REMARKS ON THE SEMIVARIATION OF VECTOR MEASURES WITH RESPECT TO BANACH SPACES.

OSCAR BLASCO

ABSTRACT. Let $L^q(\nu)\hat{\otimes}_{\gamma_q}Y = L^q(\nu,Y)$ and $X\hat{\otimes}_{\Delta_p}L^p(\mu) = L^p(\mu,X)$. It is shown that any $L^p(\mu)$ -valued measure has finite $L^2(\nu)$ -semivariation with respect to the tensor norm $L^2(\nu)\hat{\otimes}_{\Delta_p}L^p(\mu)$ for $1 \leq p < \infty$ and finite $L^q(\nu)$ semivariation with respect to the tensor norm $L^q(\nu)\hat{\otimes}_{\gamma_q}L^p(\mu)$ whenever either q = 2 and $1 \leq p \leq 2$ or $q > \max\{p, 2\}$. However there exist measures with infinite L^q -semivariation with respect to the tensor norm $L^q(\nu)\hat{\otimes}_{\gamma_q}L^p(\mu)$ for any $1 \leq q < 2$. It is also shown that the measure $m(A) = \chi_A$ has infinite L^q -semivariation with respect to the tensor norm $L^q(\nu)\hat{\otimes}_{\gamma_q}L^p(\mu)$ if q < p.

1. INTRODUCTION

Let Z be a Banach space and let $m : \Sigma \to Z$ be a vector measure defined on a σ -algebra Σ of subsets of Ω . We write |m| for the variation of the measure

$$|m|(A) = \sup\{\sum_{j=1}^{k} ||m(A_j \cap A)|| : A_j \text{ pairwise disjoints }, k \in \mathbb{N}\}$$

and denote, for $1 \leq p < \infty$, the *p*-variation of the measure

$$||m||_p = \sup\{\left(\sum_{j=1}^k ||m(A_j)||^p\right)^{1/p} : A_j \text{ pairwise disjoints }, k \in \mathbb{N}\}.$$

We also write $||m|| = \sup_{A \in \Sigma} ||m(A)||$, which is equivalent to the semivariation of the vector measure m, that is

$$||m|| \approx \sup\{|\langle z^*, m \rangle|(\Omega) : ||z^*|| = 1\}.$$

Let X, Y be Banach spaces and let τ be a norm on $X \otimes Y$ such that $||x \otimes y||_{\tau} \leq C||x|| ||y||$ for $x \in X, y \in Y$ and denote $X \otimes_{\tau} Y$ the completion under such a norm. Given a vector measure $m : \Sigma \to Y$ defined on a σ -algebra Σ of subsets of Ω , R. Bartle (see [2, 7]) introduced the notion of X-semivariation of m in $X \otimes_{\tau} Y$ given by

$$\beta_X(m,\tau,Y)(A) = \sup\{\|\sum_{j=1}^k x_j \otimes m(A \cap A_j)\|_{\tau}\}\$$

for every $A \in \Sigma$ where the supremum is taken over $||x_j|| \leq 1$, A_j pairwise disjoints sets in Σ and $k \in \mathbb{N}$. We shall denote

$$\beta_X(m,\tau,Y) = \sup_{A \in \Sigma} \beta_X(m,\tau,Y)(A).$$

Key words and phrases. vector measures, semivariation, vector-valued Bochner spaces.

²⁰⁰⁰ Mathematical Subjects Classifications. Primary 28B05, 46G10, Secondary 46B42,47B65 Partially supported by Proyecto MTM 2005-08350.

It is clear that

$$||m|| \le \beta_X(m, \tau, Y) \le ||m||_1.$$

If $X \hat{\otimes}_{\epsilon} Y$ and $X \hat{\otimes}_{\pi} Y$ stands for the injective and projective tensor norms respectively, then one always has

$$||m|| \le \beta_X(m,\epsilon,Y) \le \beta_X(m,\tau,Y) \le \beta_X(m,\pi,Y) \le ||m||_1$$

It is well-known and easy to see that actually $\beta_X(m, \epsilon, Y) = ||m||$.

In [7] B. Jefferies, and S. Okada developed a theory of integration of X-valued functions with respect to Y-valued measures of bounded X-semivariation in the case of completely separated tensor norms.

We shall be concerned with some interesting examples of norms coming from the theory of vector-valued functions: Throughout the paper $(\Omega_1, \Sigma_1, \mu)$ and $(\Omega_2, \Sigma_2, \nu)$ are finite measure spaces, $1 \leq p, q < \infty$ and the Banach spaces will be either $Y = L^p(\mu)$ or $X = L^q(\nu)$. We define γ_q and Δ_p the norms on $L^q(\nu) \otimes Y$ and $X \otimes L^p(\mu)$ identified as subspace of $L^q(\nu, Y)$ and $L^p(\mu, X)$, that is to say

$$L^q(\nu) \hat{\otimes}_{\gamma_q} Y = L^q(\nu, Y), \quad X \hat{\otimes}_{\Delta_p} L^p(\mu) = L^p(\mu, X).$$

In the case p = q the $L^p(\nu)$ -semivariation of $L^p(\mu)$ -valued measures with respect to the topology τ_p such that $L^p(\mu) \hat{\otimes}_{\tau_p} L^p(\nu)$ becomes $L^p(\mu \times \nu)$ for the product measure was studied in [9] and [10].

In particular, if both $X = L^q(\nu)$ and $Y = L^p(\mu)$ then $L^q(\nu) \hat{\otimes}_{\Delta_p} L^p(\mu)$ and $L^q(\nu) \hat{\otimes}_{\gamma_q} L^p(\mu)$ coincide with the spaces of measurable functions $f : \Omega_1 \times \Omega_2 \to \mathbb{R}$ such that

$$(\int_{\Omega_1} \int_{\Omega_2} |f(x,y)|^q d\nu(y))^{p/q} d\mu(x))^{1/p} < \infty\}$$

and

$$(\int_{\Omega_2} (\int_{\Omega_1} |f(x,y)|^p d\mu(x))^{q/p} d\nu(x))^{1/q} < \infty \}.$$

In this paper we shall try to understand better the difference between the classical semivariation or variation of a $L^p(\mu)$ -valued measure m and the $L^q(\nu)$ -semivariation with respect to the norms Δ_p , γ_q and π .

Let us establish the main results of the paper. Our first result establishes the following descriptions L^q -semivariation of L^p -valued measures with respect respect the projective tensor norm, where we denote $L^p = L^p([0, 1])$ for $1 \le p \le \infty$.

Theorem 1.1. Let $1 \leq p, q \leq \infty$ and let $m : \Sigma \to L^p([0,1])$ be a vector measure. Then

 $\begin{array}{ll} (i) \ \beta_{L^{p'}}(m,\pi,L^p) \approx \|m\|_1 & 1 \leq p \leq \infty. \\ (ii) \ \beta_{L^2}(m,\pi,L^p) \approx \|m\|_1, & 1$

This result shows that L^2 -valued measures are of finite L^2 -semivariation on $L^2 \otimes_{\pi} L^2$ if and only if they are of finite variation.

It was noticed in [9] that any L^2 -valued measure is of bounded L^2 -semivariation with respect to $L^2([0,1])\hat{\otimes}_{\tau_2}L^2([0,1])$, in other words $\beta_{L^2}(m, \Delta_2, L^2) \approx ||m||$.

On the other hand $\beta_{L^q}(m, \pi, L^1) = \beta_{L^q}(m, \Delta_1, L^1)$. Hence Theorem 1.1 shows that $\beta_{L^2}(m, \Delta_1, L^1) = ||m||$.

Let us just point out that this implies

(1)
$$\beta_{L^2}(m, \Delta_p, L^p) \approx ||m||, 1 \le p \le 2$$

due to the simple observation

(2)
$$\beta_{L^{q}(\nu)}(m, \Delta_{p_{1}}, L^{p_{1}}(\mu)) \leq C\beta_{L^{q}(\nu)}(m, \Delta_{p_{2}}, L^{p_{2}}(\mu)) \quad p_{1} \leq p_{2}.$$

We shall present another alternative proof that cover all the cases and gives an alternative proof of the known case p = q = 2 and extend (1) as follows.

Theorem 1.2. Let $1 \leq p < \infty$ and let $m : \Sigma \to L^p([0,1])$ be a vector measure. Then

 $\beta_{L^2}(m, \Delta_p, L^p) \approx ||m||.$

The question which now arises is whether or not there exist L^p -valued measures with $\beta_{L^q(\nu)}(m, \Delta_p, L^p(\mu)) = \infty$ if $q \neq 2$. In [7] examples of $L^p([0, 1])$ -valued measures of infinite $L^p([0, 1])$ -semivariation in $L^p([0, 1]) \hat{\otimes}_{\tau_p} L^p([0, 1])$ were obtained for the values $p \neq 2$. For $1 \leq p < 2$ the approach was much simpler than for p > 2and the example in this case relies on the existence of a non absolutely summing operator from $\ell^1 \to \ell^p$ for p > 2 (see [9, 10]).

We shall use the relationship between the tensor norms γ_q and Δ_p to get other examples. Recall that Minkowski's inequality gives $L^p(\mu, L^q(\nu)) \subseteq L^q(\nu, L^p(\mu))$ for $p \leq q$ and $L^q(\nu, L^p(\mu)) \subseteq L^p(\mu, L^q(\nu))$ for $q \leq p$. Hence

(3)
$$\beta_{L^q(\nu)}(m, \gamma_q, L^p(\mu)) \le \beta_{L^q(\nu)}(m, \Delta_p, L^p(\mu)), \quad p \le q.$$

(4)
$$\beta_{L^q(\nu)}(m, \Delta_p, L^p(\mu)) \le \beta_{L^q(\nu)}(m, \gamma_q, L^p(\mu)), \quad q \le p.$$

Also using general techniques, similar to those used in [9] one can show that for $1 \leq p \leq \infty$ and $1 \leq q < 2$ there exist $L^p(\mu)$ -valued measures m such that $\beta_{L^q(\nu)}(m, \gamma_q, L^p(\mu)) = \infty$. This, in particular, using the estimate (3), shows the existence of measures for which $\beta_{L^q(\nu)}(m, \Delta_p, L^p(\mu)) = \infty$ if $1 \leq q < 2, p \leq q$, completing and extending the case p = q.

Theorem 1.3. Let $1 \leq p \leq \infty$ and let $m : \Sigma \to L^p([0,1])$ be a vector measure. Then

 $\begin{array}{ll} (i)\beta_{L^2}(m,\gamma_2,L^p) \approx \|m\|, & 1 \leq p \leq 2. \\ (ii) \ \beta_{L^q}(m,\gamma_q,L^p) \approx \|m\|, & \max\{p,2\} < q. \end{array}$

This gives that any measure has $\beta_{L^q}(m, \gamma_q, L^p) < \infty$ for $q > p \ge 2$. However in the last section it is shown that the $L^p([0, 1])$ -valued measure $m_p(A) = \chi_A$ has infinite $L^q([0, 1])$ -semivariation in $L^q([0, 1]) \hat{\otimes}_{\gamma_q} L^p([0, 1])$ for q < p.

2. Bounded X-semivariation.

We start by the following characterization of the bounded X-semivariation .

Taking into account that $X \hat{\otimes}_{\pi} Y \subset X \hat{\otimes}_{\tau} Y$, then $(X \hat{\otimes}_{\tau} Y)^*$ can be regarded as a subspace of the space of bounded operators $\mathcal{L}(Y, X^*)$. Moreover $||u|| \leq ||u||_{(X \hat{\otimes}_{\tau} Y)^*}$ for any $u \in (X \hat{\otimes}_{\tau} Y)^*$, where the duality is given by

$$\langle u, \sum_{j=1}^k x_j \otimes y_j \rangle = \sum_{j=1}^k \langle u(y_j), x_j \rangle.$$

Theorem 2.1. Let $m: \Sigma \to Y$ be a vector measure. Then

$$\beta_X(m,\tau,Y) \approx \sup\{\|u \circ m\|_1 : u \in \mathcal{L}(Y,X^*), \|u\|_{(X\hat{\otimes}_\tau Y)^*} \le 1\}$$

PROOF. Let (x_j) be a bounded sequence in X and (A_j) be a sequence of pairwise disjoint sets in Σ . Consider, for $k \in \mathbb{N}$, the X-valued simple function $\phi = \sum_{j=1}^{k} x_j \chi_{A_j}$ and denote

$$\phi \otimes_{\tau} m(A) = \sum_{j=1}^{k} x_j \otimes m(A \cap A_j) \in X \otimes Y.$$

Clearly this defines a new $X \hat{\otimes}_{\tau} Y$ -valued measure and one can rewrite

$$\beta_X(m,\tau,Y) = \sup\{\|\phi \otimes_\tau m\| : \phi \in \mathcal{S}(X), \|\phi\|_\infty \le 1\}.$$

We now write the semivariation of $\phi \otimes_{\tau} m$ using duality, that is to say

$$\begin{split} |\phi \otimes_{\tau} m| &\approx \sup\{ |\langle u, \phi \otimes m \rangle | (\Omega) : ||u||_{(X \hat{\otimes}_{\tau} Y)^*} \leq 1 \} \\ &= \sup\{ \sum_{j=1}^k |\langle u \circ m(A_j), x_j \rangle | : (A_j) \text{ pairwise disjoint}, ||u||_{(X \hat{\otimes}_{\tau} Y)^*} \leq 1 \}, \end{split}$$

which, taking supremum over $||x_i|| \leq 1$, gives

$$\beta_X(m,\tau,Y) \approx \sup\{\sum_{j=1}^k \|u \circ m(A_j)\| : (A_j) \text{ pairwise disjoint}, \|u\|_{(X\hat{\otimes}_\tau Y)^*} \le 1\}$$
$$\approx \sup\{\|u \circ m\|_1 : u \in \mathcal{L}(Y,X^*), \|u\|_{(X\hat{\otimes}_\tau Y)^*} \le 1\}.$$

Let us see the formulation of Theorem 2.1 in the case $\tau = \Delta_p$ or $\tau = \gamma_q$. It is well known that for $1 < p, q < \infty$ and 1/p' + 1/p = 1, 1/q + 1/q' = 1 and for X, Y such that X^* and Y^* have the Radon-Nikodym property (see [6]) then

$$(L^q(\nu)\hat{\otimes}_{\gamma_q}Y)^* = L^{q'}(\nu)\hat{\otimes}_{\gamma_{q'}}Y^*$$

and

$$(X\hat{\otimes}_{\Delta_p}L^p(\mu))^* = X^*\hat{\otimes}_{\Delta_{p'}}L^{p'}(\mu).$$

Now for each $f \in L^{p'}(\mu, X^*)$ we can define the operators $u_f: L^p(\mu) \to X^*$ and $v_f: X \to L^{p'}(\mu)$ given by

$$\langle u_f(\phi), x \rangle = \int_{\Omega} \langle f(t), x \rangle \phi(t) d\mu(t)$$

and

$$v_f(x) = \langle f, x \rangle.$$

Of course $(v_f)^* = u_f$ and $(u_f)^* = v_f$ if X is reflexive.

Theorem 2.2. Let $1 < p, q < \infty$, $X = L^q(\nu)$ and $Y = L^p(\mu)$. If $m : \Sigma \to L^p(\mu)$ is a vector measure then

(5)
$$\beta_{L^{q}(\nu)}(m, \Delta_{p}, L^{p}(\mu)) = \sup\{\|u_{f} \circ m\|_{1} : \|f\|_{L^{p'}(\mu, L^{q'}(\nu))} \le 1\},\$$

(6)
$$\beta_{L^{q}(\nu)}(m, \gamma_{q}, L^{p}(\mu)) = \sup\{\|v_{g} \circ m\|_{1} : \|g\|_{L^{q'}(\nu, L^{p'}(\mu))} \le 1\}.$$

PROOF. In the case $Y = L^p(\mu)$ and $X = L^q(\nu)$ for $1 < q, p < \infty$ the elements $u : L^p(\mu) \to L^{q'}(\nu)$ such that $u \in (L^q(\nu) \hat{\otimes}_{\Delta_p} L^p(\mu))^*$ can be seen as $u = u_f$ for some $f \in L^{p'}(\mu, L^{q'}(\nu))$, that is $u : L^p(\mu) \to L^q(\nu)$ is given by

$$u(\phi)(y) = \int_{\Omega_1} f(x, y)\phi(x)d\mu(x).$$

Then (5) follows from Theorem 2.1 in this case.

Similarly the elements $u: L^p(\mu) \to L^{q'}(\nu)$ such that $u \in (L^q(\nu) \hat{\otimes}_{\gamma_q} L^p(\mu))^*$ can be seen as $u = v_q$ for some $g \in L^{q'}(\nu, L^{p'}(\mu))$ and now

$$u(\psi)(y) = \langle g, \psi \rangle = \int_{\Omega_1} g(y, x) \psi(x) d\mu(x).$$

Again (6) follows from Theorem 2.1.

3. Proof of the main theorems

We use first the characterization in Theorem 2.1 to get the following corollaries.

Corollary 3.1. Let $m: \Sigma \to Y$ be a vector measure and X a Banach space. Then

$$\beta_X(m,\pi,Y) \approx \sup\{\|u \circ m\|_1 : u \in \mathcal{L}(Y,X^*), \|u\| \le 1\}.$$

We use the notation $\Pi_p(X, Y)$ for the space of *p*-summing operators from X into Y and write $\pi_p(u)$ for the *p*-summing norm. The reader is referred to [5] for the basics in the theory of summing operators.

Corollary 3.2. Let Y be a Grothendieck space, i.e. $\Pi_1(Y, H) = \mathcal{L}(Y, H)$ for any Hilbert space H. Then

(7)
$$\beta_H(m,\pi,Y) \approx ||m||.$$

PROOF. Note that $\sum m(A_j)$ is an unconditionally convergent series in Y for any sequence of pairwise disjoint sets A_j . Now for any operator from $u: Y \to H$ one has and then $\sum \|u(m(A_j))\| \leq K_G \|u\| \|m\|$, where K_G is the Grothendieck constant. Now use Corollary 3.1.

Proof of Theorem 1.1

(i) Let $Y = L^p$ and $X = L^{p'}$ then choosing $u = Id : L^p \to (L^{p'})^*$, one concludes that $||u \circ m||_1 = ||m||_1$. This shows $\beta_{L^{p'}}(m, \pi, L^p) = ||m||_1$

(ii) follows from the following observation: If X^* is isomorphic to a complemented subspace of Y then $\beta_X(m, \pi, Y) \approx ||m||_1$.

Indeed, assume $id: Y \to Y$ factors through X^* as $id = u_1 \circ u_2$ where $u_2: Y \to X^*$ and $u_1: X^* \to Y$ are bounded operators. Now observe that $||m||_1 \leq ||u_1|| ||u_2 \circ m||_1$ and use Corollary 3.1.

Now use that the space *Rad* is complemented in $L^p([0,1])$ and isomorphic to ℓ^2 (see Thm 1.12 [5]) and therefore to L^2 , to conclude that

(8)
$$\beta_{L^2}(m, \pi, L^p([0, 1])) \approx ||m||_1, 1$$

(iii) follows from Corollary 3.2.

We now recall a lemma that we will need in the sequel.

OSCAR BLASCO

Lemma 3.3. (i) Let $1 < q < \infty$ and let Y be a Banach space such that $Y^* \in RNP$. If $u: Y \to L^{q'}(\nu)$ belongs to $(L^q(\nu)\hat{\otimes}_{\gamma_q}Y)^*$ then $\pi_{q'}(u) \leq \|u\|_{(L^q(\nu)\hat{\otimes}_{\gamma_q}Y)^*}$.

(ii) Let $1 and let X be a Banach space such that <math>X^* \in RNP$. If $u: L^p(\mu) \to X^*$ belongs to $(X \hat{\otimes}_{\Delta_p} L^p(\mu))^*$ then $\pi_{p'}(u^*) \leq \|u^*\|_{(X \hat{\otimes}_{\Delta_p} L^p(\mu))^*}$.

PROOF. (i) It is well known (see Example 2.11, [5]) that if $g \in L^{q'}(\nu, Y^*)$ then $v_g : Y \to L^{q'}(\nu)$ given by $v_g(y) = \langle g, y \rangle$ is q'-summing and $\pi_{q'}(v_g) \leq ||g||_{L^{q'}(\nu,Y)}$. Now use that, under the assumptions, $(L^q(\nu) \hat{\otimes}_{\gamma_q} Y)^* = L^{q'}(\nu, Y^*)$ and $u = v_g$ for certain $g \in L^{q'}(\nu, Y^*)$.

(ii) Note that $u = u_f$ for some $f \in L^{p'}(\mu, X^*)$. Hence $v_f = u^* : X^{**} \to L^p(\mu)$ is p'-summing and $\pi_{p'}(u^*) \le \|f\|_{L^{p'}(\mu, X^*)} = \|u\|_{(L^q(\nu)\hat{\otimes}_{\gamma_q}Y)^*}$. \Box

Proof of Theorem 1.2

The case p = 1 is included in (iii) Theorem 1.1.

Assume now $1 and let <math>m : \Sigma \to L^p$ be a vector measure. Given $u: L^p \to L^2$ with $u \in (L^2 \hat{\otimes}_{\Delta_p} L^p)^*$ we can use (ii) in Lemma 3.3 to conclude that there exist $f \in L^{p'}([0,1],L^2)$ such that $v_f: L^2 \to L^{p'}$ given by $\phi \to \int_0^1 \phi(y) f(x,y) dy$ is p'-summing and $u = u_f = (v_f)^*$. Hence, using Theorem 2.21 in [5], one has that $(v_f)^* = u: L^p \to L^2$ is 1-summing. Therefore

$$||u_f \circ m||_1 \le C ||u_f|| ||m|| \le C ||f||_{L^{p'}([0,1],L^2)} ||m||.$$

Let us mention another useful lemma.

 $\|y\|$

Lemma 3.4. (Prop. 6, [1]) Let Y be a Banach space of finite cotype r and let $\sum_{j} y_{j}$ be an unconditionally convergent series in Y.

(i) If r = 2 then there exist $(\alpha_j) \in \ell^2$ and a sequence in $(y'_j) \subset Y$ such that $y_j = \alpha_j y'_j$ and

$$\sum_{j} |\alpha_j|^2 \leq \sup_{\|y^*\|=1} \sum_{j} |\langle y_j, y^* \rangle|,$$
$$\sup_{\|y^*\|=1} \sum_{j} |\langle y_j', y^* \rangle|^2 \leq \sup_{\|y^*\|=1} \sum_{j} |\langle y_j, y^* \rangle|.$$

(ii) If r > 2 then for any q > r there exist $(\alpha_j) \in \ell^q$ and a sequence in $(y'_j) \subset Y$ such that $y_j = \alpha_j y'_j$ and

$$(\sum_{j} |\alpha_{j}|^{q})^{1/q} \leq (\sup_{\|y^{*}\|=1} \sum_{j} |\langle y_{j}, y^{*} \rangle|)^{1/q}.$$
$$(\sup_{\|y^{*}\|=1} \sum_{j} |\langle y_{j}', y^{*} \rangle|^{q'})^{1/q'} \leq (\sup_{\|y^{*}\|=1} \sum_{j} |\langle y_{j}, y^{*} \rangle|)^{1/q'}$$

PROOF. (i) Let $T: c_0 \to Y$ such that $T(e_j) = y_j$. Note that $\mathcal{L}(c_0, Y) = \Pi_2(c_0, Y)$ for any cotype 2 space Y. Now apply Lemma 2.23 in [5] to the sequence (e_j) which satisfies $\sup\{\sum_j |\langle e_j, z \rangle| : ||z||_{\ell^1} = 1\}$ to conclude that $T(e_j) = y_j = \alpha_j y'_j$ with the desired properties.

(ii) Repeat the proof using now $L(c_0, Y) = \prod_q(c_0, Y)$ for any q > r (see Theorem 11.14 [5]).

Proof of Theorem 1.3

6

REMARKS ON THE SEMIVARIATION OF VECTOR MEASURES WITH RESPECT TO BANACH SPACES

Note Theorem 1.2 and (4) give

(9)
$$\beta_{L^2}(m,\gamma_2,L^p) \approx ||m||, \qquad 1 \le p \le 2.$$

To obtain (ii) we simply use the following more general result.

Theorem 3.5. If Y has cotype $r < \infty$ and Y^* has the RNP then

(10)
$$\beta_{L^2(\nu)}(m, \gamma_2, Y) \approx ||m||, \quad r = 2.$$

(11)
$$\beta_{L^q(\nu)}(m,\gamma_q,Y) \approx ||m||, \quad q > r > 2.$$

PROOF. We only prove (11). The other is exactly the same.

Let (A_j) be a sequence of pairwise disjoint sets. Since $m(A_j)$ is unconditionally convergent in Y, Lemma 3.4 implies that there exist $(\alpha_j) \in \ell^q$ and a sequence in $(y_j) \subset Y$ with $m(A_j) = \alpha_j y_j$ and

$$(\sum_{j} |\alpha_{j}|^{q})^{1/q} \leq (\sup_{\|y^{*}\|=1} \sum_{j} |\langle m(A_{j}), y^{*} \rangle|)^{1/q}.$$
$$(\sup_{\|y^{*}\|=1} \sum_{j} |\langle y_{j}, y^{*} \rangle|^{q'})^{1/q'} \leq (\sup_{\|y^{*}\|=1} \sum_{j} |\langle m(A_{j}), y^{*} \rangle|)^{1/q'}$$

On the other hand if $u \in (L^q(\nu)\hat{\otimes}Y)^*$, using (i) in Lemma 3.3, one has $u \in \Pi_{q'}(Y, L^{q'})$. Therefore

$$\begin{split} \sum_{j} \|u(m(A_{j}))\| &= \sum_{j} |\alpha_{j}| \|u(y_{j})\| \\ &\leq (\sum_{j} |\alpha_{j}|^{q})^{1/q} (\sum_{j} \|u(y_{j})\|^{q'})^{1/q'} \\ &\leq \pi_{q'}(u) (\sum_{j} |\alpha_{j}|^{q})^{1/q} (\sup_{\|y^{*}\|=1} \sum_{j} |\langle y_{j}, y^{*} \rangle|^{q'})^{1/q'} \\ &\leq C \|u\|_{(L^{q}(\nu) \hat{\otimes} Y)^{*}} \|m\|. \end{split}$$

4. Measures of infinite X-semivariation

We shall present now some necessary conditions to have bounded X-semivariation.

Proposition 4.1. (i) Assume that $X \hat{\otimes}_{\tau} Y$ is of finite cotype q. If $m : \Sigma \to Y$ be a vector measure then

$$||m||_q \le C_q \beta_X(m,\tau,Y)$$

for some constant C_q independent of m.

In particular, if \hat{X} has finite cotype q and $1 \leq p < \infty$ then

$$||m||_{\max\{q,2,p\}} \le C\beta_X(m,\Delta_p,L^p(\mu)).$$

(ii) Let $1 \leq q < \infty$, let ν be a finite measure for which there exists a sequence of pairwise disjoint sets with $\nu(B_j) > 0$ and let $m : \Sigma \to Y$ be a vector measure. Then

$$||m||_q \le C_q \beta_{L^q(\nu)}(m, \gamma_q, Y)$$

PROOF. (i) Let (x_j) be a sequence in the unit ball of X and a sequence of pairwise disjoint sets A_j . Hence, for $0 \le t \le 1$, one has

$$\|\sum_{j=1}^{k} r_j(t) x_k \otimes m(A_j)\|_{X \hat{\otimes}_{\tau} Y} \leq \beta_X(m, \tau, Y)$$

where r_i stands for the Rademacher sequence. Now integrate over [0, 1] and use the cotype estimate to get

$$\left(\sum_{j=1}^{k} \|x_k\|^q \|m(A_j)\|^q\right)^{1/q} \le C_q \beta_X(m,\tau,Y).$$

Taking the sup over (x_j) and (A_j) one obtains the desired result.

Note that $L^p(\mu, X)$ has cotype equals $\max\{p, q, 2\}$. (ii) Take $x_j = \frac{\chi_{B_j}}{\nu(B_j)^{1/q}}, \phi = \sum_{j=1}^k x_j \chi_{A_j}$ for some sequence of pairwise disjoint sets in Σ and notice that, for any $A \in \Sigma$,

$$\|\phi \otimes m(A)\|_{L^q(\nu,Y)} = (\sum_{j=1}^k \|m(A \cap A_j)\|^q)^{1/q}.$$

 \Box .

This gives the result

Corollary 4.2. Let Y be infinite dimensional Banach space, $1 \le q < 2$ and ν be a finite measure for which there exists a sequence of pairwise disjoint sets with $\nu(E_n) > 0.$

(i) There exist Y-valued measure such that $\beta_{L^q(\nu)}(m, \gamma_q, Y) = \infty$.

(ii) If $L^p(\mu)$ is infinite dimensional then there exist $L^p(\mu)$ -valued measures m such that $\beta_{L^q(\nu)}(m, \Delta_p, L^p(\mu)) = \infty$ for $1 \leq q < 2$ and $q \geq p$.

PROOF. (i) Select an unconditionally convergent series (y_n) with $\sum_k ||y_k||^q = \infty$ (this can be done for $1 \le q < 2$, see, for instance [5])).

Now we define the measure over N given by $m(\{k\}) = y_k$. Clearly $||m||_q = \infty$ and therefore $\beta_{L^q(\nu)}(m, \gamma_q, Y) = \infty$ from (ii) in Proposition 4.1.

(ii) follows from (i) and the estimate (3).

A very important example to analyze is $m_p: \Sigma \to L^p(\mu)$ given by $m_p(A) =$ χ_A . We shall see that these measures are enough to produce examples with $\beta_{L^q(\nu)}(m, \gamma_q, L^p(\mu)) = \infty \text{ for } q < p.$

Theorem 4.3. Let $\mu(\Omega_1) < \infty$, $\nu(\Omega_2) < \infty$, $X = L^q(\nu)$ and $Y = L^p(\mu)$. Then the $L^p(\mu)$ -valued measure $m_p(A) = \chi_A$ has finite $L^q(\nu)$ -semivariation in $L^q(\nu) \hat{\otimes}_{\gamma_a} L^p(\mu)$ if and only if $L^{q'}(\nu, L^{p'}(\mu)) \subseteq L^1(\mu, L^{q'}(\nu))$.

PROOF. Let $g: \Omega_1 \times \Omega_2 \to \mathbb{R}$ be such that

$$\|g\|_{L^{q'}(\nu,L^{p'}(\mu))} = \int_{\Omega_2} (\int_{\Omega_1} |g(y,x)|^{p'} d\mu(x)^{q'/p'} d\nu(y))^{1/q'} < \infty.$$

Note that the operator $v_g: L^p(\mu) \to L^{q'}(\nu)$ becomes

$$v_g(\psi)(y) = \int_{\Omega_1} g(y, x)\psi(x)d\mu(x),$$

hence, we have $v_g \circ m_p(A) = \int_A g(y, x) d\mu(x)$ for all $A \in \Sigma_1$. This shows that $v_g \circ m_p$ is the $L^{q'}(\nu)$ -valued measure with Radon-Nikodym derivative g(y, .). Therefore
$$\begin{split} \|v_g \circ m_p\|_1 &= \int_{\Omega_1} (\int_{\Omega_2} |g(y,x)|^{q'} d\nu(y))^{1/q'} d\mu(x). \\ \text{Now Theorem 2.2 shows that } m_p \text{ is of bounded } L^q(\nu)\text{-semivariation in} \end{split}$$

 $L^q(\nu) \hat{\otimes}_{\gamma_a} L^p(\mu)$ if and only if there exists C > 0 such that

$$\begin{split} &\int_{\Omega_1} (\int_{\Omega_2} |g(y,x)|^{q'} d\nu(y))^{1/q'} d\mu(y) \leq C \int_{\Omega_2} (\int_{\Omega_1} |g(y,x)|^{p'} d\mu(x)^{q'/p'} d\nu(x))^{1/q'}. \\ & \text{That is to say } L^{q'}(\nu, L^{p'}(\mu)) \subset L^1(\mu, L^{q'}(\nu)). \end{split}$$

Corollary 4.4. Let $1 \le p < \infty$ and $m_p : \Sigma \to L^p(\mu)$ given by $m_p(A) = \chi_A$. Then $\beta_{L^q(\nu)}(m_p, \gamma_q, L^p(\mu)) < \infty \text{ for } p \leq q.$

PROOF. Note that for $p \leq q$ one obviously has

$$L^{q'}(\nu, L^{p'}(\mu)) \subset L^{q'}(\nu, L^{q'}(\mu)) = L^{q'}(\mu, L^{q'}(\nu)) \subset L^1(\mu, L^{q'}(\nu))$$

Apply now Theorem 4.3.

Actually the previous result is also a consequence of the following general fact.

Proposition 4.5. Let $1 \leq p < \infty$, X a Banach space and let $m: \Sigma \to L^p(\mu)$ be a positive vector measure, that is $m(A) \ge 0$ for all $A \in \Sigma$. Then

$$\beta_X(m, \Delta_p, L^p(\mu)) = ||m||.$$

In particular, if m is positive and $p \leq q$ then

$$\beta_{L^q(\nu)}(m,\gamma_q,L^p(\mu)) = \|m\|.$$

PROOF. It is well-known that $(L^p(\mu, X))^* = (L^p(\mu) \hat{\otimes} X)^*$ can be identified with the space of X*-valued measures in $V^{p'}(\mu, X^*)$ (see [4]). In particular, if $u \in$ $(L^p(\mu) \hat{\otimes} X)^* \subset L(L^p(\mu), X^*)$ (see for instance [3]) there exists $\phi \in L^{p'}(\mu)$ such that $\|\phi\|_{p'} \leq \|u\|_{(L^p(\mu)\hat{\otimes}X)^*}$ and satisfies that

$$\|u(\psi)\| \leq \int_{\Omega} \phi(t)\psi(t)d\mu(t)$$

for any positive function $\psi \in L^p(\mu)$. Therefore, if $\|u\|_{(L^p(\mu)\hat{\otimes}X)^*} = 1$ then

$$\sum_{j=1}^{k} \|u(m(A_{j}))\| \leq \|\phi\|_{p'} \int_{\Omega} \sum_{j=1}^{k} \frac{|\phi(t)|}{\|\phi\|_{p'}} m(A_{j})(t) d\mu(t)$$
$$\leq \sup\{\sum_{j=1}^{k} |\langle \phi', m(A_{j}) \rangle| : \|\phi'\|_{L^{p'}} = 1\}$$

Hence $||u_f \circ m||_1 \leq ||m||$. Apply now Theorem 2.2.

In the case $X = L^q(\nu)$ and $p \leq q$ (4) allows us to conclude the proof. We shall now see that the range of values in Theorem 4.3 is sharp.

Lemma 4.6. If
$$p > q$$
 then there exists $f : [0,1]^2 \to \mathbb{R}^+$ such that

$$\int_{0}^{1} (\int_{0}^{1} f(x, y)^{q} dy)^{p/q} dx < \infty$$

and

10

$$\int_0^1 (\int_0^1 f(x,y)^p dx)^{1/p} dy = \infty.$$

PROOF. Denoting $\beta=p/q>1$ and $g(x,y)=f(x,y)^q$ it suffices to find $g:[0,1]^2\to \mathbb{R}^+$ such that 1

$$\int_0^1 (\int_0^1 g(x,y)dy)^\beta dx < \infty$$
$$\int_0^1 (\int_0^1 g(x,y)^\beta dx)^{1/p} dy = \infty$$

and

$$\int_{0}^{1} (\int_{0}^{1} g(x, y)^{\beta} dx)^{1/p} dy = \infty.$$

Recall that the Hardy operator $T(\phi)(x) = \frac{1}{x} \int_0^x \phi(y) dy$ is bounded on $L^{\beta}([0, 1]$ for $\beta>1$ and define

$$g(x,y) = \frac{1}{x}\chi_{[0,x]}(y)\phi(y)$$

for a function $\phi \in L^{\beta}([0,1])$ to be chosen later.

Clearly

$$\int_0^1 (\int_0^1 g(x, y) dy)^\beta dx = ||T(\phi)||_\beta^\beta$$

$$\leq ||T||^\beta ||(\phi)||_\beta^\beta$$

On the other hand

$$\begin{split} \int_{0}^{1} (\int_{0}^{1} g(x,y)^{\beta} dx)^{1/p} dy &= \int_{0}^{1} \phi(y)^{\beta/p} (\int_{y}^{1} \frac{dx}{x^{\beta}})^{1/p} dy \\ &\geq C \int_{0}^{1} \phi(y)^{\beta/p} \frac{1}{y^{(\beta-1)/p}} dy \\ &= C (\int_{0}^{1} (\frac{\phi(y)}{y^{1/\beta'}})^{\beta/p} dy \\ &\geq C (\int_{0}^{1} \frac{\phi(y)}{y^{1/\beta'}} dy)^{\beta/p}. \end{split}$$

Now select $\phi(y) = \frac{1}{y^{1/\beta} \log(1/y)}$ to have $\phi \in L^{\beta}([0,1])$ and

$$\int_0^1 \frac{\phi(y)}{y^{1/\beta'}} dy = \int_0^1 \frac{dy}{y \log(1/y)} = \infty.$$

Corollary 4.7. For q < p the $L^p([0,1])$ -valued measure $m_p(A) = \chi_A$ has infinite $L^q([0,1])$ -semivariation in $L^q([0,1]) \hat{\otimes}_{\gamma_q} L^p([0,1])$.

References

- [1] J.L. Arregui, O. Blasco(p,q)-summing sequences J. Math. Anal. Appl. 247 (2002), 812-827.
- [2] R. Bartle A general bilinear vector integral Studia Math. 15 (1956), 337-351.
- [3] O. Blasco, P. Gregori Lorentz spaces of vector-valued measures J. London Math. Soc. **67** (2003), 739-751.
- [4] N.Dinculeanu Vector measures, International Series of Monographs in Pure and Applied Mathematics, Vol 95, Pergamon Press, 1967.

REMARKS ON THE SEMIVARIATION OF VECTOR MEASURES WITH RESPECT TO BANACH SPACES

- [5] J. Diestel, H. Jarchow, A. Tonge Absolutely summing operators, Cambridde Univ. Press, Cambridde, 1995.
- [6] J. Diestel, J. J. Uhl Vector measures, 1995.
- B. Jefferies and S. Okada Bilinear integration in tensor products Rocky Mountain J. Math. 28 (2) (1998), 517-545.
- [8] B. Jefferies and S. Okada Bilinear integration with positive vector measures J. Austral. Math. Soc. 75 (2003), 279-293.
- B. Jefferies and S. Okada Semivariation in L^p-spaces Comment. Math. Univ. Carolin. 44 (2005), 425-436.
- [10] B. Jefferies, S. Okada and L. Rodrigues-Piazza L^p -valued measures without finite X-semivariation for 2 . Preprint.

Department of Mathematics, Universitat de Valencia, Burjassot 46100 (Valencia) Spain

E-mail address: oscar.blasco@uv.es