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Abstract. Let Lq(ν)⊗̂γq Y = Lq(ν, Y ) and X⊗̂∆pLp(µ) = Lp(µ, X). It

is shown that any Lp(µ)-valued measure has finite L2(ν)-semivariation with
respect to the tensor norm L2(ν)⊗̂∆pLp(µ) for 1 ≤ p < ∞ and finite Lq(ν)-

semivariation with respect to the tensor norm Lq(ν)⊗̂γq Lp(µ) whenever either

q = 2 and 1 ≤ p ≤ 2 or q > max{p, 2}. However there exist measures with

infinite Lq-semivariation with respect to the tensor norm Lq(ν)⊗̂γq Lp(µ) for

any 1 ≤ q < 2. It is also shown that the measure m(A) = χA has infinite

Lq-semivariation with respect to the tensor norm Lq(ν)⊗̂γq Lp(µ) if q < p.

1. Introduction

Let Z be a Banach space and let m : Σ → Z be a vector measure defined on a
σ-algebra Σ of subsets of Ω. We write |m| for the variation of the measure

|m|(A) = sup{
k∑

j=1

‖m(Aj ∩A)‖ : Aj pairwise disjoints , k ∈ N}

and denote, for 1 ≤ p <∞, the p-variation of the measure

‖m‖p = sup{(
k∑

j=1

‖m(Aj)‖p)1/p : Aj pairwise disjoints , k ∈ N}.

We also write ‖m‖ = supA∈Σ ‖m(A)‖, which is equivalent to the semivariation
of the vector measure m, that is

‖m‖ ≈ sup{|〈z∗,m〉|(Ω) : ‖z∗‖ = 1}.
Let X,Y be Banach spaces and let τ be a norm on X ⊗ Y such that ‖x⊗ y‖τ ≤

C‖x‖‖y‖ for x ∈ X, y ∈ Y and denote X⊗̂τY the completion under such a norm.
Given a vector measure m : Σ → Y defined on a σ-algebra Σ of subsets of Ω, R.
Bartle (see [2, 7]) introduced the notion of X-semivariation of m in X ⊗τ Y given
by

βX(m, τ, Y )(A) = sup{‖
k∑

j=1

xj ⊗m(A ∩Aj)‖τ}

for every A ∈ Σ where the supremum is taken over ‖xj‖ ≤ 1, Aj pairwise disjoints
sets in Σ and k ∈ N. We shall denote

βX(m, τ, Y ) = sup
A∈Σ

βX(m, τ, Y )(A).
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It is clear that
‖m‖ ≤ βX(m, τ, Y ) ≤ ‖m‖1.

If X⊗̂εY and X⊗̂πY stands for the injective and projective tensor norms respec-
tively, then one always has

‖m‖ ≤ βX(m, ε, Y ) ≤ βX(m, τ, Y ) ≤ βX(m,π, Y ) ≤ ‖m‖1
It is well-known and easy to see that actually βX(m, ε, Y ) = ‖m‖.
In [7] B. Jefferies, and S. Okada developed a theory of integration of X-valued

functions with respect to Y -valued measures of bounded X-semivariation in the
case of completely separated tensor norms.

We shall be concerned with some interesting examples of norms coming from the
theory of vector-valued functions: Throughout the paper (Ω1,Σ1, µ) and (Ω2,Σ2, ν)
are finite measure spaces, 1 ≤ p, q < ∞ and the Banach spaces will be either
Y = Lp(µ) or X = Lq(ν). We define γq and ∆p the norms on Lq(ν) ⊗ Y and
X ⊗ Lp(µ) identified as subspace of Lq(ν, Y ) and Lp(µ,X), that is to say

Lq(ν)⊗̂γqY = Lq(ν, Y ), X⊗̂∆p
Lp(µ) = Lp(µ,X).

In the case p = q the Lp(ν)-semivariation of Lp(µ)-valued measures with respect
to the topology τp such that Lp(µ)⊗̂τpL

p(ν) becomes Lp(µ × ν) for the product
measure was studied in [9] and [10].

In particular, if both X = Lq(ν) and Y = Lp(µ) then Lq(ν)⊗̂∆p
Lp(µ) and

Lq(ν)⊗̂γq
Lp(µ) coincide with the spaces of measurable functions f : Ω1 × Ω2 → R

such that

(
∫

Ω1

∫
Ω2

|f(x, y)|qdν(y))p/qdµ(x))1/p <∞}

and

(
∫

Ω2

(
∫

Ω1

|f(x, y)|pdµ(x))q/pdν(x))1/q <∞}.

In this paper we shall try to understand better the difference between the classical
semivariation or variation of a Lp(µ)-valued measurem and the Lq(ν)-semivariation
with respect to the norms ∆p, γq and π.

Let us establish the main results of the paper. Our first result establishes the
following descriptions Lq-semivariation of Lp-valued measures with respect respect
the proyective tensor norm, where we denote Lp = Lp([0, 1]) for 1 ≤ p ≤ ∞.

Theorem 1.1. Let 1 ≤ p, q ≤ ∞ and let m : Σ → Lp([0, 1]) be a vector measure.
Then

(i) βLp′ (m,π, Lp) ≈ ‖m‖1 1 ≤ p ≤ ∞.
(ii) βL2(m,π, Lp) ≈ ‖m‖1, 1 < p <∞.
(iii) βL2(m,π, L1) ≈ ‖m‖.

This result shows that L2-valued measures are of finite L2-semivariation on L2⊗π

L2 if and only if they are of finite variation.
It was noticed in [9] that any L2-valued measure is of bounded L2-semivariation

with respect to L2([0, 1])⊗̂τ2L
2([0, 1]), in other words βL2(m,∆2, L

2) ≈ ‖m‖.
On the other hand βLq (m,π, L1) = βLq (m,∆1, L

1). Hence Theorem 1.1 shows
that βL2(m,∆1, L

1) = ‖m‖.
Let us just point out that this implies

(1) βL2(m,∆p, L
p) ≈ ‖m‖, 1 ≤ p ≤ 2
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due to the simple observation

(2) βLq(ν)(m,∆p1 , L
p1(µ)) ≤ CβLq(ν)(m,∆p2 , L

p2(µ)) p1 ≤ p2.

We shall present another alternative proof that cover all the cases and gives an
alternative proof of the known case p = q = 2 and extend (1) as follows.

Theorem 1.2. Let 1 ≤ p < ∞ and let m : Σ → Lp([0, 1]) be a vector measure.
Then

βL2(m,∆p, L
p) ≈ ‖m‖.

The question which now arises is whether or not there exist Lp-valued measures
with βLq(ν)(m,∆p, L

p(µ)) = ∞ if q 6= 2. In [7] examples of Lp([0, 1])-valued mea-
sures of infinite Lp([0, 1])-semivariation in Lp([0, 1])⊗̂τp

Lp([0, 1] were obtained for
the values p 6= 2. For 1 ≤ p < 2 the approach was much simpler than for p > 2
and the example in this case relies on the existence of a non absolutely summing
operator from `1 → `p for p > 2 (see [9, 10]).

We shall use the relationship between the tensor norms γq and ∆p to get other
examples. Recall that Minkowski’s inequality gives Lp(µ,Lq(ν)) ⊆ Lq(ν, Lp(µ)) for
p ≤ q and Lq(ν, Lp(µ)) ⊆ Lp(µ,Lq(ν)) for q ≤ p. Hence

(3) βLq(ν)(m, γq, L
p(µ)) ≤ βLq(ν)(m,∆p, L

p(µ)), p ≤ q,

(4) βLq(ν)(m,∆p, L
p(µ)) ≤ βLq(ν)(m, γq, L

p(µ)), q ≤ p.

Also using general techniques, similar to those used in [9] one can show that
for 1 ≤ p ≤ ∞ and 1 ≤ q < 2 there exist Lp(µ)-valued measures m such that
βLq(ν)(m, γq, L

p(µ)) = ∞. This, in particular, using the estimate (3), shows the
existence of measures for which βLq(ν)(m,∆p, L

p(µ)) = ∞ if 1 ≤ q < 2, p ≤ q,
completing and extending the case p = q.

Theorem 1.3. Let 1 ≤ p ≤ ∞ and let m : Σ → Lp([0, 1]) be a vector measure.
Then

(i)βL2(m, γ2, L
p) ≈ ‖m‖, 1 ≤ p ≤ 2.

(ii) βLq (m, γq, L
p) ≈ ‖m‖, max{p, 2} < q.

This gives that any measure has βLq (m, γq, L
p) < ∞ for q > p ≥ 2. However

in the last section it is shown that the Lp([0, 1])-valued measure mp(A) = χA has
infinite Lq([0, 1])-semivariation in Lq([0, 1])⊗̂γq

Lp([0, 1] for q < p.

2. Bounded X-semivariation.

We start by the following characterization of the bounded X-semivariation .
Taking into account that X⊗̂πY ⊂ X⊗̂τY , then (X⊗̂τY )∗ can be regarded as a

subspace of the space of bounded operators L(Y,X∗). Moreover ‖u‖ ≤ ‖u‖(X⊗̂τ Y )∗

for any u ∈ (X⊗̂τY )∗, where the duality is given by

〈u,
k∑

j=1

xj ⊗ yj〉 =
k∑

j=1

〈u(yj), xj〉.

Theorem 2.1. Let m : Σ → Y be a vector measure. Then

βX(m, τ, Y ) ≈ sup{‖u ◦m‖1 : u ∈ L(Y,X∗), ‖u‖(X⊗̂τ Y )∗ ≤ 1}.
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PROOF. Let (xj) be a bounded sequence in X and (Aj) be a sequence of pair-
wise disjoint sets in Σ. Consider, for k ∈ N, the X-valued simple function
φ =

∑k
j=1 xjχAj

and denote

φ⊗τ m(A) =
k∑

j=1

xj ⊗m(A ∩Aj) ∈ X ⊗ Y.

Clearly this defines a new X⊗̂τY -valued measure and one can rewrite

βX(m, τ, Y ) = sup{‖φ⊗τ m‖ : φ ∈ S(X), ‖φ‖∞ ≤ 1}.

We now write the semivariation of φ⊗τ m using duality, that is to say

‖φ⊗τ m‖ ≈ sup{|〈u, φ⊗m〉|(Ω) : ‖u‖(X⊗̂τ Y )∗ ≤ 1}

= sup{
k∑

j=1

|〈u ◦m(Aj), xj〉| : (Aj) pairwise disjoint, ‖u‖(X⊗̂τ Y )∗ ≤ 1},

which, taking supremum over ‖xj‖ ≤ 1, gives

βX(m, τ, Y ) ≈ sup{
k∑

j=1

‖u ◦m(Aj)‖ : (Aj)pairwise disjoint, ‖u‖(X⊗̂τ Y )∗ ≤ 1}

≈ sup{‖u ◦m‖1 : u ∈ L(Y,X∗), ‖u‖(X⊗̂τ Y )∗ ≤ 1}.

�

Let us see the formulation of Theorem 2.1 in the case τ = ∆p or τ = γq.
It is well known that for 1 < p, q < ∞ and 1/p′ + 1/p = 1, 1/q + 1/q′ = 1 and

for X,Y such that X∗ and Y ∗ have the Radon-Nikodym property (see [6]) then

(Lq(ν)⊗̂γq
Y )∗ = Lq′(ν)⊗̂γq′Y

∗

and
(X⊗̂∆p

Lp(µ))∗ = X∗⊗̂∆p′L
p′(µ).

Now for each f ∈ Lp′(µ,X∗) we can define the operators uf : Lp(µ) → X∗ and
vf : X → Lp′(µ) given by

〈uf (φ), x〉 =
∫

Ω

〈f(t), x〉φ(t)dµ(t)

and
vf (x) = 〈f, x〉.

Of course (vf )∗ = uf and (uf )∗ = vf if X is reflexive.

Theorem 2.2. Let 1 < p, q < ∞, X = Lq(ν) and Y = Lp(µ). If m : Σ → Lp(µ)
is a vector measure then

(5) βLq(ν)(m,∆p, L
p(µ)) = sup{‖uf ◦m‖1 : ‖f‖Lp′ (µ,Lq′ (ν)) ≤ 1},

(6) βLq(ν)(m, γq, L
p(µ)) = sup{‖vg ◦m‖1 : ‖g‖Lq′ (ν,Lp′ (µ)) ≤ 1}.
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PROOF. In the case Y = Lp(µ) and X = Lq(ν) for 1 < q, p < ∞ the elements
u : Lp(µ) → Lq′(ν) such that u ∈ (Lq(ν)⊗̂∆p

Lp(µ))∗ can be seen as u = uf for
some f ∈ Lp′(µ,Lq′(ν)), that is u : Lp(µ) → Lq(ν) is given by

u(φ)(y) =
∫

Ω1

f(x, y)φ(x)dµ(x).

Then (5) follows from Theorem 2.1 in this case.
Similarly the elements u : Lp(µ) → Lq′(ν) such that u ∈ (Lq(ν)⊗̂γq

Lp(µ))∗ can
be seen as u = vg for some g ∈ Lq′(ν, Lp′(µ)) and now

u(ψ)(y) = 〈g, ψ〉 =
∫

Ω1

g(y, x)ψ(x)dµ(x).

Again (6) follows from Theorem 2.1. �

3. Proof of the main theorems

We use first the characterization in Theorem 2.1 to get the following corollaries.

Corollary 3.1. Let m : Σ → Y be a vector measure and X a Banach space. Then

βX(m,π, Y ) ≈ sup{‖u ◦m‖1 : u ∈ L(Y,X∗), ‖u‖ ≤ 1}.

We use the notation Πp(X,Y ) for the space of p-summing operators from X into
Y and write πp(u) for the p-summing norm. The reader is referred to [5] for the
basics in the theory of summing operators.

Corollary 3.2. Let Y be a Grothendieck space, i.e. Π1(Y,H) = L(Y,H) for any
Hilbert space H. Then

(7) βH(m,π, Y ) ≈ ‖m‖.

PROOF. Note that
∑
m(Aj) is an unconditionally convergent series in Y for any

sequence of pairwise disjoint sets Aj . Now for any operator from u : Y → H one has
and then

∑
‖u(m(Aj))‖ ≤ KG‖u‖‖m‖, where KG is the Grothendieck constant.

Now use Corollary 3.1. �

Proof of Theorem 1.1

(i) Let Y = Lp and X = Lp′ then choosing u = Id : Lp → (Lp′)∗, one concludes
that ‖u ◦m‖1 = ‖m‖1. This shows βLp′ (m,π, Lp) = ‖m‖1

(ii) follows from the following observation: IfX∗ is isomorphic to a complemented
subspace of Y then βX(m,π, Y ) ≈ ‖m‖1.

Indeed, assume id : Y → Y factors throughX∗ as id = u1◦u2 where u2 : Y → X∗

and u1 : X∗ → Y are bounded operators. Now observe that ‖m‖1 ≤ ‖u1‖‖u2 ◦m‖1
and use Corollary 3.1.

Now use that the space Rad is complemented in Lp([0, 1]) and isomorphic to `2

(see Thm 1.12 [5]) and therefore to L2, to conclude that

(8) βL2(m,π, Lp([0, 1])) ≈ ‖m‖1, 1 < p <∞.

(iii) follows from Corollary 3.2. �
We now recall a lemma that we will need in the sequel.
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Lemma 3.3. (i) Let 1 < q <∞ and let Y be a Banach space such that Y ∗ ∈ RNP .
If u : Y → Lq′(ν) belongs to (Lq(ν)⊗̂γq

Y )∗ then πq′(u) ≤ ‖u‖(Lq(ν)⊗̂γq Y )∗ .

(ii) Let 1 < p < ∞ and let X be a Banach space such that X∗ ∈ RNP . If
u : Lp(µ) → X∗ belongs to (X⊗̂∆pL

p(µ))∗ then πp′(u∗) ≤ ‖u∗‖(X⊗̂∆pLp(µ))∗ .

PROOF. (i) It is well known (see Example 2.11, [5]) that if g ∈ Lq′(ν, Y ∗) then
vg : Y → Lq′(ν) given by vg(y) = 〈g, y〉 is q′-summing and πq′(vg) ≤ ‖g‖Lq′ (ν,Y ).
Now use that, under the assumptions, (Lq(ν)⊗̂γq

Y )∗ = Lq′(ν, Y ∗) and u = vg for
certain g ∈ Lq′(ν, Y ∗).

(ii) Note that u = uf for some f ∈ Lp′(µ,X∗). Hence vf = u∗ : X∗∗ → Lp(µ) is
p′-summing and πp′(u∗) ≤ ‖f‖Lp′ (µ,X∗) = ‖u‖(Lq(ν)⊗̂γq Y )∗ . �

Proof of Theorem 1.2

The case p = 1 is included in (iii) Theorem 1.1.
Assume now 1 < p < ∞ and let m : Σ → Lp be a vector measure. Given

u : Lp → L2 with u ∈ (L2⊗̂∆p
Lp)∗ we can use (ii) in Lemma 3.3 to conclude that

there exist f ∈ Lp′([0, 1], L2) such that vf : L2 → Lp′ given by φ→
∫ 1

0
φ(y)f(x, y)dy

is p′-summing and u = uf = (vf )∗. Hence, using Theorem 2.21 in [5], one has that
(vf )∗ = u : Lp → L2 is 1-summing. Therefore

‖uf ◦m‖1 ≤ C‖uf‖‖m‖ ≤ C‖f‖Lp′ ([0,1],L2)‖m‖. �

Let us mention another useful lemma.

Lemma 3.4. (Prop. 6, [1]) Let Y be a Banach space of finite cotype r and let∑
j yj be an unconditionally convergent series in Y .
(i) If r = 2 then there exist (αj) ∈ `2 and a sequence in (y′j) ⊂ Y such that

yj = αjy
′
j and ∑

j

|αj |2 ≤ sup
‖y∗‖=1

∑
j

|〈yj , y
∗〉|,

sup
‖y∗‖=1

∑
j

|〈y′j , y∗〉|2 ≤ sup
‖y∗‖=1

∑
j

|〈yj , y
∗〉|.

(ii) If r > 2 then for any q > r there exist (αj) ∈ `q and a sequence in (y′j) ⊂ Y
such that yj = αjy

′
j and

(
∑

j

|αj |q)1/q ≤ ( sup
‖y∗‖=1

∑
j

|〈yj , y
∗〉|)1/q.

( sup
‖y∗‖=1

∑
j

|〈y′j , y∗〉|q
′
)1/q′ ≤ ( sup

‖y∗‖=1

∑
j

|〈yj , y
∗〉|)1/q′ .

PROOF. (i) Let T : c0 → Y such that T (ej) = yj . Note that L(c0, Y ) = Π2(c0, Y )
for any cotype 2 space Y . Now apply Lemma 2.23 in [5] to the sequence (ej) which
satisfies sup{

∑
j |〈ej , z〉| : ‖z‖`1 = 1} to conclude that T (ej) = yj = αjy

′
j with the

desired properties.
(ii) Repeat the proof using now L(c0, Y ) = Πq(c0, Y ) for any q > r (see Theorem

11.14 [5]). �

Proof of Theorem 1.3
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Note Theorem 1.2 and (4) give

(9) βL2(m, γ2, L
p) ≈ ‖m‖, 1 ≤ p ≤ 2.

To obtain (ii) we simply use the following more general result.

Theorem 3.5. If Y has cotype r <∞ and Y ∗ has the RNP then

(10) βL2(ν)(m, γ2, Y ) ≈ ‖m‖, r = 2.

(11) βLq(ν)(m, γq, Y ) ≈ ‖m‖, q > r > 2.

PROOF. We only prove (11). The other is exactly the same.
Let (Aj) be a sequence of pairwise disjoint sets. Since m(Aj) is unconditionally

convergent in Y , Lemma 3.4 implies that there exist (αj) ∈ `q and a sequence in
(yj) ⊂ Y with m(Aj) = αjyj and

(
∑

j

|αj |q)1/q ≤ ( sup
‖y∗‖=1

∑
j

|〈m(Aj), y∗〉|)1/q.

( sup
‖y∗‖=1

∑
j

|〈yj , y
∗〉|q

′
)1/q′ ≤ ( sup

‖y∗‖=1

∑
j

|〈m(Aj), y∗〉|)1/q′ .

On the other hand if u ∈ (Lq(ν)⊗̂Y )∗, using (i) in Lemma 3.3, one has u ∈
Πq′(Y, Lq′). Therefore∑

j

‖u(m(Aj))‖ =
∑

j

|αj |‖u(yj)‖

≤ (
∑

j

|αj |q)1/q(
∑

j

‖u(yj)‖q′)1/q′

≤ πq′(u)(
∑

j

|αj |q)1/q( sup
‖y∗‖=1

∑
j

|〈yj , y
∗〉|q

′
)1/q′

≤ C‖u‖(Lq(ν)⊗̂Y )∗‖m‖.

�

4. Measures of infinite X-semivariation

We shall present now some necessary conditions to have bounded X-
semivariation.

Proposition 4.1. (i) Assume that X⊗̂τY is of finite cotype q. If m : Σ → Y be a
vector measure then

‖m‖q ≤ CqβX(m, τ, Y )
for some constant Cq independent of m.

In particular, if X has finite cotype q and 1 ≤ p <∞ then

‖m‖max{q,2,p} ≤ CβX(m,∆p, L
p(µ)).

(ii) Let 1 ≤ q <∞, let ν be a finite measure for which there exists a sequence of
pairwise disjoint sets with ν(Bj) > 0 and let m : Σ → Y be a vector measure. Then

‖m‖q ≤ CqβLq(ν)(m, γq, Y )
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PROOF. (i) Let (xj) be a sequence in the unit ball ofX and a sequence of pairwise
disjoint sets Aj . Hence , for 0 ≤ t ≤ 1, one has

‖
k∑

j=1

rj(t)xk ⊗m(Aj)‖X⊗̂τ Y ≤ βX(m, τ, Y )

where rj stands for the Rademacher sequence. Now integrate over [0, 1] and use
the cotype estimate to get

(
k∑

j=1

‖xk‖q‖m(Aj)‖q)1/q ≤ CqβX(m, τ, Y ).

Taking the sup over (xj) and (Aj) one obtains the desired result.
Note that Lp(µ,X) has cotype equals max{p, q, 2}.
(ii) Take xj =

χBj

ν(Bj)1/q , φ =
∑k

j=1 xjχAj
for some sequence of pairwise disjoint

sets in Σ and notice that, for any A ∈ Σ,

‖φ⊗m(A)‖Lq(ν,Y ) = (
k∑

j=1

‖m(A ∩Aj)‖q)1/q.

This gives the result �

Corollary 4.2. Let Y be infinite dimensional Banach space, 1 ≤ q < 2 and ν
be a finite measure for which there exists a sequence of pairwise disjoint sets with
ν(En) > 0.

(i) There exist Y -valued measure such that βLq(ν)(m, γq, Y ) = ∞.
(ii) If Lp(µ) is infinite dimensional then there exist Lp(µ)-valued measures m

such that βLq(ν)(m,∆p, L
p(µ)) = ∞ for 1 ≤ q < 2 and q ≥ p.

PROOF. (i) Select an unconditionally convergent series (yn) with
∑

k ‖yk‖q = ∞
(this can be done for 1 ≤ q < 2, see, for instance [5])).

Now we define the measure over N given by m({k}) = yk. Clearly ‖m‖q = ∞
and therefore βLq(ν)(m, γq, Y ) = ∞ from (ii) in Proposition 4.1.

(ii) follows from (i) and the estimate (3). �.

A very important example to analyze is mp : Σ → Lp(µ) given by mp(A) =
χA. We shall see that these measures are enough to produce examples with
βLq(ν)(m, γq, L

p(µ)) = ∞ for q < p.

Theorem 4.3. Let µ(Ω1) < ∞, ν(Ω2) < ∞, X = Lq(ν) and Y = Lp(µ).
Then the Lp(µ)-valued measure mp(A) = χA has finite Lq(ν)-semivariation in
Lq(ν)⊗̂γq

Lp(µ) if and only if Lq′(ν, Lp′(µ)) ⊆ L1(µ,Lq′(ν)).

PROOF. Let g : Ω1 × Ω2 → R be such that

‖g‖Lq′ (ν,Lp′ (µ)) =
∫

Ω2

(
∫

Ω1

|g(y, x)|p
′
dµ(x)q′/p′dν(y))1/q′ <∞.

Note that the operator vg : Lp(µ) → Lq′(ν) becomes

vg(ψ)(y) =
∫

Ω1

g(y, x)ψ(x)dµ(x),



REMARKS ON THE SEMIVARIATION OF VECTOR MEASURES WITH RESPECT TO BANACH SPACES.9

hence, we have vg ◦mp(A) =
∫

A
g(y, x)dµ(x) for all A ∈ Σ1. This shows that vg ◦mp

is the Lq′(ν)-valued measure with Radon-Nikodym derivative g(y, .). Therefore
‖vg ◦mp‖1 =

∫
Ω1

(
∫
Ω2
|g(y, x)|q′dν(y))1/q′dµ(x).

Now Theorem 2.2 shows that mp is of bounded Lq(ν)-semivariation in
Lq(ν)⊗̂γq

Lp(µ) if and only if there exists C > 0 such that∫
Ω1

(
∫

Ω2

|g(y, x)|q
′
dν(y))1/q′dµ(y) ≤ C

∫
Ω2

(
∫

Ω1

|g(y, x)|p
′
dµ(x)q′/p′dν(x))1/q′ .

That is to say Lq′(ν, Lp′(µ)) ⊂ L1(µ,Lq′(ν)). �

Corollary 4.4. Let 1 ≤ p <∞ and mp : Σ → Lp(µ) given by mp(A) = χA. Then
βLq(ν)(mp, γq, L

p(µ)) <∞ for p ≤ q.

PROOF. Note that for p ≤ q one obviously has

Lq′(ν, Lp′(µ)) ⊂ Lq′(ν, Lq′(µ)) = Lq′(µ,Lq′(ν)) ⊂ L1(µ,Lq′(ν)).

Apply now Theorem 4.3. �
Actually the previous result is also a consequence of the following general fact.

Proposition 4.5. Let 1 ≤ p <∞, X a Banach space and let m : Σ → Lp(µ) be a
positive vector measure, that is m(A) ≥ 0 for all A ∈ Σ. Then

βX(m,∆p, L
p(µ)) = ‖m‖.

In particular, if m is positive and p ≤ q then

βLq(ν)(m, γq, L
p(µ)) = ‖m‖.

PROOF. It is well-known that (Lp(µ,X))∗ = (Lp(µ)⊗̂X)∗ can be identified with
the space of X∗-valued measures in V p′(µ,X∗) (see [4]). In particular, if u ∈
(Lp(µ)⊗̂X)∗ ⊂ L(Lp(µ), X∗) (see for instance [3]) there exists φ ∈ Lp′(µ) such that
‖φ‖p′ ≤ ‖u‖(Lp(µ)⊗̂X)∗ and satisfies that

‖u(ψ)‖ ≤
∫

Ω

φ(t)ψ(t)dµ(t)

for any positive function ψ ∈ Lp(µ). Therefore, if ‖u‖(Lp(µ)⊗̂X)∗ = 1 then

k∑
j=1

‖u(m(Aj))‖ ≤ ‖φ‖p′

∫
Ω

k∑
j=1

|φ(t)|
‖φ‖p′

m(Aj)(t)dµ(t)

≤ sup{
k∑

j=1

|〈φ′,m(Aj)〉| : ‖φ′‖Lp′ = 1}

Hence ‖uf ◦m‖1 ≤ ‖m‖. Apply now Theorem 2.2.
In the case X = Lq(ν) and p ≤ q (4) allows us to conclude the proof. �
We shall now see that the range of values in Theorem 4.3 is sharp.

Lemma 4.6. If p > q then there exists f : [0, 1]2 → R+ such that∫ 1

0

(
∫ 1

0

f(x, y)qdy)p/qdx <∞
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and ∫ 1

0

(
∫ 1

0

f(x, y)pdx)1/pdy = ∞.

PROOF. Denoting β = p/q > 1 and g(x, y) = f(x, y)q it suffices to find g :
[0, 1]2 → R+ such that ∫ 1

0

(
∫ 1

0

g(x, y)dy)βdx <∞

and ∫ 1

0

(
∫ 1

0

g(x, y)βdx)1/pdy = ∞.

Recall that the Hardy operator T (φ)(x) = 1
x

∫ x

0
φ(y)dy is bounded on Lβ([0, 1] for

β > 1 and define

g(x, y) =
1
x
χ[0,x](y)φ(y)

for a function φ ∈ Lβ([0, 1]) to be chosen later.
Clearly ∫ 1

0

(
∫ 1

0

g(x, y)dy)βdx = ‖T (φ)‖β
β

≤ ‖T‖β‖(φ)‖β
β

On the other hand∫ 1

0

(
∫ 1

0

g(x, y)βdx)1/pdy =
∫ 1

0

φ(y)β/p(
∫ 1

y

dx

xβ
)1/pdy

≥ C

∫ 1

0

φ(y)β/p 1
y(β−1)/p

dy

= C(
∫ 1

0

(
φ(y)
y1/β′ )

β/pdy

≥ C(
∫ 1

0

φ(y)
y1/β′ dy)

β/p.

Now select φ(y) = 1
y1/βlog(1/y)

to have φ ∈ Lβ([0, 1]) and∫ 1

0

φ(y)
y1/β′ dy =

∫ 1

0

dy

ylog(1/y)
= ∞.

�

Corollary 4.7. For q < p the Lp([0, 1])-valued measure mp(A) = χA has infinite
Lq([0, 1])-semivariation in Lq([0, 1])⊗̂γq

Lp([0, 1].
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