p = 1 corresponds to $\|\mathcal{F}\|_1(E) = |\mathcal{F}|(E)$ and $\|\mathcal{F}\|_1(E) = \|\mathcal{F}\|(E)$. For $p = \infty$ $V^{\infty}(X) = \mathcal{V}^{\infty}(X)$ is given by vector-measures satisfying that there exists C > 0 such that $\|\mathcal{F}(A)\| \leq C\mu(A)$ for any $A \in \Sigma$ and the ∞ -variation of a measure is defined by

$$\|\mathcal{F}\|_{\infty}(E) = \sup\{\frac{\|\mathcal{F}(A)\|_{X}}{\mu(A)} : A \in \Sigma, A \subset E, \mu(A) > 0\}.$$
(3)

We denote by $L^0(X)$ and $L^0_{\text{weak}}(X)$ the spaces of strongly and weakly measurable functions with values in X and write $L^p(X)$ and $L^p_{\text{weak}}(X)$ for the space of functions in $L^0(X)$ and $L^0_{\text{weak}}(X)$ such that $||f|| \in L^p$ and $\langle f, x^* \rangle \in L^p$ for every $x^* \in X^*$ respectively. As usual for $1 \le p \le \infty$ the conjugate index is denoted by p', i.e. 1/p + 1/p' = 1.

For each $f \in L^p(X)$, $1 \le p \le \infty$, one can define a vector measure

$$\mathfrak{F}_f(E) = \int_E f d\mu, \quad E \in \Sigma$$

which is of bounded *p*-variation and $|\mathcal{F}_f|_p(\Omega) = ||f||_{L^p(X)}$. On the other hand the converse depends on the Radon-Nikodým property, that is, given 1 , X has the RNP if and only if for any X-valued $measure <math>\mathcal{F}$ of bounded *p*-variation there exists $f \in L^p(X)$ such that $\mathcal{F} = \mathcal{F}_f$.

For general Banach spaces $X, V^{\infty}(X)$ can be identified with the space of operators $\mathcal{L}(L^1, X)$ by means of the map $\mathcal{F} \to T_{\mathcal{F}}$ where

$$T_{\mathcal{F}}(\mathbf{1}_E) = \mathcal{F}(E), \quad E \in \Sigma,$$

and for $1 the space <math>V^p(X)$ can be identified (isometrically) with the space $\Lambda(L^{p'}, X)$, formed by the cone absolutely summing operators from $L^{p'}$ into X with the π_1^+ norm (see [13, 2]). We refer the reader to [8, 6, 10, 13] for the notions appearing in the paper and the basic concepts about vector measures and their variations.

Quite recently the authors started studying the spaces of X-valued functions which are p-integrable with respect to a bounded bilinear map $\mathcal{B}: X \times Y \to Z$, that is to say functions f satisfying the condition $\mathcal{B}(f, y) \in L^p(Z)$ for all $y \in Y$. Some basic theory was developed and applied to different examples (see [4, ?, 5]). Note that the use of certain bilinear maps, such as

$$\mathcal{B}: X \times \mathbb{K} \to X$$
, given by $\mathcal{B}(x, \lambda) = \lambda x$, (4)

$$\mathcal{D}: X \times X^* \to \mathbb{K}, \text{ given by } \mathcal{D}(x, x^*) = \langle x, x^* \rangle,$$
 (5)

$$\mathcal{D}_1: X^* \times X \to \mathbb{K}, \text{ given by } \mathcal{D}_1(x^*, x) = \langle x, x^* \rangle,$$
(6)

$$\pi_Y : X \times Y \to X \hat{\otimes} Y, \text{ given by } \pi_Y(x, y) = x \otimes y,$$
(7)

$$\tilde{\mathcal{O}}_Y : X \times \mathcal{L}(X, Y) \to Y$$
, given by $\tilde{\mathcal{O}}_Y(x, T) = T(x)$, (8)

$$\mathcal{O}_{Y,Z}: \mathcal{L}(Y,Z) \times Y \to Z, \text{ given by } \mathcal{O}_{Y,Z}(T,y) = T(y)$$
(9)

have been around for many years and have been used in different aspects of vector-valued functions, but a systematic study for general bilinear maps was started in [4] and used, among other things, to extend the results on boundedness from $L^p(Y)$ to $L^p(Z)$ of operator-valued kernels by M. Girardi and L. Weiss [9] to the case where $K : \Omega \times \Omega' \to X$ is measurable and the integral operators are defined by

$$T_K(f)(w) = \int_{\Omega'} \mathcal{B}(K(w, w'), f(w')) d\mu'(w').$$

The reader is also referred [5] for some versions of Hölder's inequality in this setting.

We shall need some notations and definitions from the previous papers. We write $\Phi_{\mathcal{B}}: X \to \mathcal{L}(Y, Z)$ and $\Psi_{\mathcal{B}}: Y \to \mathcal{L}(X, Z)$ for the bounded linear operators defined by $\Phi_{\mathcal{B}}(x) = \mathcal{B}_x$ and $\Psi_{\mathcal{B}}(y) = \mathcal{B}^y$ where \mathcal{B}_x and \mathcal{B}^y are given by $\mathcal{B}_x(y) = \mathcal{B}^y(x) = \mathcal{B}(x, y)$.

A bounded bilinear map $\mathcal{B}: X \times Y \to Z$ is called admissible (see [4]) if $\Phi_{\mathcal{B}}$ is injective. Throughout the paper \mathcal{B} will be always assumed to be admissible. However a stronger condition will be also needed for some results: A Banach space X is said to be (Y, Z, \mathcal{B}) -normed if there exists k > 0

$$||x||_X \le k ||\mathcal{B}_x||_{\mathcal{L}(Y,Z)}, \quad x \in X.$$

The bounded bilinear maps (4)-(9) provide examples of B-normed spaces.

As in [4] we write $\mathcal{L}^p_{\mathcal{B}}(X)$ for the space of functions $f: \Omega \to X$ with $\mathcal{B}(f, y) \in L^0(Z)$ for any $y \in Y$ and such that

$$||f||_{\mathcal{L}^{p}_{\mathfrak{B}}(X)} = \sup\{||\mathfrak{B}(f,y)||_{L^{p}(Z)} : y \in B_{Y}\} < \infty,$$

and we use the notation $L^p_{\mathcal{B}}(X)$ for the space of functions $f \in \mathcal{L}^p_{\mathcal{B}}(X)$ for which there exists a sequence of simple functions $(\mathbf{s}_n)_n \in \mathcal{S}_{\Sigma}(X)$ such that $\mathbf{s}_n \to f$ a.e. and $\|\mathbf{s}_n - f\|_{\mathcal{L}^p_{\mathcal{B}}(X)} \to 0$. In such a case, we write $\|f\|_{L^p_{\mathcal{B}}(X)}$ instead of $\|f\|_{\mathcal{L}^p_{\mathcal{B}}(X)}$ and $\|f\|_{L^p_{\mathcal{B}}(X)} = \lim_{n \to \infty} \|\mathbf{s}_n\|_{L^p_{\mathcal{B}}(X)}$. In particular, for the examples \mathcal{B} and \mathcal{D} we have that $\mathcal{L}^p_{\mathcal{B}}(X) = L^p(X)$ and $\mathcal{L}^p_{\mathcal{D}}(X) = L^p_{\text{weak}}(X)$. Also $L^p_{\mathcal{B}}(X) = L^p(X)$ and $L^p_{\mathcal{D}}(X)$ coincides with the space of Pettis *p*-integrable functions $\mathcal{P}^p(X)$ (see [12], page 54 for the case p = 1).

Observe that, for any \mathcal{B} , $L^p(X) \subseteq L^p_{\mathcal{B}}(X)$ and the inclusion can be strict (see [6] page 53, for the case $\mathcal{B} = \mathcal{D}$). Regarding the connection between $L^p_{\mathcal{B}}(X)$ and $L^p_{\text{weak}}(X)$ it was shown that X is (Y, Z, \mathcal{B}) -normed if and only if $L^p_{\mathcal{B}}(X) \subseteq L^p_{\text{weak}}(X)$ with continuous inclusion. Due to this fact, if $f \in L^1_{\mathcal{B}}(X)$ for some (Y, Z, \mathcal{B}) -normed space X then for each $E \in \Sigma$ there exists a

Due to this fact, if $f \in L^1_{\mathcal{B}}(X)$ for some (Y, Z, \mathcal{B}) -normed space X then for each $E \in \Sigma$ there exists a unique element of X, to be denoted by $\int_E^{\mathcal{B}} f d\mu$, verifying

$$\int_E \mathfrak{B}(f,y) d\mu = \mathfrak{B}(\int_E^{\mathfrak{B}} f d\mu, y), \text{ for all } y \in Y.$$

This allows us to define the vector measure

$$\mathcal{F}_{f}^{\mathcal{B}}(E) = \int_{E}^{\mathcal{B}} f d\mu, \quad E \in \Sigma.$$

We shall consider the notion of (p, \mathcal{B}) -variation which fits with the theory allowing to show that the (p, \mathcal{B}) -variation of \mathcal{F}_f coincides with its norm $||f||_{L^p_{\mathcal{R}}(X)}$.

This paper is divided into three sections. In the first one we introduce the notion of \mathcal{B} -variation, \mathcal{B} -semivariation of a vector measure and study their connection with the classical notions. We prove that for (Y, Z, \mathcal{B}) -normed spaces the \mathcal{B} -semivariation is equivalent to the semivariation and that the Ysemivariation considered by Bartle coincides the \mathcal{B} -variation for a particular bilinear map \mathcal{B} . Particularly interesting is the observation that any vector-measure with values in $X = L^1(\mu)$ is of bounded \mathcal{B} variation for every \mathcal{B} whenever Z is a Hilbert space. We also show in this section that the measure $\mathcal{F}_f^{\mathcal{B}}$ is μ -continuous and $\|\mathcal{F}_f^{\mathcal{B}}\|_{\mathcal{B}}(\Omega) = \|f\|_{L^1_{\mathcal{B}}(X)}$. In the next section the natural notion of (p, \mathcal{B}) -semivariation is introduced. Starting with the case $p = \infty$ we describe, for 1 , the space of measures with $bounded <math>(p, \mathcal{B})$ -semivariation as bounded bilinear maps from $L^{p'} \times Y \to Z$. Last section deals with the notion of (p, \mathcal{B}) -variation of a vector measure. Several characterizations are presented and the new notion of "cone absolutely summing bilinear map" from $L \times Y \to Z$, where L is a Banach lattice, is introduced. This allow us to describe the (p, \mathcal{B}) -variation of a vector measure as the norm of the corresponding bilinear map from $L^{p'} \times Y$ into Z in this class.

Throughout the paper $\mathfrak{F}: \Sigma \to X$ always denotes a vector measure, $\mathfrak{B}: X \times Y \to Z$ is admissible and, for each $y \in Y$, $\mathfrak{B}(\mathfrak{F}, y)$ denotes the Z-valued measure $\mathfrak{B}(\mathfrak{F}, y)(E) = \mathfrak{B}(\mathfrak{F}(E), y)$.

2 Variation and semivariation with respect to bilinear maps.

Definition 1 Let $E \in \Sigma$. We define the B-variation of \mathfrak{F} on the set E by

$$\begin{aligned} |\mathcal{F}|_{\mathcal{B}}(E) &= \sup\{|\mathcal{B}(\mathcal{F}, y)|(E) : y \in \mathcal{B}_Y\} \\ &= \sup\{\sum_{A \in \pi} ||\mathcal{B}(\mathcal{F}(A), y)||_Z : \pi \in \mathcal{D}_E, y \in \mathcal{B}_Y\} \end{aligned}$$

We say that \mathfrak{F} has bounded \mathfrak{B} -variation if $|\mathfrak{F}|_{\mathfrak{B}}(\Omega) < \infty$.

Definition 2 Let $E \in \Sigma$. We define the B-semivariation of \mathcal{F} on the set E by

$$\begin{split} \|\mathcal{F}\|_{\mathcal{B}}(E) &= \sup\{\|\mathcal{B}(\mathcal{F}, y)\|(E) : y \in \mathcal{B}_{Y}\}\\ &= \sup\{|\langle \mathcal{B}(\mathcal{F}, y), z^{*}\rangle|(E) : y \in \mathcal{B}_{Y}, z^{*} \in \mathcal{B}_{Z^{*}}\}\\ &= \sup\{\sum_{A \in \pi} |\langle \mathcal{B}(\mathcal{F}(A), y), z^{*}\rangle| : \pi \in \mathcal{D}_{E}, y \in \mathcal{B}_{Y}, z^{*} \in \mathcal{B}_{Z^{*}}\}. \end{split}$$

We say that \mathfrak{F} has bounded \mathfrak{B} -semivariation if $\|\mathfrak{F}\|_{\mathfrak{B}}(\Omega) < \infty$.

Remark 1 Let \mathfrak{F} be a vector measure and $E \in \Sigma$.

- (a) $|\mathcal{F}|_{\mathcal{B}}(E) \leq ||\mathcal{B}|| \cdot |\mathcal{F}|(E).$
- (b) $\|\mathcal{F}\|_{\mathcal{B}}(E) \leq \|\mathcal{B}\| \cdot \|\mathcal{F}\|(E).$
- (c) $\sup\{\|\mathcal{B}(\mathcal{F}(C), y)\| : y \in B_Y, E \supseteq C \in \Sigma\} \approx \|\mathcal{F}\|_{\mathcal{B}}(E).$

In particular any measure has bounded B-semivariation for any B.

We can easily describe the \mathcal{B} -variation and \mathcal{B} -semivariation of vector measures for the bilinear maps given in (1)-(8). The following results are elementary and left to the reader.

Proposition 1 Let \mathfrak{F} be a vector measure and $E \in \Sigma$.

- (a) $|\mathcal{F}|_{\mathcal{B}}(E) = |\mathcal{F}|(E)$ and $||\mathcal{F}||_{\mathcal{B}}(E) = ||\mathcal{F}||(E)$.
- (b) $|\mathcal{F}|_{\mathcal{D}}(E) = ||\mathcal{F}||_{\mathcal{D}}(E) = ||\mathcal{F}||(E).$
- (c) $|\mathcal{F}|_{\mathcal{D}_1}(E) = ||\mathcal{F}||_{\mathcal{D}_1}(E) = ||\mathcal{F}||(E).$
- (d) $|\mathfrak{F}|_{\pi_Y}(E) = |\mathfrak{F}|(E)$ and $||\mathfrak{F}||_{\pi_Y}(E) = ||\mathfrak{F}||(E)$ (see Proposition 4).
- (e) $|\mathcal{F}|_{\widetilde{\mathcal{O}}_{Y}}(E) = \sup\{|T\mathcal{F}|(E): T \in B_{\mathcal{L}(Y,Z)}\} \text{ and } \|\mathcal{F}\|_{\widetilde{\mathcal{O}}_{Y}}(E) = \|\mathcal{F}\|(E).$
- (f) $|\mathcal{F}|_{\mathcal{O}_{Y,Z}}(E) = ||\mathcal{F}||(E)$ and $||\mathcal{F}||_{\mathcal{O}_{Y,Z}}(E) = ||\mathcal{F}||(E)$.

The notion of B-normed space can be described in terms of vector measures.

Proposition 2 Let $\mathcal{B} : X \times Y \to Z$ be an admissible bounded bilinear map. Then X is (Y, Z, \mathcal{B}) -normed if and only if for any vector measure $\mathcal{F} : \Sigma \to X$ there exist $C_1, C_2 > 0$ such that

$$C_1 \|\mathcal{F}\|(E) \le \|\mathcal{F}\|_{\mathcal{B}}(E) \le C_2 \|\mathcal{F}\|(E)$$

for all $E \in \Sigma$.

PROOF. Obviously $\|\mathcal{F}\|_{\mathcal{B}}(E) \leq \|\mathcal{B}\| \cdot \|\mathcal{F}\|(E)$ for any $E \in \Sigma$. Assume X is (Y, Z, \mathcal{B}) -normed. Then we have that

$$\begin{split} \|\mathcal{F}\|(E) &= \sup\{\|\sum_{A\in\pi} \epsilon_A \mathcal{F}(A)\|_X : \pi \in \mathcal{D}_E, \ \epsilon_A \in \mathcal{B}_{\mathbb{K}}\}\\ &\leq k \sup\{\|\mathcal{B}_{\sum_{A\in\pi} \epsilon_A \mathcal{F}(A)}\|_{\mathcal{L}(Y,Z)} : \pi \in \mathcal{D}_E, \ \epsilon_A \in \mathcal{B}_{\mathbb{K}}\}\\ &= k \sup\{\|\sum_{A\in\pi} \epsilon_A \mathcal{B}(\mathcal{F}(A), y)\|_Z : \pi \in \mathcal{D}_E, \ \epsilon_A \in \mathcal{B}_{\mathbb{K}}, \ y \in \mathcal{B}_Y\}\\ &= k\|\mathcal{F}\|_{\mathcal{B}}(E). \end{split}$$

Conversely, for each $x \in X$ select the measure $\mathcal{F}_x(A) = x\mu(A)\mu(\Omega)^{-1}$ and observe that $\|\mathcal{F}_x\|(\Omega) = \|x\|$ and $\|\mathcal{F}_x\|_{\mathcal{B}}(\Omega) = \|\mathcal{B}_x\|$.

We use \mathcal{B}^* for the "adjoint" bilinear map from $X \times Z^*$ to Y^* , i.e. $(\mathcal{B}^*)_x = (\mathcal{B}_x)^*$ or

$$\mathbb{B}^*: X \times Z^* \to Y^*, \text{ given by } \langle y, \mathbb{B}^*(x, z^*) \rangle = \langle \mathbb{B}(x, y), z^* \rangle.$$

Note that $\mathcal{B}^* = \mathcal{D}$, $\mathcal{D}_1^* = \mathcal{B}$, $(\pi_Y)^* = \widetilde{\mathcal{O}}_{Y^*}$ and $(\mathcal{O}_{Y,Z})^*(T, z^*) = \mathcal{O}_{Z^*,Y^*}(T^*, z^*)$. Let us see that the \mathcal{B} -semivariation and the \mathcal{B}^* -semivariation always coincide. **Proposition 3** $\|\mathcal{F}\|_{\mathcal{B}}(E) = \|\mathcal{F}\|_{\mathcal{B}^*}(E)$ for all $E \in \Sigma$.

PROOF. Let us take $E \in \Sigma$. Then

$$\begin{split} \|\mathfrak{F}\|_{\mathfrak{B}}(E) &= \sup\{\sum_{A\in\pi} |\langle \mathfrak{B}(\mathfrak{F}(A), y), z^*\rangle| : \pi \in \mathcal{D}_E, y \in \mathcal{B}_Y, z^* \in \mathcal{B}_{Z^*}\} \\ &= \sup\{\sum_{A\in\pi} |\langle y, \mathfrak{B}^*(\mathfrak{F}(A), z^*)\rangle| : \pi \in \mathcal{D}_E, y \in \mathcal{B}_Y, z^* \in \mathcal{B}_{Z^*}\} \\ &= \sup\{|\sum_{A\in\pi} \epsilon_A \langle y, \mathfrak{B}^*(\mathfrak{F}(A), z^*)\rangle| : \pi \in \mathcal{D}_E, y \in \mathcal{B}_Y, z^* \in \mathcal{B}_{Z^*}, \epsilon_A \in \mathcal{B}_{\mathbb{K}}\} \\ &= \sup\{|\sum_{A\in\pi} \epsilon_A \mathfrak{B}^*(\mathfrak{F}(A), z^*)||_{Y^*} : \pi \in \mathcal{D}_E, z^* \in \mathcal{B}_{Z^*}, \epsilon_A \in \mathcal{B}_{\mathbb{K}}\} \\ &= \sup\{\sum_{A\in\pi} |\langle \mathfrak{B}^*(\mathfrak{F}(A), z^*), y^{**}\rangle| : \pi \in \mathcal{D}_E, y^{**} \in \mathcal{B}_{Y^{**}}, z^* \in \mathcal{B}_{Z^*}\} \\ &= \|\mathcal{F}\|_{\mathcal{B}^*}(E). \end{split}$$

Proposition 4 Let τ be a norm in $Y \otimes X$ with $||y \otimes x||_{\tau} = ||y|| ||x||$ for all $y \in Y$ and $x \in X$. Define $\tau_Y : X \times Y \to Y \hat{\otimes}_{\tau} X$ given by $(x, y) \to y \otimes x$. Then, for each $E \in \Sigma$,

$$\beta_Y(\mathfrak{F},\tau)(E) = |\mathfrak{F}|_{(\tau_Y)^*}(E).$$

PROOF. Taking into account that $Y \hat{\otimes}_{\pi} X \subseteq Y \hat{\otimes}_{\tau} X$, then $(Y \hat{\otimes}_{\tau} X)^*$ can be regarded as a subspace of the space of bounded operators $\mathcal{L}(Y, X^*)$. Moreover $||T|| \leq ||T||_{(Y \hat{\otimes}_{\tau} X)^*}$ for any $T \in (Y \hat{\otimes}_{\tau} X)^*$, where the duality is given by

$$\langle T, \sum_{j=1}^{k} y_j \otimes x_j \rangle = \sum_{j=1}^{k} \langle x_j, T(y_j) \rangle$$

From [3, Theorem 2.1]

$$\beta_Y(\mathfrak{F},\tau)(E) \approx \sup\{|T\mathfrak{F}|(E): T \in \mathcal{L}(Y,X^*), \|T\|_{(Y\hat{\otimes}_{\tau}X)^*} \leq 1\}.$$

Hence

$$\beta_Y(\mathfrak{F},\tau)(E) \approx \sup\{|(\tau_Y)^*(\mathfrak{F},T)|(E): T \in \mathcal{L}(Y,X^*), \|T\|_{(Y\hat{\otimes}_\tau X)^*} \leq 1\}.$$

Of course vector measures need not be of bounded \mathcal{B} -variation for a general \mathcal{B} (it suffices to take \mathcal{B} such that $|\mathcal{F}|_{\mathcal{B}} = |\mathcal{F}|$), but there are cases where this happens to be true due to the geometrical properties of the spaces into consideration.

Proposition 5 Let $X = L^1(\nu)$ for some σ -finite measure ν and let Z = H be a Hilbert space. Then any vector measure $\mathcal{F}: \Sigma \to L^1(\nu)$ is of bounded \mathcal{B} -variation for any bounded bilinear map $\mathcal{B}: L^1(\nu) \times Y \to H$ and any Banach space Y.

PROOF. Recall first that Grothendieck theorem (see [7]) establishes that there exists a constant $\kappa_G > 0$ such that any operator from $L^1(\nu)$ to a Hilbert space H satisfies

$$\sum_{n=1}^{N} \|T(\phi_n)\|_H \le \kappa_G \|T\| \sup\left\{ \left\| \sum_{n=1}^{N} \varepsilon_n \phi_n \right\|_{L^1(\nu)} : \varepsilon_n \in \mathcal{B}_{\mathbb{K}} \right\}$$

for any finite family of functions $(\phi_n)_n$ in $L^1(\nu)$.

If $\mathcal{F}: \Sigma \to L^1(\nu)$ is a vector measure and π a partition one has that $\|\sum_{A \in \pi} \epsilon_A \mathcal{F}(A)\|_{L^1(\nu)} \leq \|\mathcal{F}\|(\Omega)$. Hence $\mathcal{B}^y \in L(L^1(\nu) \to H$ for any $y \in Y$, one obtains

$$\sum_{A \in \pi} \|\mathcal{B}^{y}(\mathcal{F}(A))\|_{Z} \leq \kappa_{G} \cdot \|\mathcal{B}^{y}\| \cdot \|\mathcal{F}\|(\Omega).$$

Therefore one concludes $|\mathcal{F}|_{\mathcal{B}}(\Omega) \leq \kappa_G \cdot ||\mathcal{F}||(\Omega)$.

Recall that a vector measure $\mathfrak{F}: \Sigma \to X$ is called μ -continuous if $\lim_{\mu(E)\to 0} \|\mathfrak{F}\|(E) = 0$.

Theorem 1 Let X be (Y, Z, \mathcal{B}) -normed and $f \in L^1_{\mathcal{B}}(X)$. Then

$$\mathfrak{F}_{f}^{\mathfrak{B}}: \Sigma \to X, \text{ given by } \mathfrak{F}_{f}^{\mathfrak{B}}(E) = \int_{E}^{\mathfrak{B}} f d\mu$$
(10)

is a μ -continuous vector measure of bounded \mathcal{B} -variation. Moreover $|\mathcal{F}_{f}^{\mathcal{B}}|_{\mathcal{B}}(\Omega) = ||f||_{L^{1}_{\mathfrak{B}}(X)}$.

PROOF. It was shown (see [4, Theorem 1]) that functions in $L^1_{\mathcal{B}}(X)$ are Pettis-integrable and $\int_E^{\mathcal{B}} f d\mu$ coincides with the Pettis-integral. Hence $\mathcal{F}_f^{\mathcal{B}}$ defines a vector measure.

Using now that, for each $y \in Y$, the vector measure $\mathcal{B}(\mathcal{F}_{f}^{\mathcal{B}}, y)$ has density $\mathcal{B}(f, y)$ which belongs to $L^{1}(Z)$ one gets that, for any $E \in \Sigma$,

$$|\mathcal{B}(\mathcal{F}_f, y)|(E) = \int_E ||\mathcal{B}(f, y)||_Z d\mu.$$

Thus $|\mathcal{F}_{f}^{\mathcal{B}}|_{\mathcal{B}}(\Omega) = ||f||_{L_{\mathcal{B}}^{1}(X)}$. It remains to show that $\mathcal{F}_{f}^{\mathcal{B}}$ is μ -continuous. Let us fix $\varepsilon > 0$ and select, using that $f \in L_{\mathcal{B}}^{1}(X)$, a simple function s such that $||f - s||_{L_{\mathcal{B}}^{1}(X)} \leq \varepsilon$. Thus

$$\begin{split} \|\mathcal{F}_{f}^{\mathcal{B}}(E)\|_{X} &\leq \|\int_{E}^{\mathcal{B}} (f-s)d\mu\|_{X} + \|\int_{E}^{\mathcal{B}} sd\mu\|_{X} \\ &= \|\int_{E}^{\mathcal{B}} (f-s)d\mu\|_{X} + \|\int_{E} sd\mu\|_{X} \\ &\leq k\|\mathcal{B}_{\int_{E}^{\mathcal{B}} (f-s)d\mu}\|_{\mathcal{L}(Y,Z)} + \|\int_{E} sd\mu\|_{X} \\ &\leq k\sup\{\int_{E} \|\mathcal{B}(f-s,y)\|_{Z}d\mu : y \in \mathcal{B}_{Y}\} + \|\int_{E} sd\mu\|_{X} \\ &\leq k\varepsilon + \|\int_{E} sd\mu\|_{X}. \end{split}$$

We have the conclusion just taking limits when $\mu(E) \to 0$ and $\varepsilon \to 0^+$.

Corollary 1 Let X is (Y, Z, \mathbb{B}) -normed and $f \in L^1_{\mathfrak{B}}(X)$. If $\int_E^{\mathfrak{B}} f d\mu = 0$ for all $E \in \Sigma$ then f = 0 a.e. in Ω .

3 Measures of bounded (p, \mathcal{B}) -semivariation.

Extending the notion for $\mathcal{B} = \mathcal{B}$, we say that a vector measure $\mathcal{F} : \Sigma \to X$ is (\mathcal{B}, μ) -continuous if $\lim_{\mu(E)\to 0} \|\mathcal{F}\|_{\mathcal{B}}(E) = 0$. Clearly both concepts coincide for \mathcal{B} -normed spaces.

Definition 3 We say that \mathcal{F} has bounded (∞, \mathcal{B}) -semivariation if there exists C > 0 such that

$$|\langle \mathcal{B}(\mathcal{F}(A), y), z^* \rangle| \le C \cdot ||y|| \cdot ||z^*|| \cdot \mu(A), \quad y \in Y, \ z^* \in Z^*, \ A \in \Sigma.$$

$$\tag{11}$$

The space of such measures is denoted by $\mathcal{V}^{\infty}_{\mathcal{B}}(X)$ and we set

$$\begin{aligned} |\mathcal{F}\|_{\mathcal{V}^{\infty}_{\mathcal{B}}(X)} &= \inf\{C: \text{ satisfying } (11) \} \\ &= \sup\{\frac{|\langle \mathcal{B}(\mathcal{F}(A), y), z^* \rangle|}{\mu(A)} : y \in \mathcal{B}_Y, \ z^* \in \mathcal{B}_{Z^*}, \ A \in \Sigma, \ \mu(A) > 0 \}. \end{aligned}$$

Observe that every vector measure \mathfrak{F} belonging to $\mathcal{V}^{\infty}_{\mathcal{B}}(X)$ is (\mathcal{B},μ) -continuous and it has bounded \mathcal{B} -variation. Also note that \mathfrak{F} has bounded (∞, \mathcal{B}) -semivariation if and only if

 $\|\mathcal{B}(\mathcal{F}(A), y)\| \le C \|y\| \mu(A), \quad y \in Y, \ A \in \Sigma,$

or

$$\|\mathcal{F}\|_{\mathcal{B}}(A) \le C\mu(A), \quad A \in \Sigma,$$

or

$$|\mathcal{F}|_{\mathcal{B}}(A) \le C\mu(A), \quad A \in \Sigma.$$

It is elementary to see, due to the admissibility of \mathcal{B} , that $\|\mathcal{F}\|_{\mathcal{V}^{\infty}_{\mathcal{B}}(X)}$ is a norm

Of course

$$\begin{split} \|\mathcal{F}\|_{\mathcal{V}^{\infty}_{\mathcal{B}}(X)} &= \sup\{\|\mathcal{B}(\mathcal{F}, y)\|_{\mathcal{V}^{\infty}(Z)} : y \in \mathcal{B}_{Y}\}\\ &= \sup\left\{\frac{\|\mathcal{B}(\mathcal{F}(A), y)\|_{Z}}{\mu(A)} : y \in \mathcal{B}_{Y}, A \in \Sigma\right\}\\ &= \sup\left\{\frac{\|\mathcal{F}\|_{\mathcal{B}}(A)}{\mu(A)} : A \in \Sigma\right\}\\ &= \sup\left\{\frac{|\mathcal{F}|_{\mathcal{B}}(A)}{\mu(A)} : A \in \Sigma\right\}. \end{split}$$

Proposition 6 $\mathcal{F} \in \mathcal{V}^{\infty}_{\mathcal{B}}(X)$ if and only if there exists a bounded bilinear map $\mathcal{B}_{\mathcal{F}}: L^1 \times Y \to Z$ such that

$$\mathcal{B}_{\mathcal{F}}(\mathbf{1}_A, y) = \mathcal{B}(\mathcal{F}(A), y), \quad A \in \Sigma, y \in Y.$$

Moreover $\|\mathcal{B}_{\mathcal{F}}\| = \|\mathcal{F}\|_{\mathcal{V}^{\infty}_{\mathcal{B}}(X)}$.

PROOF. Assume $\mathfrak{F} \in \mathcal{V}^{\infty}_{\mathcal{B}}(X)$. Define $\mathcal{B}_{\mathfrak{F}}$ on simple functions by the formula

$$\mathcal{B}_{\mathcal{F}}(\sum_{k=1}^{n} \alpha_k \mathbf{1}_{A_k}, y) = \sum_{k=1}^{n} \alpha_k \mathcal{B}(\mathcal{F}(A_k), y).$$

Observe that

$$\|\mathcal{B}_{\mathcal{F}}(\sum_{k=1}^{n}\alpha_{k}\mathbf{1}_{A_{k}},y)\|_{Z} \leq \|\mathcal{F}\|_{\mathcal{V}^{\infty}_{\mathcal{B}}(X)}\|y\|\sum_{k=1}^{n}|\alpha_{k}|\mu(A_{k}).$$

This allows to extend the bilinear map to $L^1 \times Y \to Z$ with norm $\|\mathcal{B}_{\mathcal{F}}\| \leq \|\mathcal{F}\|_{\mathcal{V}^{\infty}_{\mathcal{B}}(X)}$. Conversely one has

$$\|\mathcal{B}(\mathcal{F}(A), y)\|_{Z} \le \|\mathcal{B}_{\mathcal{F}}\| \cdot \|y\| \cdot \|\mathbf{1}_{A}\|_{L^{1}}$$

which gives $\|\mathcal{F}\|_{\mathcal{V}^{\infty}_{\mathcal{B}}(X)} \leq \|\mathcal{B}_{\mathcal{F}}\|.$

We use the notation $\operatorname{Bil}(L^1 \times Y, Z)$ for the space of bounded bilinear maps with its natural norm.

Corollary 2 $\mathcal{V}^{\infty}_{\mathcal{B}}(X)$ is isometrically embedded into $\operatorname{Bil}(L^1 \times Y, Z)$. In the case $\mathcal{B} = \mathcal{O}_{Y,Z}$ we have $\mathcal{V}^{\infty}_{\mathcal{O}_{Y,Z}}(\mathcal{L}(Y,Z)) = \operatorname{Bil}(L^1 \times Y, Z)$.

Let $L^{\infty}_{\mathcal{B}}(X)$ stand for the space of measurable functions $f: \Omega \to X$ such that $\mathcal{B}(f, y) \in L^{\infty}(Z)$ for all $y \in Y$ and write

$$||f||_{L^{\infty}_{\mathfrak{B}}(X)} = \sup\{||\mathcal{B}(f, y)||_{L^{\infty}(Z)} : y \in B_Y\}.$$

Note that $L^{\infty}_{\mathcal{B}}(X) \subseteq L^{1}_{\mathcal{B}}(X)$ and $|\mathcal{B}(\mathcal{F}^{\mathcal{B}}_{f}, y)|(A) = \int_{A}^{\mathcal{B}} ||\mathcal{B}(f, y)|| d\mu$ for any set $A \in \Sigma$. In particular if $f \in L^{\infty}_{\mathcal{B}}(X)$ then the measure $\mathcal{F}^{\mathcal{B}}_{f} \in \mathcal{V}^{\infty}_{\mathcal{B}}(X)$ and $||\mathcal{F}^{\mathcal{B}}_{f}||_{\mathcal{V}^{\infty}_{\mathcal{B}}(X)} = ||f||_{L^{\infty}_{\mathcal{B}}(X)}$.

Proposition 7 The following are equivalent:

- (a) X is (Y, Z, \mathcal{B}) -normed.
- (b) $\mathcal{V}^{\infty}_{\mathcal{B}}(X) = V^{\infty}(X).$
- (c) There exists k > 0 such that $\|\mathcal{F}_{f}^{\mathcal{B}}\|_{V^{\infty}(X)} \leq k \|f\|_{L^{\infty}_{\mathcal{R}}(X)}$ for any $f \in L^{\infty}_{\mathcal{B}}(X)$.

PROOF. (a) \Longrightarrow (b) Always $V^{\infty}(X) \subseteq \mathcal{V}^{\infty}_{\mathcal{B}}(X)$. Assume X is (Y, Z, \mathcal{B}) -normed and $\mathcal{F} \in \mathcal{V}^{\infty}_{\mathcal{B}}(X)$. Note that

$$\|\mathcal{F}(A)\| \le k \|\mathcal{B}_{\mathcal{F}(A)}\| \le k \|\mathcal{F}\|_{\mathcal{V}^{\infty}_{\mathfrak{B}}(X)} \mu(A).$$

(b) \Longrightarrow (c) Let $f \in L^{\infty}_{\mathcal{B}}(X)$. Clearly

$$\|\mathcal{F}_{f}^{\mathcal{B}}\|_{\mathcal{V}^{\infty}(X)} \leq k \|\mathcal{F}_{f}^{\mathcal{B}}\|_{\mathcal{V}^{\infty}_{\mathcal{B}}(X)} = k \|f\|_{L^{\infty}_{\mathcal{B}}(X)}.$$

(c) \Longrightarrow (a) Let us take $f_x = x \mathbf{1}_{\Omega}$ for a given $x \in X$ and observe that $\mathcal{F}^{\mathcal{B}}_{f_x}(A) = x \mu(A)$ for all $A \in \Sigma$. Note that $\|f_x\|_{L^{\infty}_{\mathcal{B}}(X)} = \|\mathcal{B}_x\|$ and $\|\mathcal{F}^{\mathcal{B}}_{f_x}\|_{V^{\infty}(X)} = \|x\|$.

Definition 4 Let $1 \le p < \infty$. We say that \mathfrak{F} has bounded (p, \mathfrak{B}) -semivariation if

$$\|\mathcal{F}\|_{\mathcal{V}^p_{\mathcal{B}}(X)} = \sup\left\{\left(\sum_{A\in\pi} \frac{|\langle \mathcal{B}(\mathcal{F}(A), y), z^*\rangle|^p}{\mu(A)^{p-1}}\right)^{\frac{1}{p}} : y\in\mathcal{B}_Y, z^*\in\mathcal{B}_{Z^*}, \pi\in\mathcal{D}_\Omega\right\} < \infty.$$

The space of such measures will be denoted by $\mathcal{V}^p_{\mathfrak{B}}(X)$.

We have the equivalent formulation

$$\begin{aligned} \|\mathcal{F}\|_{\mathcal{V}^{p}_{\mathcal{B}}(X)} &= \sup\{\|\mathcal{B}(\mathcal{F}, y)\|_{\mathcal{V}^{p}(Z)} : y \in \mathcal{B}_{Y}\} \\ &= \sup\{\|\langle \mathcal{B}(\mathcal{F}, y), z^{*}\rangle\|_{\mathcal{V}^{p}} : y \in \mathcal{B}_{Y}, z^{*} \in \mathcal{B}_{Z^{*}}\}. \end{aligned}$$

Let us start with the following description.

Proposition 8 Let $1 . Then <math>\mathcal{F} \in \mathcal{V}^p_{\mathcal{B}}(X)$ if and only if there exists a bounded bilinear map $\mathcal{B}_{\mathcal{F}}: L^{p'} \times Y \to Z$ such that

$$\mathcal{B}_{\mathcal{F}}(\mathbf{1}_A,y)=\mathcal{B}(\mathcal{F}(A),y),\quad A\in\Sigma,y\in Y.$$

Moreover $\|\mathcal{B}_{\mathcal{F}}\| = \|\mathcal{F}\|_{\mathcal{V}^p_{\mathcal{B}}(X)}$.

PROOF Assume $\mathcal{F} \in \mathcal{V}^p_{\mathcal{B}}(X)$. Define as above $\mathcal{B}_{\mathcal{F}}$ on simple functions by the formula

$$\mathcal{B}_{\mathcal{F}}(\sum_{k=1}^{n} \alpha_k \mathbf{1}_{A_k}, y) = \sum_{k=1}^{n} \alpha_k \mathcal{B}(\mathcal{F}(A_k), y).$$

We use that

$$\begin{split} \|\mathcal{F}\|_{\mathcal{V}_{\mathcal{B}}^{p}(X)} &= \sup\left\{ \left| \sum_{A \in \pi} \frac{\langle \mathcal{B}(\mathcal{F}(A), y), z^{*} \rangle \gamma_{A}}{\mu(A)^{1/p'}} \right| : y \in \mathcal{B}_{Y}, z^{*} \in \mathcal{B}_{Z^{*}}, \pi \in \mathcal{D}_{\Omega}, \ (\gamma_{A})_{A} \in \mathcal{B}_{\ell^{p'}} \right\} \\ &= \sup\left\{ \left\| \sum_{A \in \pi} \mathcal{B}(\mathcal{F}(A), y) \beta_{A} \right\|_{Z} : y \in \mathcal{B}_{Y}, \pi \in \mathcal{D}_{\Omega}, \sum_{A \in \pi} \beta_{A} \mathbf{1}_{A} \in \mathcal{B}_{L^{p'}} \right\} \\ &= \sup\left\{ \left\| \mathcal{B}_{\mathcal{F}}(\sum_{A \in \pi} \beta_{A} \mathbf{1}_{A}, y) \right\|_{Z} : y \in \mathcal{B}_{Y}, \pi \in \mathcal{D}_{\Omega}, \sum_{A \in \pi} \beta_{A} \mathbf{1}_{A} \in \mathcal{B}_{L^{p'}} \right\}. \end{split}$$

Hence using the density of simple functions we extend to $L^{p'}$ and $\|\mathcal{B}_{\mathcal{F}}\| \leq \|\mathcal{F}\|_{\mathcal{V}^p_{\mathcal{B}}(X)}$. The converse follows also from the previous formula.

It is known that $\mathcal{V}^p(X) = \mathcal{L}(L^{p'}, X)$ (see [11]). Next result is the analogue in the bilinear setting.

Corollary 3 Let $1 . <math>\mathcal{V}^p_{\mathcal{B}}(X)$ is isometrically embedded into $\operatorname{Bil}(L^{p'} \times Y, Z)$. In the case $\mathcal{B} = \mathcal{O}_{Y,Z}$ we have $\mathcal{V}^p_{\mathcal{O}_{Y,Z}}(\mathcal{L}(Y,Z)) = \operatorname{Bil}(L^{p'} \times Y, Z)$.

Proposition 9 Let $\mathcal{B}: X \times Y \to Z$ be an admissible bounded bilinear map and $1 . Then X is <math>(Y, Z, \mathcal{B})$ -normed if and only if the space $\mathcal{V}^p_{\mathcal{B}}(X)$ is continuously contained into $\mathcal{V}^p(X)$.

PROOF. Assume X is (Y, Z, \mathcal{B}) -normed.

$$\begin{split} |\mathcal{F}\|_{\mathcal{V}^{p}(X)} &= \sup\left\{ \left| \sum_{A \in \pi} \frac{\langle \mathcal{F}(A), x^{*} \rangle \gamma_{A}}{\mu(A)^{1/p'}} \right| : x^{*} \in \mathcal{B}_{X^{*}}, \pi \in \mathcal{D}_{\Omega}, \ (\gamma_{A})_{A} \in \mathcal{B}_{\ell^{p'}} \right\} \\ &= \sup\left\{ \left\| \sum_{A \in \pi} \frac{\mathcal{F}(A)\gamma_{A}}{\mu(A)^{1/p'}} \right\|_{X} : \pi \in \mathcal{D}_{\Omega}, \ (\gamma_{A})_{A} \in \mathcal{B}_{\ell^{p'}} \right\} \\ &\leq k \sup\left\{ \left\| \mathcal{B}_{\sum \frac{\mathcal{F}(A)\gamma_{A}}{\mu(A)^{1/p'}}} \right\|_{\mathcal{L}(Y,Z)} : \pi \in \mathcal{D}_{\Omega}, \ (\gamma_{A})_{A} \in \mathcal{B}_{\ell^{p'}} \right\} \\ &= k \sup\left\{ \left\| \sum_{A \in \pi} \mathcal{B}(\frac{\mathcal{F}(A)\gamma_{A}}{\mu(A)^{1/p'}}, y) \right\|_{Z} : y \in \mathcal{B}_{Y}, \pi \in \mathcal{D}_{\Omega}, \ (\gamma_{A})_{A} \in \mathcal{B}_{\ell^{p'}} \right\} \\ &= k \sup\left\{ \left(\sum_{A \in \pi} \frac{\|\mathcal{B}(\mathcal{F}(A), y)\|^{p}}{\mu(A)^{p-1}} \right)^{1/p} : y \in \mathcal{B}_{Y}, \pi \in \mathcal{D}_{\Omega}, \right\} \\ &= k \|\mathcal{F}\|_{\mathcal{V}^{p}_{\mathcal{B}}(X)}. \end{split}$$

For the converse consider the vector measure $\mathcal{F}_x : \Sigma \to X$ given by $\mathcal{F}_x(A) = x\mu(A)\mu(\Omega)^{-1}$ for each $x \in X$. Note that $\|\mathcal{F}_x\|_{\mathcal{V}^p(X)} = \|x\|$ and $\|\mathcal{F}_x\|_{\mathcal{V}^p_{\mathcal{B}}(X)} = \|\mathcal{B}_x\|$.

4 Measures of bounded (p, \mathcal{B}) -variation.

Definition 5 We say that \mathcal{F} has bounded (p, \mathcal{B}) -variation if

$$\|\mathcal{F}\|_{\mathcal{V}^p_{\mathcal{B}}(X)} = \sup\left\{ \left(\sum_{A \in \pi} \frac{\|\mathcal{B}(\mathcal{F}(A), y)\|_Z^p}{\mu(A)^{p-1}} \right)^{\frac{1}{p}} : y \in \mathcal{B}_Y, \pi \in \mathcal{D}_\Omega \right\} < \infty.$$

The space of such measures will be denoted by $V^p_{\mathcal{B}}(X)$.

It is clear that the norm in the vector space $V^p_{\mathcal{B}}(X)$ is also given by the expressions

$$\begin{aligned} |\mathcal{F}\|_{\mathcal{V}^{p}_{\mathcal{B}}(X)} &= \sup\{ \|\mathcal{B}(\mathcal{F}, y)\|_{\mathcal{V}^{p}(Z)} : y \in \mathcal{B}_{Y} \} \\ &= \sup\left\{ \left\| \sum_{A \in \pi} \frac{\mathcal{B}(\mathcal{F}(A), y)}{\mu(A)} \mathbf{1}_{A} \right\|_{L^{p}(Z)} : y \in \mathcal{B}_{Y}, \pi \in \mathcal{D}_{\Omega} \right\} \\ &= \sup\left\{ \left\| \sum_{A \in \pi} \frac{\mathcal{F}(A)}{\mu(A)} \mathbf{1}_{A} \right\|_{L^{p}_{\mathcal{B}}(X)} : \pi \in \mathcal{D}_{\Omega} \right\}. \end{aligned}$$

Remark 2 For p = 1 and $p = \infty$ this corresponds to $|\mathcal{F}|_{\mathcal{B}}(\Omega)$ and $||\mathcal{F}||_{\mathcal{V}^{\infty}_{\mathcal{B}}(X)}$. Hence we define $V^{\infty}(X) = \mathcal{V}^{\infty}(X)$.

It is clear that $V_{\mathcal{B}}^{p}(X) \subseteq \mathcal{V}_{\mathcal{B}}^{p}(X)$ and $\|\mathcal{F}\|_{V_{\mathcal{B}}^{p}(X)} \leq \|\mathcal{F}\|_{V_{\mathcal{B}}^{p}(X)}$. On the other hand, since

$$|\mathfrak{F}|_{\mathfrak{B}}(E) \leq \|\mathfrak{F}\|_{\mathcal{V}^{p}_{\mathfrak{B}}(X)} \|\mathbf{1}_{E}\|_{L^{p'}}, \quad E \in \Sigma,$$

one sees that if $\mathfrak{F} \in V^p_{\mathfrak{B}}(X)$ then \mathfrak{F} has bounded \mathfrak{B} -variation and it is (\mathfrak{B}, μ) -continuous.

Remark 3 Using the inclusions $L^q(X) \subseteq L^p(X)$ for $1 \le p \le q \le \infty$ one also has

$$V^{\infty}_{\mathcal{B}}(X) \subseteq V^{q}_{\mathcal{B}}(X) \subseteq V^{p}_{\mathcal{B}}(X)$$

and

$$\|\mathcal{F}\|_{\mathcal{V}^p_{\mathcal{B}}(X)} \le \mu(\Omega)^{1/q-1/p} \|\mathcal{F}\|_{\mathcal{V}^q_{\mathcal{B}}(X)} \le \mu(\Omega)^{1/q} \|\mathcal{F}\|_{\mathcal{V}^\infty_{\mathcal{B}}(X)}$$

Let us find different equivalent formulations for the norm in $V^p_{\mathcal{B}}(X)$.

Proposition 10

$$\|\mathcal{F}\|_{\mathcal{V}^{p}_{\mathcal{B}}(X)} = \sup\left\{\sum_{A \in \pi} \|\mathcal{B}(\mathcal{F}(A), \beta_{A}y)\|_{Z} : y \in \mathcal{B}_{Y}, \pi \in \mathcal{D}_{\Omega}, \sum_{A \in \pi} \beta_{A}\mathbf{1}_{A} \in \mathcal{B}_{L^{p'}}\right\}.$$
(12)

$$\|\mathcal{F}\|_{\mathcal{V}^{p}_{\mathcal{B}}(X)} = \sup\left\{\left\|\sum_{A\in\pi}\mathcal{B}^{*}(\mathcal{F}(A), z_{A}^{*})\right\|_{Y^{*}} : y\in\mathcal{B}_{Y}, \pi\in\mathcal{D}_{\Omega}, \sum_{A\in\pi}z_{A}^{*}\mathbf{1}_{A}\in\mathcal{B}_{L^{p'}(Z^{*})}\right\}.$$
 (13)

PROOF. Given a partition $\pi \in \mathcal{D}_{\Omega}$, $\alpha_A \in \mathbb{R}$ and $\beta_A = \frac{\alpha_A}{\mu(A)^{1/p'}}$ one has that the simple function $g = \sum_{A \in \pi} \beta_A \mathbf{1}_A$ satisfies $\|g\|_{L^{p'}} = \|(\alpha_A)_{A \in \pi}\|_{\ell^{p'}}$. Therefore

$$\begin{split} \|\mathcal{F}\|_{\mathcal{V}_{\mathcal{B}}^{p}(X)} &= \sup\left\{ \left\| \left(\left\| \mathcal{B}\left(\frac{\mathcal{F}(A)}{\mu(A)^{1/p'}}, y \right) \right\|_{Z} \right)_{A \in \pi} \right\|_{\ell^{p}} : y \in \mathcal{B}_{Y}, \pi \in \mathcal{D}_{\Omega} \right\} \\ &= \sup\left\{ \sum_{A \in \pi} \left\| \mathcal{B}\left(\frac{\mathcal{F}(A)}{\mu(A)^{1/p'}}, y \right) \right\|_{Z} |\alpha_{A}| : y \in \mathcal{B}_{Y}, \pi \in \mathcal{D}_{\Omega}, (\alpha_{A})_{A \in \pi} \in \mathcal{B}_{\ell^{p'}} \right\} \\ &= \sup\left\{ \sum_{A \in \pi} \left\| \mathcal{B}\left(\mathcal{F}(A) \frac{\alpha_{A}}{\mu(A)^{1/p'}}, y \right) \right\|_{Z} : y \in \mathcal{B}_{Y}, \pi \in \mathcal{D}_{\Omega}, (\alpha_{A})_{A \in \pi} \in \mathcal{B}_{\ell^{p'}} \right\} \\ &= \sup\left\{ \sum_{A \in \pi} \left\| \mathcal{B}\left(\mathcal{F}(A), \beta_{A} y \right) \right\|_{Z} : y \in \mathcal{B}_{Y}, \pi \in \mathcal{D}_{\Omega}, \sum_{A \in \pi} \beta_{A} \mathbf{1}_{A} \in \mathcal{B}_{L^{p'}} \right\}. \end{split}$$

We get (13) from the duality $(\ell^1(Z))^* = \ell^{\infty}(Z^*)$ and (12). Indeed,

$$\begin{split} \|\mathfrak{F}\|_{\mathcal{V}^{p}_{\mathfrak{B}}(X)} &= \sup\left\{\sum_{A\in\pi} \|\mathfrak{B}\left(\mathfrak{F}(A),\beta_{A}y\right)\|_{Z} : y\in\mathcal{B}_{Y},\pi\in\mathcal{D}_{\Omega},\sum_{A\in\pi}\beta_{A}\mathbf{1}_{A}\in\mathcal{B}_{L^{p'}}\right\} \\ &= \sup\left\{\left|\sum_{A\in\pi} \langle \mathfrak{B}\left(\mathfrak{F}(A),\beta_{A}y\right),z_{A}^{*}\rangle\right| : y\in\mathcal{B}_{Y},\pi\in\mathcal{D}_{\Omega},z_{A}^{*}\in\mathcal{B}_{Z^{*}},\sum_{A\in\pi}\beta_{A}\mathbf{1}_{A}\in\mathcal{B}_{L^{p'}}\right\} \\ &= \sup\left\{\left|\sum_{A\in\pi} \langle y,\mathfrak{B}^{*}\left(\mathfrak{F}(A),\beta_{A}z_{A}^{*}\right)\rangle\right| : y\in\mathcal{B}_{Y},\pi\in\mathcal{D}_{\Omega},z_{A}^{*}\in\mathcal{B}_{Z^{*}},\sum_{A\in\pi}\beta_{A}\mathbf{1}_{A}\in\mathcal{B}_{L^{p'}}\right\} \\ &= \sup\left\{\left\|\sum_{A\in\pi}\mathfrak{B}^{*}\left(\mathfrak{F}(A),z_{A}^{*}\right)\right\|_{Y^{*}} : \pi\in\mathcal{D}_{\Omega},\sum_{A\in\pi}z_{A}^{*}\mathbf{1}_{A}\in\mathcal{B}_{L^{p'}(Z^{*})}\right\}. \end{split}$$

Let us give a characterization of the vector measures in the space $V^p_{\mathcal{B}}(X)$ using only scalar valued functions $\{\varphi_y : y \in B_Y\} \subseteq L^p$.

Theorem 2 $\mathfrak{F} \in V^p_{\mathfrak{B}}(X)$ if and only if there exist $0 \leq \varphi_y \in L^p$ for each $y \in Y$ such that

- (a) $\sup\{\|\varphi_y\|_{L^p}: y \in B_Y\} < \infty$ and
- (b) $\|\mathcal{B}(\mathcal{F}(E), y)\| \leq \int_E \varphi_y d\mu$ for every $y \in Y$ and $E \in \Sigma$.

Moreover $\|\mathcal{F}\|_{\mathcal{V}^p_{\mathfrak{B}}(X)} = \sup\{\|\varphi_y\|_{L^p} : y \in \mathcal{B}_Y\}.$

PROOF. Let $\mathcal{F} \in V_{\mathcal{B}}^{p}(X)$. Then we have that $\mathcal{B}(\mathcal{F}, y) \in V^{p}(Z)$ for all $y \in B_{Y}$ and $|\mathcal{B}(\mathcal{F}, y)|$ is a non negative μ -continuous measure that has bounded variation. Using the Radon-Nikodým theorem there exists a non negative integrable function φ_{y} such that for all $E \in \Sigma$

$$|\mathcal{B}(\mathcal{F}, y)|(E) = \int_{E} \varphi_{y} d\mu.$$
(14)

In fact φ_y can be chosen belonging to L^p and verifying that $\|\varphi_y\|_{L^p} = \|\mathcal{B}(\mathcal{F}, y)\|_{V^p(Z)}$.

Then for every $E \in \Sigma$ and $y \in B_Y$

$$\|\mathcal{B}(\mathcal{F}(E), y)\| \le |\mathcal{F}|_{\mathcal{B}}(E) = \sup\{|\mathcal{B}(\mathcal{F}, y)|(E) : y \in \mathcal{B}_Y\} = \sup\{\int_E \varphi_y d\mu : y \in \mathcal{B}_Y\}$$

and we obtain the result.

Conversely observe that using Hölder's inequality we have that

$$\|\mathcal{B}(\mathcal{F}(E), y)\| \le \int_E \varphi_y d\mu \le \left(\int_E \varphi_y^p d\mu\right)^{1/p} \mu(E)^{1/p'}$$

for all $E \in \Sigma$ and $y \in B_Y$. Hence for every $\pi \in \mathcal{D}_{\Omega}$

$$\sum_{A \in \pi} \frac{\|\mathcal{B}(\mathcal{F}(A), y)\|^p}{\mu(A)^{p-1}} \le \int_{\Omega} \varphi_y^p d\mu.$$

This shows that $\mathfrak{F} \in V^p_{\mathfrak{B}}(X)$ and $\|\mathfrak{F}\|_{V^p_{\mathfrak{R}}(X)} \leq \sup\{\|\varphi_y\|_{L^p} : y \in B_Y\}.$

Let us now see the analogue to Theorem 1 in the cases 1 .

Theorem 3 Assume X is (Y, Z, \mathcal{B}) -normed and $1 . If <math>f \in L^p_{\mathcal{B}}(X)$ then $\mathfrak{F}^{\mathcal{B}}_f \in V^p_{\mathcal{B}}(X)$ and $\|\mathfrak{F}^{\mathcal{B}}_f\|_{V^p_{\mathfrak{B}}(X)} = \|f\|_{L^p_{\mathfrak{B}}(X)}$.

PROOF. Let us take $f \in L^p_{\mathcal{B}}(X)$. From Theorem 1 one knows that $\mathcal{F}^{\mathcal{B}}_f : \Sigma \to X$ is a vector measure of bounded variation. Now, for each $y \in Y$, $\mathcal{B}^y \mathcal{F}^{\mathcal{B}}_f : \Sigma \to Z$ is a vector measure verifying that

$$\mathbb{B}^y \mathcal{F}^{\mathbb{B}}_f(E) = \mathbb{B}(\mathcal{F}^{\mathbb{B}}_f(E), y) = \mathbb{B}(\int_E^{\mathbb{B}} f d\mu, y) = \int_E \mathbb{B}(f, y) d\mu, \quad E \in \Sigma$$

Therefore we have

$$\|f\|_{L^{p}_{\mathcal{B}}(X)} = \sup\{\|\mathcal{B}(f,y)\|_{L^{p}(Z)} : y \in \mathcal{B}_{Y}\} = \sup\{\|\mathcal{B}(\mathcal{F}^{\mathcal{B}}_{f},y)\|_{\mathcal{V}^{p}(Z)} : y \in \mathcal{B}_{Y}\} = \|\mathcal{F}^{\mathcal{B}}_{f}\|_{\mathcal{V}^{p}_{\mathcal{B}}(X)}.$$

Corollary 4 If X is (Y, Z, \mathcal{B}) -normed then $L^p_{\mathcal{B}}(X)$ is isometrically contained into $V^p_{\mathcal{B}}(X)$.

From the definition one clearly has the following interpretations of $V^p_{\mathcal{B}}(X)$ as operators:

 $V^p_{\mathfrak{B}}(X)$ is isometrically embedded into $\mathcal{L}(Y, V^p(Z))$ by composition, i.e. $\mathfrak{F} \to \Phi_{\mathfrak{F}}(y) = \mathfrak{B}^y \mathfrak{F}$.

Let us see other processes that generate operators from vector measures: Given a vector measure $\mathcal{F}: \Sigma \to X$ and a bounded bilinear map $\mathcal{B}: X \times Y \to Z$ we can consider the operators $T_{\mathcal{F}}^{\mathcal{B}}$ (resp. $S_{\mathcal{F}}^{\mathcal{B}}$) defined on Y-valued simple functions $s = \sum_{k=1}^{n} y_k \mathbf{1}_{A_k}$ (resp. Z^* -valued simple functions $t = \sum_{k=1}^{n} z_k^* \mathbf{1}_{A_k}$) by

$$T_{\mathcal{F}}^{\mathcal{B}}(s) = \sum_{k=1}^{n} \mathcal{B}(\mathcal{F}(A_k), y_k)$$

and

$$S_{\mathcal{F}}^{\mathcal{B}}(t) = \sum_{k=1}^{n} \mathcal{B}^*(\mathcal{F}(A_k), z_k^*).$$

Observe that actually $S_{\mathcal{F}}^{\mathcal{B}} = T_{\mathcal{F}}^{\mathcal{B}^*}$.

_	-	

Theorem 4 Let $1 . <math>V^p_{\mathcal{B}}(X)$ is continuously contained into $\mathcal{L}(L^{p'} \hat{\otimes} Y, Z)$.

PROOF. Let $\mathcal{F} \in V_{\mathcal{B}}^{p}(X)$. Consider the linear operator $T_{\mathcal{F}}^{\mathcal{B}}$ defined on Y-valued simple functions and with values in Z. Note that for any partition π , $\phi = \sum_{A \in \pi} \alpha_A \mathbf{1}_A$ and $y \in Y$

$$\|T_{\mathcal{F}}^{\mathcal{B}}(\phi \otimes y)\|_{Z} \leq \sum_{A \in \pi} \|\mathcal{B}(\mathcal{F}(A), \alpha_{A}y)\|_{Z}.$$

Using (12) and the definition of projective tensor product one gets $||T_{\mathcal{F}}^{\mathcal{B}}|| \leq ||\mathcal{F}||_{V_{\pi}^{p}(X)}$.

Theorem 5 Let $1 . <math>V^p_{\mathcal{B}}(X)$ is isometrically embedded into $\mathcal{L}(L^{p'}(Z^*), Y^*)$.

PROOF. Let $\mathcal{F} \in V_{\mathcal{B}}^{p}(X)$. Consider the linear operator $S_{\mathcal{F}}^{\mathcal{B}}$ from the space of Z^{*}-valued simple functions into Y^{*}. Note that for any partition π

$$\left\| S_{\mathcal{F}}^{\mathcal{B}}(\sum_{A \in \pi} z_A^* \mathbf{1}_A) \right\|_{Y^*} = \left\| \sum_{A \in \pi} \mathcal{B}^*(\mathcal{F}(A), z_A^*) \right\|_{Y^*}$$

Using (13) and the density of simple functions in $L^{p'}(Z^*)$ one gets $\|S_{\mathcal{F}}^{\mathcal{B}}\| = \|\mathcal{F}\|_{\mathcal{V}^p_{\mathfrak{P}}(X)}$.

Note that $V^p_{\mathcal{B}}(X) \subseteq \mathcal{V}^p_{\mathcal{B}}(X)$ and, from Corollary 3, $\mathcal{V}^p_{\mathcal{B}}(X)$ is embedded into $\operatorname{Bil}(L^{p'} \times Y, Z)$. Hence $V^p_{\mathcal{B}}(X)$ is continuously contained into $\operatorname{Bil}(L^{p'} \times Y, Z)$ by means of the mapping $\mathcal{F} \to \mathcal{B}_{\mathcal{F}} : L^{p'} \times Y \to Z$ given by

$$\mathcal{B}_{\mathcal{F}}(s,y) = \sum_{k=1}^{n} \mathcal{B}(\mathcal{F}(A_k), \alpha_k y)$$

where $s = \sum_{k=1}^{n} \alpha_k \mathbf{1}_{A_k}$. Let us find out which special class of bilinear maps represent elements in $V_{\mathcal{B}}^p(X)$.

In the case of $Y = \mathbb{K}$ the corresponding operators would correspond to the class of cone absolutely summing ones.

Definition 6 Let L be a Banach lattice, Y and Z be Banach spaces and $U: L \times Y \to Z$ be a bounded bilinear map. We say that U is cone absolutely summing if there exists C > 0 such that

$$\sup\{\sum_{n=1}^N \|\mathcal{U}(\varphi_n, y)\|_Z : y \in \mathcal{B}_Y\} \le C \sup\{\sum_{n=1}^N |\langle \varphi_n, \psi \rangle| : \psi \in \mathcal{B}_{L^*}\}$$

for any finite family $(\varphi_n)_n$ of positive elements in L.

We denote by $\Lambda(L \times Y, Z)$ the space of such bilinear maps and we endow the space with the norm $\pi^+(\mathfrak{U})$ given by the infimum of the constants satisfying the above inequality.

Theorem 6 If $\mathcal{F} \in V^p_{\mathcal{B}}(X)$ then $\mathcal{B}_{\mathcal{F}} \in \Lambda(L^{p'} \times Y, Z)$ and $\|\mathcal{F}\|_{V^p_{\mathcal{B}}(X)} = \pi^+(\mathcal{B}_{\mathcal{F}}).$

PROOF. Given $\mathfrak{F} \in V^p_{\mathfrak{B}}(X)$ then $\mathfrak{B}_{\mathfrak{F}}: L^{p'} \times Y \to Z$ is bounded. Let us show that $\mathfrak{B}_{\mathfrak{F}} \in \Lambda(L^{p'} \times Y, Z)$ and $\pi^+(\mathfrak{B}_{\mathfrak{F}}) = \|\mathfrak{F}\|_{V^p_{\mathfrak{B}}(X)}$.

From Theorem 2 there exists $0 \leq \varphi_y \in L^p$ such that $\|\mathcal{F}\|_{V^p_{\mathcal{B}}(X)} = \sup\{\|\varphi_y\|_{L^p} : y \in B_Y\}$ and

$$\|\mathcal{B}_{\mathcal{F}}(\mathbf{1}_A, y)\| \leq \int_{\Omega} \mathbf{1}_A \varphi_y d\mu, \quad A \in \Sigma.$$

Using linearity and density of simple functions one also extends to

$$\|\mathcal{B}_{\mathcal{F}}(\psi, y)\| \leq \int_{\Omega} \psi \varphi_y d\mu,$$

for any $0 \le \psi \in L^{p'}$ and $y \in Y$. Now, given a finite family $0 \le \psi_n \in L^{p'}$ and $y \in Y$, we can write

$$\begin{split} \sum_{n=1}^{N} \|\mathcal{B}_{\mathcal{F}}(\psi_{n}, y)\| &\leq \sum_{n=1}^{N} \int_{\Omega} \psi_{n} \varphi_{y} d\mu \\ &= \sum_{n=1}^{N} \|\varphi_{y}\|_{L^{p}} \langle \psi_{n}, \frac{\varphi_{y}}{\|\varphi_{y}\|_{L^{p}}} \rangle d\mu \\ &\leq \|\mathcal{F}\|_{\mathrm{V}_{\mathcal{B}}^{p}(X)} \sup\{\sum_{n=1}^{N} |\langle \psi_{n}, \varphi \rangle| : \varphi \in \mathrm{B}_{L^{p}}\} \end{split}$$

This shows $\pi^+(\mathcal{B}_{\mathcal{F}}) \leq \|\mathcal{F}\|_{\mathcal{V}^p_{\mathcal{T}}(X)}$.

On the other hand, given a partition π , a sequence $(\alpha_A)_A \in \ell^{p'}$ and denoting $\psi_A = \frac{|\alpha_A|}{\mu(A)^{1/p'}} \mathbf{1}_A$ one can apply the condition of cone absolutely summing bilinear map to get

$$\begin{split} \sum_{A \in \pi} \|\mathcal{B}(\frac{\mathcal{F}(A)}{\mu(A)^{1/p'}}, \alpha_A y)\|_{Z} &= \sum_{A \in \pi} \|\mathcal{B}_{\mathcal{F}}(\psi_A, y)\|_{Z} \\ &\leq \pi^+(\mathcal{B}_{\mathcal{F}}) \|y\| \sup\{\sum_{A \in \pi} \int_{\Omega} \psi_A |\varphi| d\mu : \varphi \in \mathcal{B}_{L^p}\} \\ &= \pi^+(\mathcal{B}_{\mathcal{F}}) \|y\| \sup\{\sum_{A \in \pi} \frac{|\alpha_A|}{\mu(A)^{1/p'}} \int_A |\varphi| d\mu : \varphi \in \mathcal{B}_{L^p}\} \\ &\leq \pi^+(\mathcal{B}_{\mathcal{F}}) \|y\| \sup\{\sum_{A \in \pi} |\alpha_A| (\int_A |\varphi|^p)^{1/p} d\mu : \varphi \in \mathcal{B}_{L^p}\} \\ &\leq \pi^+(\mathcal{B}_{\mathcal{F}}) \cdot \|y\| \cdot \|(\alpha_A)_A\|_{\ell^{p'}}. \end{split}$$

Now (12) allows to conclude that $\|\mathcal{F}\|_{V_{\mathcal{B}}^{p}(X)} \leq \pi^{+}(\mathcal{B}_{\mathcal{F}}).$

Corollary 5 $V^p_{\mathcal{B}}(X)$ is isometrically embedded into $\Lambda(L^{p'} \times Y, Z)$.

References

[1] Bartle, R. G., A general bilinear vector integral. Studia Math. 15 (1956), 337–352. MR0080721 (18,289a)

- [2] Blasco, O., Positive p-summing operators, vector measures and tensor products. Proc. Edinburgh Math. Soc. (2) 31 (1988), no. 2, 179–184. MR0989750 (90f:47026)
- [3] Blasco, O., Remarks on the semivariation of vector measures with respect to Banach spaces, Bull. Austral. Math. Soc. 75 (2007), no. 3, 469-480. MR2331024

- [4] Blasco, O. and Calabuig J.M., Vector-valued functions integrable with respect to bilinear maps, Taiwaness Math. J. (to appear).
- [5] Blasco, O. and Calabuig J.M., Hölder inequality for functions integrable with respect to bilinear maps, Math. Scan. (to appear).
- [6] Diestel, J. and Uhl, J. J., Jr., Vector measures. With a foreword by B. J. Pettis. Mathematical Surveys, No. 15. American Mathematical Society, Providence, R.I., 1977. xiii+322 pp. MR0453964 (56 #12216)
- [7] Diestel, J., Jarchow, H. and Tonge, A., Absolutely summing operators. Cambridge Studies in Advanced Mathematics, 43. Cambridge University Press, Cambridge, 1995. xvi+474 pp. ISBN: 0-521-43168-9. MR1342297 (96i:46001)
- [8] Dinculeanu, N., Vector measures. International Series of Monographs in Pure and Applied Mathematics, Vol. 95 Pergamon Press, Oxford-New York-Toronto, Ont.; VEB Deutscher Verlag der Wissenschaften, Berlin 1967 x+432 pp. MR0206190 (34 #6011b)
- [9] Girardi, M, and Weis, L., Integral operators with operator-valued kernels. J. Math. Anal. Appl. 290 (2004), no. 1, 190–212. MR2032234 (2004j:47096)
- [10] Jefferies, B. and Okada, S., Bilinear integration in tensor products. Rocky Mountain J. Math. 28 (1998), no. 2, 517-545. MR1651584 (2000f:28012)
- [11] Phillips, R. S., On linear transformations., Trans. Amer. Math. Soc. 48, (1940), 290, 516–541.
 MR0004094 (2,318c)
- [12] Ryan, R.A., Introduction to tensor products of Banach spaces. Springer Monographs in Mathematics. Springer-Verlag London, Ltd., London, 2002. xiv+225 pp. ISBN: 1-85233-437-1 MR1888309 (2003f:46030)
- Schaefer, H. H., Banach lattices and positive operators. Die Grundlehren der mathematischen Wissenschaften, Band 215. Springer-Verlag, New York-Heidelberg, 1974. xi+376 pp. MR0423039 (54 #11023)