p-variation of vector measures with respect to bilinear maps.

O. Blasco
Oscar.Blasco@uv.es
Department of Mathematics
Universitat de València
Burjassot 46100 (València), Spain

J.M. Calabuig
jmcalabu@mat.upv.es
Department of Applied Mathematics
Universitat Politècnica de València
València 46022, Spain

January 17, 2008

Abstract

We introduce the spaces $V_{\mathcal{B}}^{p}(X)$ (resp. $\mathcal{V}_{\mathcal{B}}^{p}(X)$) of the vector measures $\mathcal{F}: \Sigma \rightarrow X$ of bounded (p, \mathcal{B}) variation (resp. of bounded (p, \mathcal{B})-semivariation) with respect to a bounded bilinear map $\mathcal{B}: X \times Y \rightarrow$ Z and show that the spaces $L_{\mathcal{B}}^{p}(X)$ consisting in functions which are p-integrable with respect to \mathcal{B}, defined in [4], are isometrically embedded into $\mathrm{V}_{\mathcal{B}}^{p}(X)$. We characterize $\mathcal{V}_{\mathcal{B}}^{p}(X)$ in terms of bilinear maps from $L^{p^{\prime}} \times Y$ into Z and $\mathrm{V}_{\mathcal{B}}^{p}(X)$ as a subspace of operators from $L^{p^{\prime}}\left(Z^{*}\right)$ into Y^{*}. Also we define the notion of cone absolutely summing bilinear maps in order to describe the (p, \mathcal{B})-variation of a measure in terms of the cone-absolutely summing norm of the corresponding bilinear map from $L^{p^{\prime}} \times Y$ into Z.

1 Notation and preliminaries.

Throughout the paper X denotes a Banach space, (Ω, Σ, μ) a positive finite measure space, \mathcal{D}_{E} the set of all partitions of $E \in \Sigma$ into a finite number of pairwise disjoint elements of Σ of positive measure and $\mathcal{S}_{\Sigma}(X)$ the space of simple functions, $\mathbf{s}=\sum_{k=1}^{n} x_{k} \mathbf{1}_{A_{k}}$, where $x_{k} \in X,\left(A_{k}\right)_{k} \in \mathcal{D}_{\Omega}$ and $\mathbf{1}_{A}$ denotes the characteristic function of the set $A \in \Sigma$. Also Y and Z denote Banach spaces over $\mathbb{K}(\mathbb{R}$ or $\mathbb{C})$ and $\mathcal{B}: X \times Y \rightarrow Z$ a bounded bilinear map. We use the notation B_{X} for the closed unit ball of $X, \mathcal{L}(X, Y)$ for the space of bounded linear operators from X to Y and $X^{*}=\mathcal{L}(X, \mathbb{K})$.

For a vector measure $\mathcal{F}: \Sigma \rightarrow X$ we use the notation $|\mathcal{F}|$ and $\|\mathcal{F}\|$ for the non negative set functions $|\mathcal{F}|: \Sigma \rightarrow \mathbb{R}^{+}$and $\|\mathcal{F}\|: \Sigma \rightarrow \mathbb{R}^{+}$given by

$$
|\mathcal{F}|(E)=\sup \left\{\sum_{A \in \pi}\|\mathcal{F}(A)\|_{X}: \pi \in \mathcal{D}_{E}\right\}
$$

and

$$
\|\mathcal{F}\|(E)=\sup \left\{\left|\left\langle\mathcal{F}, x^{*}\right\rangle\right|(E): x^{*} \in \mathrm{~B}_{X^{*}}\right\}
$$

[^0]respectively. In the case of operator-valued measures $\mathcal{F}: \Sigma \rightarrow \mathcal{L}(Y, Z)$ we use $\|\mathcal{F}\|$ for the strong-variation defined by
$$
\|\mathcal{F}\|(E)=\sup \left\{\sum_{A \in \pi}\|\mathcal{F}(A) y\|_{Z}: y \in \mathrm{~B}_{Y}, \pi \in \mathcal{D}_{E}\right\}
$$

Given a norm τ defined on the space $Y \otimes X$ satisfying $\|y \otimes x\|_{\tau} \leq C\|y\| \cdot\|x\|$ we write $Y \hat{\otimes} X$ for its completion. In [1] R. Bartle introduced the notion of Y-semivariation of a vector measure $\mathcal{F}: \Sigma \rightarrow X$ with respect to τ by the formula

$$
\beta_{Y}(\mathcal{F}, \tau)(E)=\sup \left\{\left\|\sum_{A \in \pi} y_{A} \otimes \mathcal{F}(A)\right\|_{\tau}: y_{A} \in \mathrm{~B}_{Y}, \pi \in \mathcal{D}_{E}\right\}
$$

for every $E \in \Sigma$. This is an intermediate notion between the variation and semivariation, since for every $E \in \Sigma$ we clearly have

$$
\|\mathcal{F}\|(E) \leq \beta_{Y}(\mathcal{F}, \tau)(E) \leq|\mathcal{F}|(E)
$$

If $Y \hat{\otimes}_{\epsilon} X$ and $Y \hat{\otimes}_{\pi} X$ stand for the injective and projective tensor norms respectively, then we actually have

$$
\|\mathcal{F}\|(E)=\beta_{Y}(\mathcal{F}, \epsilon)(E) \leq \beta_{Y}(\mathcal{F}, \tau)(E) \leq \beta_{Y}(\mathcal{F}, \pi)(E) \leq|\mathcal{F}|(E)
$$

We refer the reader to [10] for a theory of integration of Y-valued functions with respect to X-valued measures of bounded Y-semivariation iniciated by B. Jefferies and S. Okada and to [3] for the study of this notion in the particular cases $\left.X=L^{p}(\mu), Y=L^{q}(\nu)\right)$ and τ the norm in the space of vector-valued functions $L^{p}\left(\mu, L^{q}(\nu)\right)$.

We are going to use notions of \mathcal{B}-variation (or \mathcal{B}-semivariation) which allow to obtain all the previous cases for particular instances of bilinear maps.

Recall that, for $1<p<\infty$, the p-variation and p-semivariation of a vector measure \mathcal{F} are defined by

$$
\begin{equation*}
|\mathcal{F}|_{p}(E)=\sup \left\{\left(\sum_{A \in \pi} \frac{\|\mathcal{F}(A)\|_{X}^{p}}{\mu(A)^{p-1}}\right)^{1 / p}: \pi \in \mathcal{D}_{E}\right\} \tag{1}
\end{equation*}
$$

and

$$
\begin{equation*}
\|\mathcal{F}\|_{p}(E)=\sup \left\{\left(\sum_{A \in \pi} \frac{\left|\left\langle\mathcal{F}(A), x^{*}\right\rangle\right|^{p}}{\mu(A)^{p-1}}\right)^{1 / p}: x^{*} \in \mathrm{~B}_{X^{*}}, \pi \in \mathcal{D}_{E}\right\} \tag{2}
\end{equation*}
$$

We denote $\mathrm{V}^{p}(X)$ and $\mathcal{V}^{p}(X)$ the Banach spaces of vector-measures for which $|\mathcal{F}|_{p}(\Omega)<\infty$ and $\|\mathcal{F}\|_{p}(\Omega)<\infty$ respectively.

The limiting case $p=1$ corresponds to $\|\mathcal{F}\|_{1}(E)=|\mathcal{F}|(E)$ and $\|\mathcal{F}\|_{1}(E)=\|\mathcal{F}\|(E)$. For $p=\infty$ $\mathrm{V}^{\infty}(X)=\mathcal{V}^{\infty}(X)$ is given by vector-measures satisfying that there exists $C>0$ such that $\|\mathcal{F}(A)\| \leq$ $C \mu(A)$ for any $A \in \Sigma$ and the ∞-variation of a measure is defined by

$$
\begin{equation*}
\|\mathcal{F}\|_{\infty}(E)=\sup \left\{\frac{\|\mathcal{F}(A)\|_{X}}{\mu(A)}: A \in \Sigma, A \subset E, \mu(A)>0\right\} \tag{3}
\end{equation*}
$$

We denote by $L^{0}(X)$ and $L_{\text {weak }}^{0}(X)$ the spaces of strongly and weakly measurable functions with values in X and write $L^{p}(X)$ and $L_{\text {weak }}^{p}(X)$ for the space of functions in $L^{0}(X)$ and $L_{\text {weak }}^{0}(X)$ such that $\|f\| \in L^{p}$ and $\left\langle f, x^{*}\right\rangle \in L^{p}$ for every $x^{*} \in X^{*}$ respectively. As usual for $1 \leq p \leq \infty$ the conjugate index is denoted by p^{\prime}, i.e. $1 / p+1 / p^{\prime}=1$.

For each $f \in L^{p}(X), 1 \leq p \leq \infty$, one can define a vector measure

$$
\mathcal{F}_{f}(E)=\int_{E} f d \mu, \quad E \in \Sigma
$$

which is of bounded p-variation and $\left|\mathscr{F}_{f}\right|_{p}(\Omega)=\|f\|_{L^{p}(X)}$. On the other hand the converse depends on the Radon-Nikodým property, that is, given $1<p \leq \infty, X$ has the RNP if and only if for any X-valued measure \mathcal{F} of bounded p-variation there exists $f \in L^{p}(X)$ such that $\mathcal{F}=\mathcal{F}_{f}$.

For general Banach spaces $X, \mathrm{~V}^{\infty}(X)$ can be identified with the space of operators $\mathcal{L}\left(L^{1}, X\right)$ by means of the map $\mathcal{F} \rightarrow T_{\mathcal{F}}$ where

$$
T_{\mathcal{F}}\left(\mathbf{1}_{E}\right)=\mathcal{F}(E), \quad E \in \Sigma
$$

and for $1<p<\infty$ the space $\mathrm{V}^{p}(X)$ can be identified (isometrically) with the space $\Lambda\left(L^{p^{\prime}}, X\right)$, formed by the cone absolutely summing operators from $L^{p^{\prime}}$ into X with the π_{1}^{+}norm (see [13, 2]). We refer the reader to $[8,6,10,13]$ for the notions appearing in the paper and the basic concepts about vector measures and their variations.

Quite recently the authors started studying the spaces of X-valued functions which are p-integrable with respect to a bounded bilinear map $\mathcal{B}: X \times Y \rightarrow Z$, that is to say functions f satisfying the condition $\mathcal{B}(f, y) \in L^{p}(Z)$ for all $y \in Y$. Some basic theory was developed and applied to different examples (see $[4, ?, 5])$. Note that the use of certain bilinear maps, such as

$$
\begin{gather*}
\mathcal{B}: X \times \mathbb{K} \rightarrow X, \text { given by } \mathcal{B}(x, \lambda)=\lambda x, \tag{4}\\
\mathcal{D}: X \times X^{*} \rightarrow \mathbb{K}, \text { given by } \mathcal{D}\left(x, x^{*}\right)=\left\langle x, x^{*}\right\rangle, \tag{5}\\
\mathcal{D}_{1}: X^{*} \times X \rightarrow \mathbb{K}, \text { given by } \mathcal{D}_{1}\left(x^{*}, x\right)=\left\langle x, x^{*}\right\rangle, \tag{6}\\
\pi_{Y}: X \times Y \rightarrow X \hat{\otimes} Y, \text { given by } \pi_{Y}(x, y)=x \otimes y, \tag{7}\\
\tilde{\mathcal{O}}_{Y}: X \times \mathcal{L}(X, Y) \rightarrow Y, \text { given by } \tilde{\mathcal{O}}_{Y}(x, T)=T(x), \tag{8}\\
\mathcal{O}_{Y, Z}: \mathcal{L}(Y, Z) \times Y \rightarrow Z, \text { given by } \mathcal{O}_{Y, Z}(T, y)=T(y) \tag{9}
\end{gather*}
$$

have been around for many years and have been used in different aspects of vector-valued functions, but a systematic study for general bilinear maps was started in [4] and used, among other things, to extend the results on boundedness from $L^{p}(Y)$ to $L^{p}(Z)$ of operator-valued kernels by M. Girardi and L. Weiss [9] to the case where $K: \Omega \times \Omega^{\prime} \rightarrow X$ is measurable and the integral operators are defined by

$$
T_{K}(f)(w)=\int_{\Omega^{\prime}} \mathcal{B}\left(K\left(w, w^{\prime}\right), f\left(w^{\prime}\right)\right) d \mu^{\prime}\left(w^{\prime}\right)
$$

The reader is also referred [5] for some versions of Hölder's inequality in this setting.
We shall need some notations and definitions from the previous papers. We write $\Phi_{\mathcal{B}}: X \rightarrow \mathcal{L}(Y, Z)$ and $\Psi_{\mathcal{B}}: Y \rightarrow \mathcal{L}(X, Z)$ for the bounded linear operators defined by $\Phi_{\mathcal{B}}(x)=\mathcal{B}_{x}$ and $\Psi_{\mathcal{B}}(y)=\mathcal{B}^{y}$ where \mathcal{B}_{x} and \mathcal{B}^{y} are given by $\mathcal{B}_{x}(y)=\mathcal{B}^{y}(x)=\mathcal{B}(x, y)$.

A bounded bilinear map $\mathcal{B}: X \times Y \rightarrow Z$ is called admissible (see [4]) if $\Phi_{\mathcal{B}}$ is injective. Throughout the paper \mathcal{B} will be always assumed to be admissible. However a stronger condition will be also needed for some results: A Banach space X is said to be (Y, Z, \mathcal{B})-normed if there exists $k>0$

$$
\|x\|_{X} \leq k\left\|\mathcal{B}_{x}\right\|_{\mathcal{L}(Y, Z)}, \quad x \in X
$$

The bounded bilinear maps (4)-(9) provide examples of \mathcal{B}-normed spaces.
As in [4] we write $\mathcal{L}_{\mathcal{B}}^{p}(X)$ for the space of functions $f: \Omega \rightarrow X$ with $\mathcal{B}(f, y) \in L^{0}(Z)$ for any $y \in Y$ and such that

$$
\|f\|_{\mathcal{L}_{\mathfrak{B}}^{p}(X)}=\sup \left\{\|\mathcal{B}(f, y)\|_{L^{p}(Z)}: y \in \mathrm{~B}_{Y}\right\}<\infty
$$

and we use the notation $L_{\mathcal{B}}^{p}(X)$ for the space of functions $f \in \mathcal{L}_{\mathcal{B}}^{p}(X)$ for which there exists a sequence of simple functions $\left(\mathbf{s}_{n}\right)_{n} \in \mathcal{S}_{\Sigma}(X)$ such that $\mathbf{s}_{n} \rightarrow f$ a.e. and $\left\|\mathbf{s}_{n}-f\right\|_{\mathcal{L}_{\mathcal{B}}^{p}(X)} \rightarrow 0$. In such a case, we write $\|f\|_{L_{\mathcal{B}}^{p}(X)}$ instead of $\|f\|_{\mathcal{L}_{\mathcal{B}}^{p}(X)}$ and $\|f\|_{L_{\mathcal{B}}^{p}(X)}=\lim _{n \rightarrow \infty}\left\|\mathbf{s}_{n}\right\|_{L_{\mathcal{B}}^{p}(X)}$.

In particular, for the examples \mathcal{B} and \mathcal{D} we have that $\mathcal{L}_{\mathcal{B}}^{p}(X)=L^{p}(X)$ and $\mathcal{L}_{\mathcal{D}}^{p}(X)=L_{\text {weak }}^{p}(X)$. Also $L_{\mathcal{B}}^{p}(X)=L^{p}(X)$ and $L_{\mathcal{D}}^{p}(X)$ coincides with the space of Pettis p-integrable functions $\mathcal{P}^{p}(X)$ (see [12], page 54 for the case $p=1$).

Observe that, for any $\mathcal{B}, L^{p}(X) \subseteq L_{\mathcal{B}}^{p}(X)$ and the inclusion can be strict (see [6] page 53 , for the case $\mathcal{B}=\mathcal{D})$. Regarding the connection between $L_{\mathcal{B}}^{p}(X)$ and $L_{\text {weak }}^{p}(X)$ it was shown that X is (Y, Z, \mathcal{B}) normed if and only if $L_{\mathcal{B}}^{p}(X) \subseteq L_{\text {weak }}^{p}(X)$ with continuous inclusion.

Due to this fact, if $f \in L_{\mathcal{B}}^{1}(X)$ for some (Y, Z, \mathcal{B})-normed space X then for each $E \in \Sigma$ there exists a unique element of X, to be denoted by $\int_{E}^{\mathcal{B}} f d \mu$, verifying

$$
\int_{E} \mathcal{B}(f, y) d \mu=\mathcal{B}\left(\int_{E}^{\mathcal{B}} f d \mu, y\right), \text { for all } y \in Y
$$

This allows us to define the vector measure

$$
\mathcal{F}_{f}^{\mathcal{B}}(E)=\int_{E}^{\mathcal{B}} f d \mu, \quad E \in \Sigma
$$

We shall consider the notion of (p, \mathcal{B})-variation which fits with the theory allowing to show that the (p, \mathcal{B})-variation of \mathcal{F}_{f} coincides with its norm $\|f\|_{L_{\mathfrak{B}}^{p}(X)}$.

This paper is divided into three sections. In the first one we introduce the notion of \mathcal{B}-variation, \mathcal{B}-semivariation of a vector measure and study their connection with the classical notions. We prove that for (Y, Z, \mathcal{B})-normed spaces the \mathcal{B}-semivariation is equivalent to the semivariation and that the Y semivariation considered by Bartle coincides the \mathcal{B}-variation for a particular bilinear map \mathcal{B}. Particularly interesting is the observation that any vector-measure with values in $X=L^{1}(\mu)$ is of bounded \mathcal{B} variation for every \mathcal{B} whenever Z is a Hilbert space. We also show in this section that the measure $\mathcal{F}_{f}^{\mathcal{B}}$ is μ-continuous and $\left\|\mathscr{F}_{f}^{\mathcal{B}}\right\|_{\mathcal{B}}(\Omega)=\|f\|_{L_{\mathcal{B}}^{1}(X)}$. In the next section the natural notion of (p, \mathcal{B})-semivariation is introduced. Starting with the case $p=\infty$ we describe, for $1<p \leq \infty$, the space of measures with bounded (p, \mathcal{B})-semivariation as bounded bilinear maps from $L^{p^{\prime}} \times Y \rightarrow Z$. Last section deals with the notion of (p, \mathcal{B})-variation of a vector measure. Several characterizations are presented and the new notion of "cone absolutely summing bilinear map" from $L \times Y \rightarrow Z$, where L is a Banach lattice, is introduced. This allow us to describe the (p, \mathcal{B})-variation of a vector measure as the norm of the corresponding bilinear map from $L^{p^{\prime}} \times Y$ into Z in this class.

Throughout the paper $\mathcal{F}: \Sigma \rightarrow X$ always denotes a vector measure, $\mathcal{B}: X \times Y \rightarrow Z$ is admissible and, for each $y \in Y, \mathcal{B}(\mathcal{F}, y)$ denotes the Z-valued measure $\mathcal{B}(\mathcal{F}, y)(E)=\mathcal{B}(\mathcal{F}(E), y)$.

2 Variation and semivariation with respect to bilinear maps.

Definition 1 Let $E \in \Sigma$. We define the \mathcal{B}-variation of \mathcal{F} on the set E by

$$
\begin{aligned}
|\mathcal{F}|_{\mathcal{B}}(E) & =\sup \left\{|\mathcal{B}(\mathcal{F}, y)|(E): y \in \mathrm{~B}_{Y}\right\} \\
& =\sup \left\{\sum_{A \in \pi}\|\mathcal{B}(\mathcal{F}(A), y)\|_{Z}: \pi \in \mathcal{D}_{E}, y \in \mathrm{~B}_{Y}\right\}
\end{aligned}
$$

We say that \mathcal{F} has bounded \mathcal{B}-variation if $|\mathcal{F}|_{\mathcal{B}}(\Omega)<\infty$.
Definition 2 Let $E \in \Sigma$. We define the \mathcal{B}-semivariation of \mathcal{F} on the set E by

$$
\begin{aligned}
\|\mathcal{F}\|_{\mathcal{B}}(E) & =\sup \left\{\|\mathcal{B}(\mathcal{F}, y)\|(E): y \in \mathrm{~B}_{Y}\right\} \\
& =\sup \left\{\left|\left\langle\mathcal{B}(\mathcal{F}, y), z^{*}\right\rangle\right|(E): y \in \mathrm{~B}_{Y}, z^{*} \in \mathrm{~B}_{Z^{*}}\right\} \\
& =\sup \left\{\sum_{A \in \pi}\left|\left\langle\mathcal{B}(\mathcal{F}(A), y), z^{*}\right\rangle\right|: \pi \in \mathcal{D}_{E}, y \in \mathrm{~B}_{Y}, z^{*} \in \mathrm{~B}_{Z^{*}}\right\}
\end{aligned}
$$

We say that \mathcal{F} has bounded \mathcal{B}-semivariation if $\|\mathcal{F}\|_{\mathcal{B}}(\Omega)<\infty$.
Remark 1 Let \mathcal{F} be a vector measure and $E \in \Sigma$.
(a) $|\mathcal{F}|_{\mathcal{B}}(E) \leq\|\mathcal{B}\| \cdot|\mathcal{F}|(E)$.
(b) $\|\mathcal{F}\|_{\mathcal{B}}(E) \leq\|\mathcal{B}\| \cdot\|\mathcal{F}\|(E)$.
(c) $\sup \left\{\|\mathcal{B}(\mathcal{F}(C), y)\|: y \in \mathrm{~B}_{Y}, E \supseteq C \in \Sigma\right\} \approx\|\mathcal{F}\|_{\mathcal{B}}(E)$.

In particular any measure has bounded \mathcal{B}-semivariation for any \mathcal{B}.
We can easily describe the \mathcal{B}-variation and \mathcal{B}-semivariation of vector measures for the bilinear maps given in (1)-(8). The following results are elementary and left to the reader.

Proposition 1 Let \mathcal{F} be a vector measure and $E \in \Sigma$.
(a) $|\mathcal{F}|_{\mathcal{B}}(E)=|\mathcal{F}|(E)$ and $\|\mathcal{F}\|_{\mathcal{B}}(E)=\|\mathcal{F}\|(E)$.
(b) $|\mathcal{F}|_{\mathcal{D}}(E)=\|\mathcal{F}\|_{\mathcal{D}}(E)=\|\mathcal{F}\|(E)$.
(c) $|\mathcal{F}|_{\mathcal{D}_{1}}(E)=\|\mathcal{F}\|_{\mathcal{D}_{1}}(E)=\|\mathcal{F}\|(E)$.
(d) $|\mathcal{F}|_{\pi_{Y}}(E)=|\mathcal{F}|(E)$ and $\|\mathcal{F}\|_{\pi_{Y}}(E)=\|\mathcal{F}\|(E)$ (see Proposition 4).
(e) $|\mathcal{F}|_{\tilde{\mathcal{O}}_{Y}}(E)=\sup \left\{|T \mathcal{F}|(E): T \in \mathrm{~B}_{\mathcal{L}(Y, Z)}\right\}$ and $\|\mathcal{F}\|_{\tilde{\mathcal{O}}_{Y}}(E)=\|\mathcal{F}\|(E)$.
(f) $|\mathcal{F}|_{\mathcal{O}_{Y, Z}}(E)=\|\mathcal{F}\|(E)$ and $\|\mathcal{F}\|_{\mathcal{O}_{Y, Z}}(E)=\|\mathcal{F}\|(E)$.

The notion of \mathcal{B}-normed space can be described in terms of vector measures.
Proposition 2 Let $\mathcal{B}: X \times Y \rightarrow Z$ be an admissible bounded bilinear map. Then X is (Y, Z, \mathcal{B})-normed if and only if for any vector measure $\mathcal{F}: \Sigma \rightarrow X$ there exist $C_{1}, C_{2}>0$ such that

$$
C_{1}\|\mathcal{F}\|(E) \leq\|\mathcal{F}\|_{\mathcal{B}}(E) \leq C_{2}\|\mathcal{F}\|(E)
$$

for all $E \in \Sigma$.
Proof. Obviously $\|\mathcal{F}\|_{\mathcal{B}}(E) \leq\|\mathcal{B}\| \cdot\|\mathcal{F}\|(E)$ for any $E \in \Sigma$. Assume X is (Y, Z, \mathcal{B})-normed. Then we have that

$$
\begin{aligned}
\|\mathcal{F}\|(E) & =\sup \left\{\left\|\sum_{A \in \pi} \epsilon_{A} \mathcal{F}(A)\right\|_{X}: \pi \in \mathcal{D}_{E}, \epsilon_{A} \in \mathrm{~B}_{\mathbb{K}}\right\} \\
& \leq k \sup \left\{\left\|\mathcal{B}_{\sum_{A \in \pi} \epsilon_{A} \mathcal{F}(A)}\right\|_{\mathcal{L}(Y, Z)}: \pi \in \mathcal{D}_{E}, \epsilon_{A} \in \mathrm{~B}_{\mathbb{K}}\right\} \\
& =k \sup \left\{\left\|\sum_{A \in \pi} \epsilon_{A} \mathcal{B}(\mathcal{F}(A), y)\right\|_{Z}: \pi \in \mathcal{D}_{E}, \epsilon_{A} \in \mathrm{~B}_{\mathbb{K}}, y \in \mathrm{~B}_{Y}\right\} \\
& =k\|\mathcal{F}\|_{\mathcal{B}}(E)
\end{aligned}
$$

Conversely, for each $x \in X$ select the measure $\mathcal{F}_{x}(A)=x \mu(A) \mu(\Omega)^{-1}$ and observe that $\left\|\mathcal{F}_{x}\right\|(\Omega)=\|x\|$ and $\left\|\mathcal{F}_{x}\right\|_{\mathcal{B}}(\Omega)=\left\|\mathcal{B}_{x}\right\|$.

We use \mathcal{B}^{*} for the "adjoint" bilinear map from $X \times Z^{*}$ to Y^{*}, i.e. $\left(\mathcal{B}^{*}\right)_{x}=\left(\mathcal{B}_{x}\right)^{*}$ or

$$
\mathcal{B}^{*}: X \times Z^{*} \rightarrow Y^{*}, \text { given by }\left\langle y, \mathcal{B}^{*}\left(x, z^{*}\right)\right\rangle=\left\langle\mathcal{B}(x, y), z^{*}\right\rangle
$$

Note that $\mathcal{B}^{*}=\mathcal{D}, \mathcal{D}_{1}^{*}=\mathcal{B},\left(\pi_{Y}\right)^{*}=\widetilde{\mathcal{O}}_{Y^{*}}$ and $\left(\mathcal{O}_{Y, Z}\right)^{*}\left(T, z^{*}\right)=\mathcal{O}_{Z^{*}, Y^{*}}\left(T^{*}, z^{*}\right)$.
Let us see that the \mathcal{B}-semivariation and the \mathcal{B}^{*}-semivariation always coincide.

Proposition $3\|\mathcal{F}\|_{\mathcal{B}}(E)=\|\mathcal{F}\|_{\mathcal{B}^{*}}(E)$ for all $E \in \Sigma$.
Proof. Let us take $E \in \Sigma$. Then

$$
\begin{aligned}
\|\mathcal{F}\|_{\mathcal{B}}(E) & =\sup \left\{\sum_{A \in \pi}\left|\left\langle\mathcal{B}(\mathcal{F}(A), y), z^{*}\right\rangle\right|: \pi \in \mathcal{D}_{E}, y \in \mathrm{~B}_{Y}, z^{*} \in \mathrm{~B}_{Z^{*}}\right\} \\
& =\sup \left\{\sum_{A \in \pi}\left|\left\langle y, \mathcal{B}^{*}\left(\mathcal{F}(A), z^{*}\right)\right\rangle\right|: \pi \in \mathcal{D}_{E}, y \in \mathrm{~B}_{Y}, z^{*} \in \mathrm{~B}_{Z^{*}}\right\} \\
& =\sup \left\{\left|\sum_{A \in \pi} \epsilon_{A}\left\langle y, \mathcal{B}^{*}\left(\mathcal{F}(A), z^{*}\right)\right\rangle\right|: \pi \in \mathcal{D}_{E}, y \in \mathrm{~B}_{Y}, z^{*} \in \mathrm{~B}_{Z^{*}}, \epsilon_{A} \in \mathrm{~B}_{\mathbb{K}}\right\} \\
& =\sup \left\{\left\|\sum_{A \in \pi} \epsilon_{A} \mathcal{B}^{*}\left(\mathcal{F}(A), z^{*}\right)\right\|_{Y^{*}}: \pi \in \mathcal{D}_{E}, z^{*} \in \mathrm{~B}_{Z^{*}}, \epsilon_{A} \in \mathrm{~B}_{\mathbb{K}}\right\} \\
& =\sup \left\{\sum_{A \in \pi}\left|\left\langle\mathcal{B}^{*}\left(\mathcal{F}(A), z^{*}\right), y^{* *}\right\rangle\right|: \pi \in \mathcal{D}_{E}, y^{* *} \in \mathrm{~B}_{Y^{* *}}, z^{*} \in \mathrm{~B}_{Z^{*}}\right\} \\
& =\|\mathcal{F}\|_{\mathcal{B}^{*}}(E) .
\end{aligned}
$$

Proposition 4 Let τ be a norm in $Y \otimes X$ with $\|y \otimes x\|_{\tau}=\|y\|\|x\|$ for all $y \in Y$ and $x \in X$. Define $\tau_{Y}: X \times Y \rightarrow Y \hat{\otimes}_{\tau} X$ given by $(x, y) \rightarrow y \otimes x$. Then, for each $E \in \Sigma$,

$$
\beta_{Y}(\mathcal{F}, \tau)(E)=|\mathcal{F}|_{\left(\tau_{Y}\right)^{*}}(E)
$$

Proof. Taking into account that $Y \hat{\otimes}_{\pi} X \subseteq Y \hat{\otimes}_{\tau} X$, then $\left(Y \hat{\otimes}_{\tau} X\right)^{*}$ can be regarded as a subspace of the space of bounded operators $\mathcal{L}\left(Y, X^{*}\right)$. Moreover $\|T\| \leq\|T\|_{\left(Y \hat{\otimes}_{\tau} X\right) *}$ for any $T \in\left(Y \hat{\otimes}_{\tau} X\right)^{*}$, where the duality is given by

$$
\left\langle T, \sum_{j=1}^{k} y_{j} \otimes x_{j}\right\rangle=\sum_{j=1}^{k}\left\langle x_{j}, T\left(y_{j}\right)\right\rangle
$$

From [3, Theorem 2.1]

$$
\beta_{Y}(\mathcal{F}, \tau)(E) \approx \sup \left\{|T \mathcal{F}|(E): T \in \mathcal{L}\left(Y, X^{*}\right),\|T\|_{\left(Y \hat{\otimes}_{\tau} X\right)^{*}} \leq 1\right\}
$$

Hence

$$
\beta_{Y}(\mathcal{F}, \tau)(E) \approx \sup \left\{\left|\left(\tau_{Y}\right)^{*}(\mathcal{F}, T)\right|(E): T \in \mathcal{L}\left(Y, X^{*}\right),\|T\|_{\left(Y \hat{\otimes}_{\tau} X\right)^{*}} \leq 1\right\}
$$

Of course vector measures need not be of bounded \mathcal{B}-variation for a general \mathcal{B} (it suffices to take \mathcal{B} such that $|\mathcal{F}|_{\mathcal{B}}=|\mathcal{F}|$), but there are cases where this happens to be true due to the geometrical properties of the spaces into consideration.

Proposition 5 Let $X=L^{1}(\nu)$ for some σ-finite measure ν and let $Z=H$ be a Hilbert space. Then any vector measure $\mathcal{F}: \Sigma \rightarrow L^{1}(\nu)$ is of bounded \mathcal{B}-variation for any bounded bilinear map $\mathcal{B}: L^{1}(\nu) \times Y \rightarrow H$ and any Banach space Y.

Proof. Recall first that Grothendieck theorem (see [7]) establishes that there exists a constant $\kappa_{G}>0$ such that any operator from $L^{1}(\nu)$ to a Hilbert space H satisfies

$$
\sum_{n=1}^{N}\left\|T\left(\phi_{n}\right)\right\|_{H} \leq \kappa_{G}\|T\| \sup \left\{\left\|\sum_{n=1}^{N} \varepsilon_{n} \phi_{n}\right\|_{L^{1}(\nu)}: \varepsilon_{n} \in \mathcal{B}_{\mathbb{K}}\right\}
$$

for any finite family of functions $\left(\phi_{n}\right)_{n}$ in $L^{1}(\nu)$.
If $\mathcal{F}: \Sigma \rightarrow L^{1}(\nu)$ is a vector measure and π a partition one has that $\left\|\sum_{A \in \pi} \epsilon_{A} \mathcal{F}(A)\right\|_{L^{1}(\nu)} \leq\|\mathcal{F}\|(\Omega)$. Hence $\mathcal{B}^{y} \in L\left(L^{1}(\nu) \rightarrow H\right.$ for any $y \in Y$, one obtains

$$
\sum_{A \in \pi}\left\|\mathcal{B}^{y}(\mathcal{F}(A))\right\|_{Z} \leq \kappa_{G} \cdot\left\|\mathcal{B}^{y}\right\| \cdot\|\mathcal{F}\|(\Omega)
$$

Therefore one concludes $|\mathcal{F}|_{\mathcal{B}}(\Omega) \leq \kappa_{G} \cdot\|\mathcal{F}\|(\Omega)$.
Recall that a vector measure $\mathcal{F}: \Sigma \rightarrow X$ is called μ-continuous if $\lim _{\mu(E) \rightarrow 0}\|\mathcal{F}\|(E)=0$.
Theorem 1 Let X be (Y, Z, \mathcal{B})-normed and $f \in L_{\mathcal{B}}^{1}(X)$. Then

$$
\begin{equation*}
\mathcal{F}_{f}^{\mathcal{B}}: \Sigma \rightarrow X, \text { given by } \mathcal{F}_{f}^{\mathcal{B}}(E)=\int_{E}^{\mathcal{B}} f d \mu \tag{10}
\end{equation*}
$$

is a μ-continuous vector measure of bounded \mathcal{B}-variation. Moreover $\left|\mathcal{F}_{f}^{\mathcal{B}}\right|_{\mathcal{B}}(\Omega)=\|f\|_{L_{\mathcal{B}}^{1}(X)}$.
Proof. It was shown (see [4, Theorem 1]) that functions in $L_{\mathcal{B}}^{1}(X)$ are Pettis-integrable and $\int_{E}^{\mathcal{B}} f d \mu$ coincides with the Pettis-integral. Hence $\mathcal{F}_{f}^{\mathcal{B}}$ defines a vector measure.

Using now that, for each $y \in Y$, the vector measure $\mathcal{B}\left(\mathcal{F}_{f}^{\mathcal{B}}, y\right)$ has density $\mathcal{B}(f, y)$ which belongs to $L^{1}(Z)$ one gets that, for any $E \in \Sigma$,

$$
\left|\mathcal{B}\left(\mathcal{F}_{f}, y\right)\right|(E)=\int_{E}\|\mathcal{B}(f, y)\|_{Z} d \mu
$$

Thus $\left|\mathcal{F}_{f}^{\mathcal{B}}\right|_{\mathcal{B}}(\Omega)=\|f\|_{L_{\mathcal{B}}^{1}(X)}$. It remains to show that $\mathcal{F}_{f}^{\mathcal{B}}$ is μ-continuous. Let us fix $\varepsilon>0$ and select, using that $f \in L_{\mathcal{B}}^{1}(X)$, a simple function s such that $\|f-s\|_{L_{\mathcal{B}}^{1}(X)} \leq \varepsilon$. Thus

$$
\begin{aligned}
\left\|\mathcal{F}_{f}^{\mathcal{B}}(E)\right\|_{X} & \leq\left\|\int_{E}^{\mathcal{B}}(f-s) d \mu\right\|_{X}+\left\|\int_{E}^{\mathcal{B}} s d \mu\right\|_{X} \\
& =\left\|\int_{E}^{\mathcal{B}}(f-s) d \mu\right\|_{X}+\left\|\int_{E} s d \mu\right\|_{X} \\
& \leq k\left\|\mathcal{B} \int_{E}^{\mathcal{B}}(f-s) d \mu\right\|_{\mathcal{L}(Y, Z)}+\left\|\int_{E} s d \mu\right\|_{X} \\
& \leq k \sup \left\{\int_{E}\|\mathcal{B}(f-s, y)\|_{Z} d \mu: y \in \mathrm{~B}_{Y}\right\}+\left\|\int_{E} s d \mu\right\|_{X} \\
& \leq k \varepsilon+\left\|\int_{E} s d \mu\right\|_{X} .
\end{aligned}
$$

We have the conclusion just taking limits when $\mu(E) \rightarrow 0$ and $\varepsilon \rightarrow 0^{+}$.

Corollary 1 Let X is (Y, Z, \mathcal{B})-normed and $f \in L_{\mathcal{B}}^{1}(X)$. If $\int_{E}^{\mathcal{B}} f d \mu=0$ for all $E \in \Sigma$ then $f=0$ a.e. in Ω.

3 Measures of bounded (p, \mathcal{B})-semivariation.

Extending the notion for $\mathcal{B}=\mathcal{B}$, we say that a vector measure $\mathcal{F}: \Sigma \rightarrow X$ is (\mathcal{B}, μ)-continuous if $\lim _{\mu(E) \rightarrow 0}\|\mathcal{F}\|_{\mathcal{B}}(E)=0$. Clearly both concepts coincide for \mathcal{B}-normed spaces.

Definition 3 We say that \mathcal{F} has bounded (∞, \mathcal{B})-semivariation if there exists $C>0$ such that

$$
\begin{equation*}
\left|\left\langle\mathcal{B}(\mathcal{F}(A), y), z^{*}\right\rangle\right| \leq C \cdot\|y\| \cdot\left\|z^{*}\right\| \cdot \mu(A), \quad y \in Y, z^{*} \in Z^{*}, A \in \Sigma \tag{11}
\end{equation*}
$$

The space of such measures is denoted by $\mathcal{V}_{\mathcal{B}}^{\infty}(X)$ and we set

$$
\begin{aligned}
\|\mathcal{F}\|_{\mathcal{V}_{\mathfrak{B}}^{\infty}(X)} & =\inf \{C: \text { satisfying }(11)\} \\
& =\sup \left\{\frac{\left|\left\langle\mathcal{B}(\mathcal{F}(A), y), z^{*}\right\rangle\right|}{\mu(A)}: y \in \mathrm{~B}_{Y}, z^{*} \in \mathrm{~B}_{Z^{*}}, A \in \Sigma, \mu(A)>0\right\}
\end{aligned}
$$

Observe that every vector measure \mathcal{F} belonging to $\mathcal{V}_{\mathcal{B}}^{\infty}(X)$ is (\mathcal{B}, μ)-continuous and it has bounded \mathcal{B} variation. Also note that \mathcal{F} has bounded (∞, \mathcal{B})-semivariation if and only if

$$
\|\mathcal{B}(\mathcal{F}(A), y)\| \leq C\|y\| \mu(A), \quad y \in Y, \quad A \in \Sigma
$$

or

$$
\|\mathcal{F}\|_{\mathcal{B}}(A) \leq C \mu(A), \quad A \in \Sigma
$$

or

$$
|\mathcal{F}|_{\mathcal{B}}(A) \leq C \mu(A), \quad A \in \Sigma
$$

It is elementary to see, due to the admissibility of \mathcal{B}, that $\|\mathcal{F}\|_{\mathcal{V}_{\mathcal{B}}^{\infty}(X)}$ is a norm Of course

$$
\begin{aligned}
\|\mathcal{F}\|_{\mathcal{V}_{\mathcal{B}}^{\infty}(X)} & =\sup \left\{\|\mathcal{B}(\mathcal{F}, y)\|_{V^{\infty}(Z)}: y \in \mathrm{~B}_{Y}\right\} \\
& =\sup \left\{\frac{\|\mathcal{B}(\mathcal{F}(A), y)\|_{Z}}{\mu(A)}: y \in \mathrm{~B}_{Y}, A \in \Sigma\right\} \\
& =\sup \left\{\frac{\|\mathcal{F}\|_{\mathcal{B}}(A)}{\mu(A)}: A \in \Sigma\right\} \\
& =\sup \left\{\frac{|\mathcal{F}|_{\mathcal{B}}(A)}{\mu(A)}: A \in \Sigma\right\}
\end{aligned}
$$

Proposition $6 \mathcal{F} \in \mathcal{V}_{\mathcal{B}}^{\infty}(X)$ if and only if there exists a bounded bilinear map $\mathcal{B}_{\mathcal{F}}: L^{1} \times Y \rightarrow Z$ such that

$$
\mathcal{B}_{\mathcal{F}}\left(\mathbf{1}_{A}, y\right)=\mathcal{B}(\mathcal{F}(A), y), \quad A \in \Sigma, y \in Y
$$

Moreover $\left\|\mathcal{B}_{\mathcal{F}}\right\|=\|\mathcal{F}\|_{\mathcal{V}_{\mathfrak{B}}^{\infty}(X)}$.
Proof. Assume $\mathcal{F} \in \mathcal{V}_{\mathcal{B}}^{\infty}(X)$. Define $\mathcal{B}_{\mathcal{F}}$ on simple functions by the formula

$$
\mathcal{B}_{\mathcal{F}}\left(\sum_{k=1}^{n} \alpha_{k} \mathbf{1}_{A_{k}}, y\right)=\sum_{k=1}^{n} \alpha_{k} \mathcal{B}\left(\mathcal{F}\left(A_{k}\right), y\right)
$$

Observe that

$$
\left\|\mathcal{B}_{\mathcal{F}}\left(\sum_{k=1}^{n} \alpha_{k} \mathbf{1}_{A_{k}}, y\right)\right\|_{Z} \leq\|\mathcal{F}\|_{\mathcal{V}_{\mathcal{B}}^{\infty}(X)}\|y\| \sum_{k=1}^{n}\left|\alpha_{k}\right| \mu\left(A_{k}\right) .
$$

This allows to extend the bilinear map to $L^{1} \times Y \rightarrow Z$ with norm $\left\|\mathcal{B}_{\mathcal{F}}\right\| \leq\|\mathcal{F}\|_{\nu_{\mathcal{B}}^{\infty}(X)}$. Conversely one has

$$
\|\mathcal{B}(\mathcal{F}(A), y)\|_{Z} \leq\left\|\mathcal{B}_{\mathcal{F}}\right\| \cdot\|y\| \cdot\left\|\mathbf{1}_{A}\right\|_{L^{1}}
$$

which gives $\|\mathcal{F}\|_{\mathcal{V}_{\mathcal{B}}^{\infty}(X)} \leq\left\|\mathcal{B}_{\mathcal{F}}\right\|$.
We use the notation $\operatorname{Bil}\left(L^{1} \times Y, Z\right)$ for the space of bounded bilinear maps with its natural norm.
Corollary $2 \mathcal{V}_{\mathcal{B}}^{\infty}(X)$ is isometrically embedded into $\operatorname{Bil}\left(L^{1} \times Y, Z\right)$. In the case $\mathcal{B}=\mathcal{O}_{Y, Z}$ we have $\nu_{O_{Y, Z}}^{\infty}(\mathcal{L}(Y, Z))=\operatorname{Bil}\left(L^{1} \times Y, Z\right)$.

Let $L_{\mathcal{B}}^{\infty}(X)$ stand for the space of measurable functions $f: \Omega \rightarrow X$ such that $\mathcal{B}(f, y) \in L^{\infty}(Z)$ for all $y \in Y$ and write

$$
\|f\|_{L_{\mathfrak{B}}^{\infty}(X)}=\sup \left\{\|\mathcal{B}(f, y)\|_{L^{\infty}(Z)}: y \in \mathrm{~B}_{Y}\right\} .
$$

Note that $L_{\mathcal{B}}^{\infty}(X) \subseteq L_{\mathcal{B}}^{1}(X)$ and $\left|\mathcal{B}\left(\mathcal{F}_{f}^{\mathcal{B}}, y\right)\right|(A)=\int_{A}^{\mathcal{B}}\|\mathcal{B}(f, y)\| d \mu$ for any set $A \in \Sigma$. In particular if $f \in L_{\mathcal{B}}^{\infty}(X)$ then the measure $\mathcal{F}_{f}^{\mathcal{B}} \in \mathcal{V}_{\mathcal{B}}^{\infty}(X)$ and $\left\|\mathcal{F}_{f}^{\mathcal{B}}\right\|_{\nu_{\mathcal{B}}^{\infty}(X)}=\|f\|_{L_{\mathcal{B}}^{\infty}(X)}$.

Proposition 7 The following are equivalent:
(a) X is (Y, Z, \mathcal{B})-normed.
(b) $\nu_{\mathcal{B}}^{\infty}(X)=V^{\infty}(X)$.
(c) There exists $k>0$ such that $\left\|\mathscr{F}_{f}^{\mathcal{B}}\right\|_{\mathrm{V}^{\infty}(X)} \leq k\|f\|_{L_{\mathfrak{B}}^{\infty}(X)}$ for any $f \in L_{\mathfrak{B}}^{\infty}(X)$.

Proof. (a) \Longrightarrow (b) Always $V^{\infty}(X) \subseteq \mathcal{V}_{\mathcal{B}}^{\infty}(X)$. Assume X is (Y, Z, \mathcal{B})-normed and $\mathcal{F} \in \mathcal{V}_{\mathcal{B}}^{\infty}(X)$. Note that

$$
\|\mathcal{F}(A)\| \leq k\left\|\mathcal{B}_{\mathcal{F}(A)}\right\| \leq k\|\mathcal{F}\|_{\mathcal{V}_{\mathcal{B}}^{\infty}(X)} \mu(A) .
$$

(b) \Longrightarrow (c) Let $f \in L_{\mathcal{B}}^{\infty}(X)$. Clearly

$$
\left\|\mathcal{F}_{f}^{\mathcal{B}}\right\|_{\mathrm{V}^{\infty}(X)} \leq k\left\|\mathcal{F}_{f}^{\mathcal{B}}\right\|_{\nu_{\mathcal{B}}^{\infty}(X)}=k\|f\|_{L_{\mathcal{B}}^{\infty}(X)} .
$$

$(\mathrm{c}) \Longrightarrow\left(\right.$ a) Let us take $f_{x}=x \mathbf{1}_{\Omega}$ for a given $x \in X$ and observe that $\mathcal{F}_{f_{x}}^{\mathcal{B}}(A)=x \mu(A)$ for all $A \in \Sigma$. Note that $\left\|f_{x}\right\|_{L_{\mathcal{B}}^{\infty}(X)}=\left\|\mathcal{B}_{x}\right\|$ and $\left\|\mathcal{F}_{f_{x}}^{\mathcal{B}}\right\|_{V^{\infty}(X)}=\|x\|$.

Definition 4 Let $1 \leq p<\infty$. We say that \mathcal{F} has bounded (p, \mathcal{B})-semivariation if

$$
\|\mathcal{F}\|_{\mathcal{V}_{\mathcal{B}}^{p}(X)}=\sup \left\{\left(\sum_{A \in \pi} \frac{\left|\left\langle\mathcal{B}(\mathcal{F}(A), y), z^{*}\right\rangle\right|^{p}}{\mu(A)^{p-1}}\right)^{\frac{1}{p}}: y \in \mathrm{~B}_{Y}, z^{*} \in \mathrm{~B}_{Z^{*}}, \pi \in \mathcal{D}_{\Omega}\right\}<\infty
$$

The space of such measures will be denoted by $\mathcal{V}_{\mathcal{B}}^{p}(X)$.
We have the equivalent formulation

$$
\begin{aligned}
\|\mathcal{F}\|_{\mathcal{V}_{B}^{p}(X)} & =\sup \left\{\|\mathcal{B}(\mathcal{F}, y)\|_{\nu_{p}(Z)}: y \in \mathrm{~B}_{Y}\right\} \\
& =\sup \left\{\left\|\left\langle\mathcal{B}(\mathcal{F}, y), z^{*}\right\rangle\right\|_{v^{p}}: y \in \mathrm{~B}_{Y}, z^{*} \in \mathrm{~B}_{Z^{*}}\right\} .
\end{aligned}
$$

Let us start with the following description.

Proposition 8 Let $1<p<\infty$. Then $\mathcal{F} \in \mathcal{V}_{\mathcal{B}}^{p}(X)$ if and only if there exists a bounded bilinear map $\mathcal{B}_{\mathcal{F}}: L^{p^{\prime}} \times Y \rightarrow Z$ such that

$$
\mathcal{B}_{\mathcal{F}}\left(\mathbf{1}_{A}, y\right)=\mathcal{B}(\mathcal{F}(A), y), \quad A \in \Sigma, y \in Y
$$

Moreover $\left\|\mathcal{B}_{\mathcal{F}}\right\|=\|\mathcal{F}\|_{\mathcal{V}_{\mathcal{B}}^{p}(X)}$.
Proof Assume $\mathcal{F} \in \mathcal{V}_{\mathcal{B}}^{p}(X)$. Define as above $\mathcal{B}_{\mathcal{F}}$ on simple functions by the formula

$$
\mathcal{B}_{\mathcal{F}}\left(\sum_{k=1}^{n} \alpha_{k} \mathbf{1}_{A_{k}}, y\right)=\sum_{k=1}^{n} \alpha_{k} \mathcal{B}\left(\mathcal{F}\left(A_{k}\right), y\right)
$$

We use that

$$
\begin{aligned}
\|\mathcal{F}\|_{\mathcal{V}_{\mathcal{B}}^{p}(X)} & =\sup \left\{\left|\sum_{A \in \pi} \frac{\left\langle\mathcal{B}(\mathcal{F}(A), y), z^{*}\right\rangle \gamma_{A}}{\mu(A)^{1 / p^{\prime}}}\right|: y \in \mathrm{~B}_{Y}, z^{*} \in \mathrm{~B}_{Z^{*}}, \pi \in \mathcal{D}_{\Omega},\left(\gamma_{A}\right)_{A} \in \mathrm{~B}_{\ell^{p^{\prime}}}\right\} \\
& =\sup \left\{\left\|\sum_{A \in \pi} \mathcal{B}(\mathcal{F}(A), y) \beta_{A}\right\|_{Z}: y \in \mathrm{~B}_{Y}, \pi \in \mathcal{D}_{\Omega}, \sum_{A \in \pi} \beta_{A} \mathbf{1}_{A} \in \mathrm{~B}_{L^{p^{\prime}}}\right\} \\
& =\sup \left\{\left\|\mathcal{B}_{\mathcal{F}}\left(\sum_{A \in \pi} \beta_{A} \mathbf{1}_{A}, y\right)\right\|_{Z}: y \in \mathrm{~B}_{Y}, \pi \in \mathcal{D}_{\Omega}, \sum_{A \in \pi} \beta_{A} \mathbf{1}_{A} \in \mathrm{~B}_{L^{p^{\prime}}}\right\}
\end{aligned}
$$

Hence using the density of simple functions we extend to $L^{p^{\prime}}$ and $\left\|\mathcal{B}_{\mathcal{F}}\right\| \leq\|\mathcal{F}\|_{\mathcal{V}_{\mathcal{B}}(X)}$. The converse follows also from the previous formula.

It is known that $\mathcal{V}^{p}(X)=\mathcal{L}\left(L^{p^{\prime}}, X\right)$ (see [11]). Next result is the analogue in the bilinear setting.
Corollary 3 Let $1<p<\infty$. $\mathcal{V}_{\mathcal{B}}^{p}(X)$ is isometrically embedded into $\operatorname{Bil}\left(L^{p^{\prime}} \times Y, Z\right)$. In the case $\mathcal{B}=\mathcal{O}_{Y, Z}$ we have $\mathcal{V}_{\mathcal{O}_{Y, Z}}(\mathcal{L}(Y, Z))=\operatorname{Bil}\left(L^{p^{\prime}} \times Y, Z\right)$.

Proposition 9 Let $\mathcal{B}: X \times Y \rightarrow Z$ be an admissible bounded bilinear map and $1<p<\infty$. Then X is (Y, Z, \mathcal{B})-normed if and only if the space $\mathcal{V}_{\mathcal{B}}^{p}(X)$ is continuously contained into $\mathcal{V}^{p}(X)$.

Proof. Assume X is (Y, Z, \mathcal{B})-normed.

$$
\begin{aligned}
\|\mathcal{F}\|_{\mathcal{V}^{p}(X)} & =\sup \left\{\left|\sum_{A \in \pi} \frac{\left\langle\mathcal{F}(A), x^{*}\right\rangle \gamma_{A}}{\mu(A)^{1 / p^{\prime}}}\right|: x^{*} \in \mathrm{~B}_{X^{*}}, \pi \in \mathcal{D}_{\Omega},\left(\gamma_{A}\right)_{A} \in \mathrm{~B}_{\ell^{p^{\prime}}}\right\} \\
& =\sup \left\{\left\|\sum_{A \in \pi} \frac{\mathcal{F}(A) \gamma_{A}}{\mu(A)^{1 / p^{\prime}}}\right\|_{X}: \pi \in \mathcal{D}_{\Omega},\left(\gamma_{A}\right)_{A} \in \mathrm{~B}_{\ell^{p^{\prime}}}\right\} \\
& \leq k \sup \left\{\left\|\mathcal{B}_{\sum \frac{\mathcal{F}(A) \gamma_{A}}{}}^{\mu(A)^{1 / p^{\prime}}}\right\|_{\mathcal{L}(Y, Z)}: \pi \in \mathcal{D}_{\Omega},\left(\gamma_{A}\right)_{A} \in \mathrm{~B}_{\ell^{p^{\prime}}}\right\} \\
& =k \sup \left\{\left\|\sum_{A \in \pi} \mathcal{B}\left(\frac{\mathcal{F}(A) \gamma_{A}}{\mu(A)^{1 / p^{\prime}}}, y\right)\right\|_{Z}: y \in \mathrm{~B}_{Y}, \pi \in \mathcal{D}_{\Omega},\left(\gamma_{A}\right)_{A} \in \mathrm{~B}_{\ell^{p^{\prime}}}\right\} \\
& =k \sup \left\{\left(\sum_{A \in \pi} \frac{\|\mathcal{B}(\mathcal{F}(A), y)\|^{p}}{\mu(A)^{p-1}}\right)^{1 / p}: y \in \mathrm{~B}_{Y}, \pi \in \mathcal{D}_{\Omega}\right\} \\
& =k\|\mathcal{F}\|_{\mathcal{V}_{\mathcal{B}}^{p}(X) .}
\end{aligned}
$$

For the converse consider the vector measure $\mathcal{F}_{x}: \Sigma \rightarrow X$ given by $\mathcal{F}_{x}(A)=x \mu(A) \mu(\Omega)^{-1}$ for each $x \in X$. Note that $\left\|\mathcal{F}_{x}\right\|_{\mathcal{V}^{p}(X)}=\|x\|$ and $\left\|\mathcal{F}_{x}\right\|_{\mathcal{V}_{\mathcal{B}}^{p}(X)}=\left\|\mathcal{B}_{x}\right\|$.

4 Measures of bounded (p, \mathcal{B})-variation.

Definition 5 We say that \mathcal{F} has bounded (p, \mathcal{B})-variation if

$$
\|\mathcal{F}\|_{\mathrm{V}_{\mathcal{B}}^{p}(X)}=\sup \left\{\left(\sum_{A \in \pi} \frac{\|\mathcal{B}(\mathcal{F}(A), y)\|_{Z}^{p}}{\mu(A)^{p-1}}\right)^{\frac{1}{p}}: y \in \mathrm{~B}_{Y}, \pi \in \mathcal{D}_{\Omega}\right\}<\infty .
$$

The space of such measures will be denoted by $\mathrm{V}_{\mathcal{B}}^{p}(X)$.
It is clear that the norm in the vector space $\mathrm{V}_{\mathcal{B}}^{p}(X)$ is also given by the expressions

$$
\begin{aligned}
\|\mathcal{F}\|_{\mathrm{V}_{\mathcal{B}}^{p}(X)} & =\sup \left\{\|\mathcal{B}(\mathcal{F}, y)\|_{\mathrm{V}^{p}(Z)}: y \in \mathrm{~B}_{Y}\right\} \\
& =\sup \left\{\left\|\sum_{A \in \pi} \frac{\mathcal{B}(\mathcal{F}(A), y)}{\mu(A)} \mathbf{1}_{A}\right\|_{L^{p}(Z)}: y \in \mathrm{~B}_{Y}, \pi \in \mathcal{D}_{\Omega}\right\} \\
& =\sup \left\{\left\|\sum_{A \in \pi} \frac{\mathcal{F}(A)}{\mu(A)} \mathbf{1}_{A}\right\|_{L_{\mathcal{B}}^{p}(X)}: \pi \in \mathcal{D}_{\Omega}\right\}
\end{aligned}
$$

Remark 2 For $p=1$ and $p=\infty$ this corresponds to $|\mathcal{F}|_{\mathcal{B}}(\Omega)$ and $\|\mathcal{F}\|_{\mathcal{V}_{\mathcal{B}}^{\infty}(X)}$. Hence we define $\mathrm{V}^{\infty}(X)=$ $\mathcal{V}^{\infty}(X)$.

It is clear that $\mathrm{V}_{\mathcal{B}}^{p}(X) \subseteq \mathcal{V}_{\mathcal{B}}^{p}(X)$ and $\|\mathcal{F}\|_{\mathcal{B}_{\mathcal{B}}^{p}(X)} \leq\|\mathcal{F}\|_{\mathrm{V}_{\mathcal{B}}^{p}(X)}$.
On the other hand, since

$$
|\mathcal{F}|_{\mathcal{B}}(E) \leq\|\mathcal{F}\|_{\mathrm{V}_{\mathcal{B}}^{p}(X)}\left\|\mathbf{1}_{E}\right\|_{L^{p^{\prime}}}, \quad E \in \Sigma
$$

one sees that if $\mathcal{F} \in \mathrm{V}_{\mathcal{B}}^{p}(X)$ then \mathcal{F} has bounded \mathcal{B}-variation and it is (\mathcal{B}, μ)-continuous.
Remark 3 Using the inclusions $L^{q}(X) \subseteq L^{p}(X)$ for $1 \leq p \leq q \leq \infty$ one also has

$$
\mathrm{V}_{\mathcal{B}}^{\infty}(X) \subseteq \mathrm{V}_{\mathcal{B}}^{q}(X) \subseteq \mathrm{V}_{\mathcal{B}}^{p}(X)
$$

and

$$
\|\mathcal{F}\|_{\mathrm{V}_{\mathcal{B}}^{p}(X)} \leq \mu(\Omega)^{1 / q-1 / p}\|\mathcal{F}\|_{\mathrm{V}_{\mathcal{B}}^{q}(X)} \leq \mu(\Omega)^{1 / q}\|\mathcal{F}\|_{\mathrm{V}_{\mathcal{B}}^{\infty}(X)}
$$

Let us find different equivalent formulations for the norm in $\mathrm{V}_{\mathcal{B}}^{p}(X)$.

Proposition 10

$$
\begin{gather*}
\|\mathcal{F}\|_{V_{\mathcal{B}}^{p}(X)}=\sup \left\{\sum_{A \in \pi}\left\|\mathcal{B}\left(\mathcal{F}(A), \beta_{A} y\right)\right\|_{Z}: y \in \mathrm{~B}_{Y}, \pi \in \mathcal{D}_{\Omega}, \sum_{A \in \pi} \beta_{A} \mathbf{1}_{A} \in \mathrm{~B}_{L^{p^{\prime}}}\right\} . \tag{12}\\
\|\mathcal{F}\|_{V_{\mathcal{B}}^{p}(X)}=\sup \left\{\left\|\sum_{A \in \pi} \mathcal{B}^{*}\left(\mathcal{F}(A), z_{A}^{*}\right)\right\|_{Y^{*}}: y \in \mathrm{~B}_{Y}, \pi \in \mathcal{D}_{\Omega}, \sum_{A \in \pi} z_{A}^{*} \mathbf{1}_{A} \in \mathrm{~B}_{L^{p^{\prime}}\left(Z^{*}\right)}\right\} . \tag{13}
\end{gather*}
$$

Proof. Given a partition $\pi \in \mathcal{D}_{\Omega}, \alpha_{A} \in \mathbb{R}$ and $\beta_{A}=\frac{\alpha_{A}}{\mu(A)^{1 / p^{\prime}}}$ one has that the simple function $g=\sum_{A \in \pi} \beta_{A} \mathbf{1}_{A}$ satisfies $\|g\|_{L^{p^{\prime}}}=\left\|\left(\alpha_{A}\right)_{A \in \pi}\right\|_{\ell_{p^{\prime}}}$. Therefore

$$
\begin{aligned}
\|\mathcal{F}\|_{V_{\mathcal{B}}^{p}(X)} & =\sup \left\{\left\|\left(\left\|\mathcal{B}\left(\frac{\mathcal{F}(A)}{\mu(A)^{1 / p^{\prime}}}, y\right)\right\|_{Z}\right)_{A \in \pi}\right\|_{\ell^{p}}: y \in \mathrm{~B}_{Y}, \pi \in \mathcal{D}_{\Omega}\right\} \\
& =\sup \left\{\sum_{A \in \pi}\left\|\mathcal{B}\left(\frac{\mathcal{F}(A)}{\mu(A)^{1 / p^{\prime}}}, y\right)\right\|_{Z}\left|\alpha_{A}\right|: y \in \mathrm{~B}_{Y}, \pi \in \mathcal{D}_{\Omega},\left(\alpha_{A}\right)_{A \in \pi} \in \mathrm{~B}_{\ell^{p^{\prime}}}\right\} \\
& =\sup \left\{\sum_{A \in \pi}\left\|\mathcal{B}\left(\mathcal{F}(A) \frac{\alpha_{A}}{\mu(A)^{1 / p^{\prime}}}, y\right)\right\|_{Z}: y \in \mathrm{~B}_{Y}, \pi \in \mathcal{D}_{\Omega},\left(\alpha_{A}\right)_{A \in \pi} \in \mathrm{~B}_{\ell^{p^{\prime}}}\right\} \\
& =\sup \left\{\sum_{A \in \pi}\left\|\mathcal{B}\left(\mathcal{F}(A), \beta_{A} y\right)\right\|_{Z}: y \in \mathrm{~B}_{Y}, \pi \in \mathcal{D}_{\Omega}, \sum_{A \in \pi} \beta_{A} \mathbf{1}_{A} \in \mathrm{~B}_{L^{p^{\prime}}}\right\}
\end{aligned}
$$

We get (13) from the duality $\left(\ell^{1}(Z)\right)^{*}=\ell^{\infty}\left(Z^{*}\right)$ and (12). Indeed,

$$
\begin{aligned}
\|\mathcal{F}\|_{\mathrm{V}_{\mathcal{B}}^{p}(X)} & =\sup \left\{\sum_{A \in \pi}\left\|\mathcal{B}\left(\mathcal{F}(A), \beta_{A} y\right)\right\|_{Z}: y \in \mathrm{~B}_{Y}, \pi \in \mathcal{D}_{\Omega}, \sum_{A \in \pi} \beta_{A} \mathbf{1}_{A} \in \mathrm{~B}_{L^{p^{\prime}}}\right\} \\
& =\sup \left\{\left|\sum_{A \in \pi}\left\langle\mathcal{B}\left(\mathcal{F}(A), \beta_{A} y\right), z_{A}^{*}\right\rangle\right|: y \in \mathrm{~B}_{Y}, \pi \in \mathcal{D}_{\Omega}, z_{A}^{*} \in \mathrm{~B}_{Z^{*}}, \sum_{A \in \pi} \beta_{A} \mathbf{1}_{A} \in \mathrm{~B}_{L^{p^{\prime}}}\right\} \\
& =\sup \left\{\left|\sum_{A \in \pi}\left\langle y, \mathcal{B}^{*}\left(\mathcal{F}(A), \beta_{A} z_{A}^{*}\right)\right\rangle\right|: y \in \mathrm{~B}_{Y}, \pi \in \mathcal{D}_{\Omega}, z_{A}^{*} \in \mathrm{~B}_{Z^{*}}, \sum_{A \in \pi} \beta_{A} \mathbf{1}_{A} \in \mathrm{~B}_{L^{p^{\prime}}}\right\} \\
& =\sup \left\{\left\|\sum_{A \in \pi} \mathcal{B}^{*}\left(\mathcal{F}(A), z_{A}^{*}\right)\right\|_{Y^{*}}: \pi \in \mathcal{D}_{\Omega}, \sum_{A \in \pi} z_{A}^{*} \mathbf{1}_{A} \in \mathrm{~B}_{L^{p^{\prime}}\left(Z^{*}\right)}\right\} .
\end{aligned}
$$

Let us give a characterization of the vector measures in the space $\mathrm{V}_{\mathcal{B}}^{p}(X)$ using only scalar valued functions $\left\{\varphi_{y}: y \in \mathrm{~B}_{Y}\right\} \subseteq L^{p}$.

Theorem $2 \mathcal{F} \in \mathrm{~V}_{\mathcal{B}}^{p}(X)$ if and only if there exist $0 \leq \varphi_{y} \in L^{p}$ for each $y \in Y$ such that
(a) $\sup \left\{\left\|\varphi_{y}\right\|_{L^{p}}: y \in \mathrm{~B}_{Y}\right\}<\infty$ and
(b) $\|\mathcal{B}(\mathcal{F}(E), y)\| \leq \int_{E} \varphi_{y} d \mu$ for every $y \in Y$ and $E \in \Sigma$.

Moreover $\|\mathcal{F}\|_{\mathrm{V}_{\mathcal{B}}^{p}(X)}=\sup \left\{\left\|\varphi_{y}\right\|_{L^{p}}: y \in \mathrm{~B}_{Y}\right\}$.
Proof. Let $\mathcal{F} \in \mathrm{V}_{\mathcal{B}}^{p}(X)$. Then we have that $\mathcal{B}(\mathcal{F}, y) \in \mathrm{V}^{p}(Z)$ for all $y \in \mathrm{~B}_{Y}$ and $|\mathcal{B}(\mathcal{F}, y)|$ is a non negative μ-continuous measure that has bounded variation. Using the Radon-Nikodým theorem there exists a non negative integrable function φ_{y} such that for all $E \in \Sigma$

$$
\begin{equation*}
|\mathcal{B}(\mathcal{F}, y)|(E)=\int_{E} \varphi_{y} d \mu \tag{14}
\end{equation*}
$$

In fact φ_{y} can be chosen belonging to L^{p} and verifying that $\left\|\varphi_{y}\right\|_{L^{p}}=\|\mathcal{B}(\mathcal{F}, y)\|_{V^{p}(Z)}$.

Then for every $E \in \Sigma$ and $y \in \mathrm{~B}_{Y}$

$$
\|\mathcal{B}(\mathcal{F}(E), y)\| \leq|\mathcal{F}|_{\mathcal{B}}(E)=\sup \left\{|\mathcal{B}(\mathcal{F}, y)|(E): y \in \mathrm{~B}_{Y}\right\}=\sup \left\{\int_{E} \varphi_{y} d \mu: y \in \mathrm{~B}_{Y}\right\}
$$

and we obtain the result.
Conversely observe that using Hölder's inequality we have that

$$
\|\mathcal{B}(\mathcal{F}(E), y)\| \leq \int_{E} \varphi_{y} d \mu \leq\left(\int_{E} \varphi_{y}^{p} d \mu\right)^{1 / p} \mu(E)^{1 / p^{\prime}}
$$

for all $E \in \Sigma$ and $y \in \mathrm{~B}_{Y}$. Hence for every $\pi \in \mathcal{D}_{\Omega}$

$$
\sum_{A \in \pi} \frac{\|\mathcal{B}(\mathcal{F}(A), y)\|^{p}}{\mu(A)^{p-1}} \leq \int_{\Omega} \varphi_{y}^{p} d \mu
$$

This shows that $\mathcal{F} \in \mathrm{V}_{\mathcal{B}}^{p}(X)$ and $\|\mathcal{F}\|_{\mathrm{V}_{\mathcal{B}}^{p}(X)} \leq \sup \left\{\left\|\varphi_{y}\right\|_{L^{p}}: y \in \mathrm{~B}_{Y}\right\}$.
Let us now see the analogue to Theorem 1 in the cases $1<p<\infty$.
Theorem 3 Assume X is (Y, Z, \mathcal{B})-normed and $1<p<\infty$. If $f \in L_{\mathcal{B}}^{p}(X)$ then $\mathcal{F}_{f}^{\mathcal{B}} \in \mathrm{V}_{\mathcal{B}}^{p}(X)$ and $\left\|\mathcal{F}_{f}^{\mathcal{B}}\right\|_{\mathrm{V}_{\mathcal{B}}^{p}(X)}=\|f\|_{L_{\mathcal{B}}^{p}(X)}$.

Proof. Let us take $f \in L_{\mathcal{B}}^{p}(X)$. From Theorem 1 one knows that $\mathcal{F}_{f}^{\mathcal{B}}: \Sigma \rightarrow X$ is a vector measure of bounded variation. Now, for each $y \in Y, \mathcal{B}^{y} \mathcal{F}_{f}^{\mathcal{B}}: \Sigma \rightarrow Z$ is a vector measure verifying that

$$
\mathcal{B}^{y} \mathcal{F}_{f}^{\mathcal{B}}(E)=\mathcal{B}\left(\mathcal{F}_{f}^{\mathcal{B}}(E), y\right)=\mathcal{B}\left(\int_{E}^{\mathcal{B}} f d \mu, y\right)=\int_{E} \mathcal{B}(f, y) d \mu, \quad E \in \Sigma
$$

Therefore we have

$$
\|f\|_{L_{\mathcal{B}}^{p}(X)}=\sup \left\{\|\mathcal{B}(f, y)\|_{L^{p}(Z)}: y \in \mathrm{~B}_{Y}\right\}=\sup \left\{\left\|\mathcal{B}\left(\mathcal{F}_{f}^{\mathcal{B}}, y\right)\right\|_{\mathrm{V}^{p}(Z)}: y \in \mathrm{~B}_{Y}\right\}=\left\|\mathcal{F}_{f}^{\mathcal{B}}\right\|_{\mathrm{V}_{\mathcal{B}}^{p}(X)}
$$

Corollary 4 If X is (Y, Z, \mathcal{B})-normed then $L_{\mathcal{B}}^{p}(X)$ is isometrically contained into $\mathrm{V}_{\mathcal{B}}^{p}(X)$.
From the definition one clearly has the following interpretations of $\mathrm{V}_{\mathcal{B}}^{p}(X)$ as operators:
$\mathrm{V}_{\mathcal{B}}^{p}(X)$ is isometrically embedded into $\mathcal{L}\left(Y, \mathrm{~V}^{p}(Z)\right)$ by composition, i.e. $\mathcal{F} \rightarrow \Phi_{\mathcal{F}}(y)=\mathcal{B}^{y} \mathcal{F}$.
Let us see other processes that generate operators from vector measures: Given a vector measure $\mathcal{F}: \Sigma \rightarrow X$ and a bounded bilinear map $\mathcal{B}: X \times Y \rightarrow Z$ we can consider the operators $T_{\mathcal{F}}^{\mathcal{B}}$ (resp. $S_{\mathcal{F}}^{\mathcal{B}}$) defined on Y-valued simple functions $s=\sum_{k=1}^{n} y_{k} \mathbf{1}_{A_{k}}$ (resp. Z^{*}-valued simple functions $t=\sum_{k=1}^{n} z_{k}^{*} \mathbf{1}_{A_{k}}$) by

$$
T_{\mathcal{F}}^{\mathcal{B}}(s)=\sum_{k=1}^{n} \mathcal{B}\left(\mathcal{F}\left(A_{k}\right), y_{k}\right)
$$

and

$$
S_{\mathcal{F}}^{\mathcal{B}}(t)=\sum_{k=1}^{n} \mathcal{B}^{*}\left(\mathcal{F}\left(A_{k}\right), z_{k}^{*}\right)
$$

Observe that actually $S_{\mathcal{F}}^{\mathcal{B}}=T_{\mathcal{F}}^{\mathcal{B}^{*}}$.

Theorem 4 Let $1<p<\infty$. $\mathrm{V}_{\mathcal{B}}^{p}(X)$ is continuously contained into $\mathcal{L}\left(L^{p^{\prime}} \hat{\otimes} Y, Z\right)$.
Proof. Let $\mathcal{F} \in \mathrm{V}_{\mathcal{B}}^{p}(X)$. Consider the linear operator $T_{\mathcal{F}}^{\mathcal{B}}$ defined on Y-valued simple functions and with values in Z. Note that for any partition $\pi, \phi=\sum_{A \in \pi} \alpha_{A} \mathbf{1}_{A}$ and $y \in Y$

$$
\left\|T_{\mathcal{F}}^{\mathcal{B}}(\phi \otimes y)\right\|_{Z} \leq \sum_{A \in \pi}\left\|\mathcal{B}\left(\mathcal{F}(A), \alpha_{A} y\right)\right\|_{Z}
$$

Using (12) and the definition of projective tensor product one gets $\left\|T_{\mathcal{F}}^{\mathcal{B}}\right\| \leq\|\mathcal{F}\|_{\mathrm{V}_{\mathfrak{B}}^{p}(X)}$.

Theorem 5 Let $1<p<\infty . \mathrm{V}_{\mathcal{B}}^{p}(X)$ is isometrically embedded into $\mathcal{L}\left(L^{p^{\prime}}\left(Z^{*}\right), Y^{*}\right)$.
Proof. Let $\mathcal{F} \in \mathrm{V}_{\mathcal{B}}^{p}(X)$. Consider the linear operator $S_{\mathcal{F}}^{\mathcal{B}}$ from the space of Z^{*}-valued simple functions into Y^{*}. Note that for any partition π

$$
\left\|S_{\mathcal{F}}^{\mathcal{B}}\left(\sum_{A \in \pi} z_{A}^{*} \mathbf{1}_{A}\right)\right\|_{Y^{*}}=\left\|\sum_{A \in \pi} \mathcal{B}^{*}\left(\mathcal{F}(A), z_{A}^{*}\right)\right\|_{Y^{*}}
$$

Using (13) and the density of simple functions in $L^{p^{\prime}}\left(Z^{*}\right)$ one gets $\left\|S_{\mathcal{F}}^{\mathcal{B}}\right\|=\|\mathcal{F}\|_{\mathrm{V}_{\mathcal{B}}^{p}(X)}$.

Note that $\mathrm{V}_{\mathcal{B}}^{p}(X) \subseteq \mathcal{V}_{\mathcal{B}}^{p}(X)$ and, from Corollary $3, \mathcal{V}_{\mathcal{B}}^{p}(X)$ is embedded into $\operatorname{Bil}\left(L^{p^{\prime}} \times Y, Z\right)$. Hence $\mathrm{V}_{\mathcal{B}}^{p}(X)$ is continuously contained into $\operatorname{Bil}\left(L^{p^{\prime}} \times Y, Z\right)$ by means of the mapping $\mathcal{F} \rightarrow \mathcal{B}_{\mathcal{F}}: L^{p^{\prime}} \times Y \rightarrow Z$ given by

$$
\mathcal{B}_{\mathcal{F}}(s, y)=\sum_{k=1}^{n} \mathcal{B}\left(\mathcal{F}\left(A_{k}\right), \alpha_{k} y\right)
$$

where $s=\sum_{k=1}^{n} \alpha_{k} \mathbf{1}_{A_{k}}$. Let us find out which special class of bilinear maps represent elements in $\mathrm{V}_{\mathcal{B}}^{p}(X)$.
In the case of $Y=\mathbb{K}$ the corresponding operators would correspond to the class of cone absolutely summing ones.

Definition 6 Let L be a Banach lattice, Y and Z be Banach spaces and $\mathcal{U}: L \times Y \rightarrow Z$ be a bounded bilinear map. We say that \mathcal{U} is cone absolutely summing if there exists $C>0$ such that

$$
\sup \left\{\sum_{n=1}^{N}\left\|\mathcal{U}\left(\varphi_{n}, y\right)\right\|_{Z}: y \in \mathrm{~B}_{Y}\right\} \leq C \sup \left\{\sum_{n=1}^{N}\left|\left\langle\varphi_{n}, \psi\right\rangle\right|: \psi \in \mathrm{B}_{L^{*}}\right\}
$$

for any finite family $\left(\varphi_{n}\right)_{n}$ of positive elements in L.
We denote by $\Lambda(L \times Y, Z)$ the space of such bilinear maps and we endow the space with the norm $\pi^{+}(\mathcal{U})$ given by the infimum of the constants satisfying the above inequality.

Theorem 6 If $\mathcal{F} \in \mathrm{V}_{\mathcal{B}}^{p}(X)$ then $\mathcal{B}_{\mathcal{F}} \in \Lambda\left(L^{p^{\prime}} \times Y, Z\right)$ and $\|\mathcal{F}\|_{\mathrm{V}_{\mathcal{B}}^{p}(X)}=\pi^{+}\left(\mathcal{B}_{\mathcal{F}}\right)$.
Proof. Given $\mathcal{F} \in \mathrm{V}_{\mathcal{B}}^{p}(X)$ then $\mathcal{B}_{\mathcal{F}}: L^{p^{\prime}} \times Y \rightarrow Z$ is bounded. Let us show that $\mathcal{B}_{\mathcal{F}} \in \Lambda\left(L^{p^{\prime}} \times Y, Z\right)$ and $\pi^{+}\left(\mathcal{B}_{\mathcal{F}}\right)=\|\mathcal{F}\|_{\mathrm{V}_{\mathcal{B}}^{p}(X)}$.

From Theorem 2 there exists $0 \leq \varphi_{y} \in L^{p}$ such that $\|\mathcal{F}\|_{V_{\mathcal{B}}^{p}(X)}=\sup \left\{\left\|\varphi_{y}\right\|_{L^{p}}: y \in \mathrm{~B}_{Y}\right\}$ and

$$
\left\|\mathcal{B}_{\mathcal{F}}\left(\mathbf{1}_{A}, y\right)\right\| \leq \int_{\Omega} \mathbf{1}_{A} \varphi_{y} d \mu, \quad A \in \Sigma
$$

Using linearity and density of simple functions one also extends to

$$
\left\|\mathcal{B}_{\mathcal{F}}(\psi, y)\right\| \leq \int_{\Omega} \psi \varphi_{y} d \mu
$$

for any $0 \leq \psi \in L^{p^{\prime}}$ and $y \in Y$.
Now, given a finite family $0 \leq \psi_{n} \in L^{p^{\prime}}$ and $y \in Y$, we can write

$$
\begin{aligned}
\sum_{n=1}^{N}\left\|\mathcal{B}_{\mathcal{F}}\left(\psi_{n}, y\right)\right\| & \leq \sum_{n=1}^{N} \int_{\Omega} \psi_{n} \varphi_{y} d \mu \\
& =\sum_{n=1}^{N}\left\|\varphi_{y}\right\|_{L^{p}}\left\langle\psi_{n}, \frac{\varphi_{y}}{\left\|\varphi_{y}\right\|_{L^{p}}}\right\rangle d \mu \\
& \leq\|\mathcal{F}\|_{V_{\mathcal{B}}^{p}(X)} \sup \left\{\sum_{n=1}^{N}\left|\left\langle\psi_{n}, \varphi\right\rangle\right|: \varphi \in \mathrm{B}_{L^{p}}\right\} .
\end{aligned}
$$

This shows $\pi^{+}\left(\mathcal{B}_{\mathcal{F}}\right) \leq\|\mathcal{F}\|_{V_{\mathcal{B}}^{p}(X)}$.
On the other hand, given a partition π, a sequence $\left(\alpha_{A}\right)_{A} \in \ell^{p^{\prime}}$ and denoting $\psi_{A}=\frac{\left|\alpha_{A}\right|}{\mu(A)^{1 / p^{\prime}}} \mathbf{1}_{A}$ one can apply the condition of cone absolutely summing bilinear map to get

$$
\begin{aligned}
\sum_{A \in \pi}\left\|\mathcal{B}\left(\frac{\mathcal{F}(A)}{\mu(A)^{1 / p^{\prime}}}, \alpha_{A} y\right)\right\|_{Z} & =\sum_{A \in \pi}\left\|\mathcal{B}_{\mathcal{F}}\left(\psi_{A}, y\right)\right\|_{Z} \\
& \leq \pi^{+}\left(\mathcal{B}_{\mathcal{F}}\right)\|y\| \sup \left\{\sum_{A \in \pi} \int_{\Omega} \psi_{A}|\varphi| d \mu: \varphi \in \mathrm{B}_{L^{p}}\right\} \\
& =\pi^{+}\left(\mathcal{B}_{\mathcal{F}}\right)\|y\| \sup \left\{\sum_{A \in \pi} \frac{\left|\alpha_{A}\right|}{\mu(A)^{1 / p^{\prime}}} \int_{A}|\varphi| d \mu: \varphi \in \mathrm{B}_{L^{p}}\right\} \\
& \leq \pi^{+}\left(\mathcal{B}_{\mathcal{F}}\right)\|y\| \sup \left\{\sum_{A \in \pi}\left|\alpha_{A}\right|\left(\int_{A}|\varphi|^{p}\right)^{1 / p} d \mu: \varphi \in \mathrm{B}_{L^{p}}\right\} \\
& \leq \pi^{+}\left(\mathcal{B}_{\mathcal{F}}\right) \cdot\|y\| \cdot\left\|\left(\alpha_{A}\right)_{A}\right\|_{\ell^{p^{\prime}}} .
\end{aligned}
$$

Now (12) allows to conclude that $\|\mathcal{F}\|_{\mathrm{V}_{\mathcal{B}}^{p}(X)} \leq \pi^{+}\left(\mathcal{B}_{\mathcal{F}}\right)$.

Corollary $5 \mathrm{~V}_{\mathcal{B}}^{p}(X)$ is isometrically embedded into $\Lambda\left(L^{p^{\prime}} \times Y, Z\right)$.

References

[1] Bartle, R. G., A general bilinear vector integral. Studia Math. 15 (1956), 337-352. MR0080721 $(18,289 a)$
[2] Blasco, O., Positive p-summing operators, vector measures and tensor products. Proc. Edinburgh Math. Soc. (2) 31 (1988), no. 2, 179-184. MR0989750 (90f:47026)
[3] Blasco, O., Remarks on the semivariation of vector measures with respect to Banach spaces, Bull. Austral. Math. Soc. 75 (2007), no. 3, 469-480. MR2331024
[4] Blasco, O. and Calabuig J.M., Vector-valued functions integrable with respect to bilinear maps, Taiwaness Math. J. (to appear).
[5] Blasco, O. and Calabuig J.M., Hölder inequality for functions integrable with respect to bilinear maps, Math. Scan. (to appear).
[6] Diestel, J. and Uhl, J. J., Jr., Vector measures. With a foreword by B. J. Pettis. Mathematical Surveys, No. 15. American Mathematical Society, Providence, R.I., 1977. xiii +322 pp. MR0453964 (56 \#12216)
[7] Diestel, J., Jarchow, H. and Tonge, A., Absolutely summing operators. Cambridge Studies in Advanced Mathematics, 43. Cambridge University Press, Cambridge, 1995. xvi+474 pp. ISBN: 0-521-43168-9. MR1342297 (96i:46001)
[8] Dinculeanu, N., Vector measures. International Series of Monographs in Pure and Applied Mathematics, Vol. 95 Pergamon Press, Oxford-New York-Toronto, Ont.; VEB Deutscher Verlag der Wissenschaften, Berlin 1967 x+432 pp. MR0206190 (34 \#6011b)
[9] Girardi, M, and Weis, L., Integral operators with operator-valued kernels. J. Math. Anal. Appl. 290 (2004), no. 1, 190-212. MR2032234 (2004j:47096)
[10] Jefferies, B. and Okada, S., Bilinear integration in tensor products. Rocky Mountain J. Math. 28 (1998), no. 2, 517-545. MR1651584 (2000f:28012)
[11] Phillips, R. S., On linear transformations., Trans. Amer. Math. Soc. 48, (1940), 290 , 516-541. MR0004094 ($2,318 \mathrm{c}$)
[12] Ryan, R.A., Introduction to tensor products of Banach spaces. Springer Monographs in Mathematics. Springer-Verlag London, Ltd., London, 2002. xiv+225 pp. ISBN: 1-85233-437-1 MR1888309 (2003f:46030)
[13] Schaefer, H. H., Banach lattices and positive operators. Die Grundlehren der mathematischen Wissenschaften, Band 215. Springer-Verlag, New York-Heidelberg, 1974. xi +376 pp. MR0423039 (54 \#11023)

[^0]: *The authors gratefully acknowledges support by Spanish Grants MTM2005-08350-C03-03 and MTN2004-21420-E. J.M. Calabuig was also supported by Generalitat Valenciana (project GV/2007/191).

