REMARKS ON THE SEMIVARIATION OF VECTOR MEASURES WITH RESPECT TO BANACH SPACES.

OSCAR BLASCO

Abstract

Let $L^{q}(\nu) \hat{\otimes}_{\gamma_{q}} Y=L^{q}(\nu, Y)$ and $X \hat{\otimes}_{\Delta_{p}} L^{p}(\mu)=L^{p}(\mu, X)$. It is shown that any $L^{p}(\mu)$-valued measure has finite $L^{2}(\nu)$-semivariation with respect to the tensor norm $L^{2}(\nu) \hat{\otimes}_{\Delta_{p}} L^{p}(\mu)$ for $1 \leq p<\infty$ and finite $L^{q}(\nu)$ semivariation with respect to the tensor norm $L^{q}(\nu) \hat{\otimes}_{\gamma_{q}} L^{p}(\mu)$ whenever either $q=2$ and $1 \leq p \leq 2$ or $q>\max \{p, 2\}$. However there exist measures with infinite L^{q}-semivariation with respect to the tensor norm $L^{q}(\nu) \hat{\otimes}_{\gamma_{q}} L^{p}(\mu)$ for any $1 \leq q<2$. It is also shown that the measure $m(A)=\chi_{A}$ has infinite L^{q}-semivariation with respect to the tensor norm $L^{q}(\nu) \hat{\otimes}_{\gamma_{q}} L^{p}(\mu)$ if $q<p$.

1. Introduction

Let Z be a Banach space and let $m: \Sigma \rightarrow Z$ be a vector measure defined on a σ-algebra Σ of subsets of Ω. We write $|m|$ for the variation of the measure

$$
|m|(A)=\sup \left\{\sum_{j=1}^{k}\left\|m\left(A_{j} \cap A\right)\right\|: A_{j} \text { pairwise disjoints, } k \in \mathbb{N}\right\}
$$

and denote, for $1 \leq p<\infty$, the p-variation of the measure

$$
\|m\|_{p}=\sup \left\{\left(\sum_{j=1}^{k}\left\|m\left(A_{j}\right)\right\|^{p}\right)^{1 / p}: A_{j} \text { pairwise disjoints }, k \in \mathbb{N}\right\}
$$

We also write $\|m\|=\sup _{A \in \Sigma}\|m(A)\|$, which is equivalent to the semivariation of the vector measure m, that is

$$
\|m\| \approx \sup \left\{\left|\left\langle z^{*}, m\right\rangle\right|(\Omega):\left\|z^{*}\right\|=1\right\}
$$

Let X, Y be Banach spaces and let τ be a norm on $X \otimes Y$ such that $\|x \otimes y\|_{\tau} \leq$ $C\|x\|\|y\|$ for $x \in X, y \in Y$ and denote $X \hat{\otimes}_{\tau} Y$ the completion under such a norm. Given a vector measure $m: \Sigma \rightarrow Y$ defined on a σ-algebra Σ of subsets of Ω, R. Bartle (see $[2,7]$) introduced the notion of X-semivariation of m in $X \otimes_{\tau} Y$ given by

$$
\beta_{X}(m, \tau, Y)(A)=\sup \left\{\left\|\sum_{j=1}^{k} x_{j} \otimes m\left(A \cap A_{j}\right)\right\|_{\tau}\right\}
$$

for every $A \in \Sigma$ where the supremum is taken over $\left\|x_{j}\right\| \leq 1, A_{j}$ pairwise disjoints sets in Σ and $k \in \mathbb{N}$. We shall denote

$$
\beta_{X}(m, \tau, Y)=\sup _{A \in \Sigma} \beta_{X}(m, \tau, Y)(A)
$$

Key words and phrases. vector measures, semivariation, vector-valued Bochner spaces.
2000 Mathematical Subjects Classifications. Primary 28B05, 46G10, Secondary 46B42,47B65 Partially supported by Proyecto MTM 2005-08350.

It is clear that

$$
\|m\| \leq \beta_{X}(m, \tau, Y) \leq\|m\|_{1}
$$

If $X \hat{\otimes}_{\epsilon} Y$ and $X \hat{\otimes}_{\pi} Y$ stands for the injective and projective tensor norms respectively, then one always has

$$
\|m\| \leq \beta_{X}(m, \epsilon, Y) \leq \beta_{X}(m, \tau, Y) \leq \beta_{X}(m, \pi, Y) \leq\|m\|_{1}
$$

It is well-known and easy to see that actually $\beta_{X}(m, \epsilon, Y)=\|m\|$.
In [7] B. Jefferies, and S. Okada developed a theory of integration of X-valued functions with respect to Y-valued measures of bounded X-semivariation in the case of completely separated tensor norms.

We shall be concerned with some interesting examples of norms coming from the theory of vector-valued functions: Throughout the paper $\left(\Omega_{1}, \Sigma_{1}, \mu\right)$ and $\left(\Omega_{2}, \Sigma_{2}, \nu\right)$ are finite measure spaces, $1 \leq p, q<\infty$ and the Banach spaces will be either $Y=L^{p}(\mu)$ or $X=L^{q}(\nu)$. We define γ_{q} and Δ_{p} the norms on $L^{q}(\nu) \otimes Y$ and $X \otimes L^{p}(\mu)$ identified as subspace of $L^{q}(\nu, Y)$ and $L^{p}(\mu, X)$, that is to say

$$
L^{q}(\nu) \hat{\otimes}_{\gamma_{q}} Y=L^{q}(\nu, Y), \quad X \hat{\otimes}_{\Delta_{p}} L^{p}(\mu)=L^{p}(\mu, X)
$$

In the case $p=q$ the $L^{p}(\nu)$-semivariation of $L^{p}(\mu)$-valued measures with respect to the topology τ_{p} such that $L^{p}(\mu) \hat{\otimes}_{\tau_{p}} L^{p}(\nu)$ becomes $L^{p}(\mu \times \nu)$ for the product measure was studied in [9] and [10].

In particular, if both $X=L^{q}(\nu)$ and $Y=L^{p}(\mu)$ then $L^{q}(\nu) \hat{\otimes}_{\Delta_{p}} L^{p}(\mu)$ and $L^{q}(\nu) \hat{\otimes}_{\gamma_{q}} L^{p}(\mu)$ coincide with the spaces of measurable functions $f: \Omega_{1} \times \Omega_{2} \rightarrow \mathbb{R}$ such that

$$
\left.\left.\left(\int_{\Omega_{1}} \int_{\Omega_{2}}|f(x, y)|^{q} d \nu(y)\right)^{p / q} d \mu(x)\right)^{1 / p}<\infty\right\}
$$

and

$$
\left.\left(\int_{\Omega_{2}}\left(\int_{\Omega_{1}}|f(x, y)|^{p} d \mu(x)\right)^{q / p} d \nu(x)\right)^{1 / q}<\infty\right\} .
$$

In this paper we shall try to understand better the difference between the classical semivariation or variation of a $L^{p}(\mu)$-valued measure m and the $L^{q}(\nu)$-semivariation with respect to the norms Δ_{p}, γ_{q} and π.

Let us establish the main results of the paper. Our first result establishes the following descriptions L^{q}-semivariation of L^{p}-valued measures with respect respect the proyective tensor norm, where we denote $L^{p}=L^{p}([0,1])$ for $1 \leq p \leq \infty$.

Theorem 1.1. Let $1 \leq p, q \leq \infty$ and let $m: \Sigma \rightarrow L^{p}([0,1])$ be a vector measure. Then

$$
\begin{aligned}
& \text { (i) } \beta_{L^{p^{\prime}}}\left(m, \pi, L^{p}\right) \approx\|m\|_{1} \quad 1 \leq \infty \leq \infty . \\
& \text { (ii) } \beta_{L^{2}}\left(m, \pi, L^{p}\right) \approx\|m\|_{1}, \quad 1<p<\infty . \\
& \text { (iii) } \beta_{L^{2}}\left(m, \pi, L^{1}\right) \approx\|m\| .
\end{aligned}
$$

This result shows that L^{2}-valued measures are of finite L^{2}-semivariation on $L^{2} \otimes_{\pi}$ L^{2} if and only if they are of finite variation.

It was noticed in [9] that any L^{2}-valued measure is of bounded L^{2}-semivariation with respect to $L^{2}([0,1]) \hat{\otimes}_{\tau_{2}} L^{2}([0,1])$, in other words $\beta_{L^{2}}\left(m, \Delta_{2}, L^{2}\right) \approx\|m\|$.

On the other hand $\beta_{L^{q}}\left(m, \pi, L^{1}\right)=\beta_{L^{q}}\left(m, \Delta_{1}, L^{1}\right)$. Hence Theorem 1.1 shows that $\beta_{L^{2}}\left(m, \Delta_{1}, L^{1}\right)=\|m\|$.

Let us just point out that this implies

$$
\begin{equation*}
\beta_{L^{2}}\left(m, \Delta_{p}, L^{p}\right) \approx\|m\|, 1 \leq p \leq 2 \tag{1}
\end{equation*}
$$

due to the simple observation

$$
\begin{equation*}
\beta_{L^{q}(\nu)}\left(m, \Delta_{p_{1}}, L^{p_{1}}(\mu)\right) \leq C \beta_{L^{q}(\nu)}\left(m, \Delta_{p_{2}}, L^{p_{2}}(\mu)\right) \quad p_{1} \leq p_{2} . \tag{2}
\end{equation*}
$$

We shall present another alternative proof that cover all the cases and gives an alternative proof of the known case $p=q=2$ and extend (1) as follows.

Theorem 1.2. Let $1 \leq p<\infty$ and let $m: \Sigma \rightarrow L^{p}([0,1])$ be a vector measure. Then

$$
\beta_{L^{2}}\left(m, \Delta_{p}, L^{p}\right) \approx\|m\| .
$$

The question which now arises is whether or not there exist L^{p}-valued measures with $\beta_{L^{q}(\nu)}\left(m, \Delta_{p}, L^{p}(\mu)\right)=\infty$ if $q \neq 2$. In [7] examples of $L^{p}([0,1])$-valued measures of infinite $L^{p}([0,1])$-semivariation in $L^{p}([0,1]) \hat{\otimes}_{\tau_{p}} L^{p}([0,1]$ were obtained for the values $p \neq 2$. For $1 \leq p<2$ the approach was much simpler than for $p>2$ and the example in this case relies on the existence of a non absolutely summing operator from $\ell^{1} \rightarrow \ell^{p}$ for $p>2$ (see [9, 10]).

We shall use the relationship between the tensor norms γ_{q} and Δ_{p} to get other examples. Recall that Minkowski's inequality gives $L^{p}\left(\mu, L^{q}(\nu)\right) \subseteq L^{q}\left(\nu, L^{p}(\mu)\right)$ for $p \leq q$ and $L^{q}\left(\nu, L^{p}(\mu)\right) \subseteq L^{p}\left(\mu, L^{q}(\nu)\right)$ for $q \leq p$. Hence

$$
\begin{array}{ll}
\beta_{L^{q}(\nu)}\left(m, \gamma_{q}, L^{p}(\mu)\right) \leq \beta_{L^{q}(\nu)}\left(m, \Delta_{p}, L^{p}(\mu)\right), & p \leq q, \\
\beta_{L^{q}(\nu)}\left(m, \Delta_{p}, L^{p}(\mu)\right) \leq \beta_{L^{q}(\nu)}\left(m, \gamma_{q}, L^{p}(\mu)\right), & q \leq p . \tag{4}
\end{array}
$$

Also using general techniques, similar to those used in [9] one can show that for $1 \leq p \leq \infty$ and $1 \leq q<2$ there exist $L^{p}(\mu)$-valued measures m such that $\beta_{L^{q}(\nu)}\left(m, \gamma_{q}, L^{p}(\mu)\right)=\infty$. This, in particular, using the estimate (3), shows the existence of measures for which $\beta_{L^{q}(\nu)}\left(m, \Delta_{p}, L^{p}(\mu)\right)=\infty$ if $1 \leq q<2, p \leq q$, completing and extending the case $p=q$.
Theorem 1.3. Let $1 \leq p \leq \infty$ and let $m: \Sigma \rightarrow L^{p}([0,1])$ be a vector measure. Then
(i) $\beta_{L^{2}}\left(m, \gamma_{2}, L^{p}\right) \approx\|m\|, \quad 1 \leq p \leq 2$.
(ii) $\beta_{L^{q}}\left(m, \gamma_{q}, L^{p}\right) \approx\|m\|, \quad \max \{p, 2\}<q$.

This gives that any measure has $\beta_{L^{q}}\left(m, \gamma_{q}, L^{p}\right)<\infty$ for $q>p \geq 2$. However in the last section it is shown that the $L^{p}([0,1])$-valued measure $m_{p}(A)=\chi_{A}$ has infinite $L^{q}([0,1])$-semivariation in $L^{q}([0,1]) \hat{\otimes}_{\gamma_{q}} L^{p}([0,1]$ for $q<p$.

2. Bounded X-semivariation.

We start by the following characterization of the bounded X-semivariation .
Taking into account that $X \hat{\otimes}_{\pi} Y \subset X \hat{\otimes}_{\tau} Y$, then $\left(X \hat{\otimes}_{\tau} Y\right)^{*}$ can be regarded as a subspace of the space of bounded operators $\mathcal{L}\left(Y, X^{*}\right)$. Moreover $\|u\| \leq\|u\|_{\left(X \hat{\otimes}_{\tau} Y\right)^{*}}$ for any $u \in\left(X \hat{\otimes}_{\tau} Y\right)^{*}$, where the duality is given by

$$
\left\langle u, \sum_{j=1}^{k} x_{j} \otimes y_{j}\right\rangle=\sum_{j=1}^{k}\left\langle u\left(y_{j}\right), x_{j}\right\rangle .
$$

Theorem 2.1. Let $m: \Sigma \rightarrow Y$ be a vector measure. Then

$$
\beta_{X}(m, \tau, Y) \approx \sup \left\{\|u \circ m\|_{1}: u \in \mathcal{L}\left(Y, X^{*}\right),\|u\|_{\left(X \hat{\otimes}_{\tau} Y\right)^{*}} \leq 1\right\} .
$$

PROOF. Let $\left(x_{j}\right)$ be a bounded sequence in X and $\left(A_{j}\right)$ be a sequence of pairwise disjoint sets in Σ. Consider, for $k \in \mathbb{N}$, the X-valued simple function $\phi=\sum_{j=1}^{k} x_{j} \chi_{A_{j}}$ and denote

$$
\phi \otimes_{\tau} m(A)=\sum_{j=1}^{k} x_{j} \otimes m\left(A \cap A_{j}\right) \in X \otimes Y
$$

Clearly this defines a new $X \hat{\otimes}_{\tau} Y$-valued measure and one can rewrite

$$
\beta_{X}(m, \tau, Y)=\sup \left\{\left\|\phi \otimes_{\tau} m\right\|: \phi \in \mathcal{S}(X),\|\phi\|_{\infty} \leq 1\right\}
$$

We now write the semivariation of $\phi \otimes_{\tau} m$ using duality, that is to say

$$
\begin{aligned}
\left\|\phi \otimes_{\tau} m\right\| & \approx \sup \left\{|\langle u, \phi \otimes m\rangle|(\Omega):\|u\|_{\left(X \hat{\otimes}_{\tau} Y\right)^{*}} \leq 1\right\} \\
& =\sup \left\{\sum_{j=1}^{k}\left|\left\langle u \circ m\left(A_{j}\right), x_{j}\right\rangle\right|:\left(A_{j}\right) \text { pairwise disjoint, }\|u\|_{\left(X \hat{\otimes}_{\tau} Y\right)^{*}} \leq 1\right\},
\end{aligned}
$$

which, taking supremum over $\left\|x_{j}\right\| \leq 1$, gives

$$
\begin{aligned}
\beta_{X}(m, \tau, Y) & \approx \sup \left\{\sum_{j=1}^{k}\left\|u \circ m\left(A_{j}\right)\right\|:\left(A_{j}\right) \text { pairwise disjoint, }\|u\|_{\left(X \hat{\otimes}_{\tau} Y\right)^{*}} \leq 1\right\} \\
& \approx \sup \left\{\|u \circ m\|_{1}: u \in \mathcal{L}\left(Y, X^{*}\right),\|u\|_{\left(X \hat{\otimes}_{\tau} Y\right)^{*}} \leq 1\right\}
\end{aligned}
$$

Let us see the formulation of Theorem 2.1 in the case $\tau=\Delta_{p}$ or $\tau=\gamma_{q}$.
It is well known that for $1<p, q<\infty$ and $1 / p^{\prime}+1 / p=1,1 / q+1 / q^{\prime}=1$ and for X, Y such that X^{*} and Y^{*} have the Radon-Nikodym property (see [6]) then

$$
\left(L^{q}(\nu) \hat{\otimes}_{\gamma_{q}} Y\right)^{*}=L^{q^{\prime}}(\nu) \hat{\otimes}_{\gamma_{q^{\prime}}} Y^{*}
$$

and

$$
\left(X \hat{\otimes}_{\Delta_{p}} L^{p}(\mu)\right)^{*}=X^{*} \hat{\otimes}_{\Delta_{p^{\prime}}} L^{p^{\prime}}(\mu)
$$

Now for each $f \in L^{p^{\prime}}\left(\mu, X^{*}\right)$ we can define the operators $u_{f}: L^{p}(\mu) \rightarrow X^{*}$ and $v_{f}: X \rightarrow L^{p^{\prime}}(\mu)$ given by

$$
\left\langle u_{f}(\phi), x\right\rangle=\int_{\Omega}\langle f(t), x\rangle \phi(t) d \mu(t)
$$

and

$$
v_{f}(x)=\langle f, x\rangle
$$

Of course $\left(v_{f}\right)^{*}=u_{f}$ and $\left(u_{f}\right)^{*}=v_{f}$ if X is reflexive.
Theorem 2.2. Let $1<p, q<\infty, X=L^{q}(\nu)$ and $Y=L^{p}(\mu)$. If $m: \Sigma \rightarrow L^{p}(\mu)$ is a vector measure then

$$
\begin{align*}
& \beta_{L^{q}(\nu)}\left(m, \Delta_{p}, L^{p}(\mu)\right)=\sup \left\{\left\|u_{f} \circ m\right\|_{1}:\|f\|_{L^{p^{\prime}}\left(\mu, L^{q^{\prime}}(\nu)\right)} \leq 1\right\}, \tag{5}\\
& \beta_{L^{q}(\nu)}\left(m, \gamma_{q}, L^{p}(\mu)\right)=\sup \left\{\left\|v_{g} \circ m\right\|_{1}:\|g\|_{L^{q^{\prime}}\left(\nu, L^{p^{\prime}}(\mu)\right)} \leq 1\right\} . \tag{6}
\end{align*}
$$

PROOF. In the case $Y=L^{p}(\mu)$ and $X=L^{q}(\nu)$ for $1<q, p<\infty$ the elements $u: L^{p}(\mu) \rightarrow L^{q^{\prime}}(\nu)$ such that $u \in\left(L^{q}(\nu) \hat{\otimes}_{\Delta_{p}} L^{p}(\mu)\right)^{*}$ can be seen as $u=u_{f}$ for some $f \in L^{p^{\prime}}\left(\mu, L^{q^{\prime}}(\nu)\right)$, that is $u: L^{p}(\mu) \rightarrow L^{q}(\nu)$ is given by

$$
u(\phi)(y)=\int_{\Omega_{1}} f(x, y) \phi(x) d \mu(x)
$$

Then (5) follows from Theorem 2.1 in this case.
Similarly the elements $u: L^{p}(\mu) \rightarrow L^{q^{\prime}}(\nu)$ such that $u \in\left(L^{q}(\nu) \hat{\otimes}_{\gamma_{q}} L^{p}(\mu)\right)^{*}$ can be seen as $u=v_{g}$ for some $g \in L^{q^{\prime}}\left(\nu, L^{p^{\prime}}(\mu)\right)$ and now

$$
u(\psi)(y)=\langle g, \psi\rangle=\int_{\Omega_{1}} g(y, x) \psi(x) d \mu(x)
$$

Again (6) follows from Theorem 2.1.

3. Proof of the main theorems

We use first the characterization in Theorem 2.1 to get the following corollaries.
Corollary 3.1. Let $m: \Sigma \rightarrow Y$ be a vector measure and X a Banach space. Then

$$
\beta_{X}(m, \pi, Y) \approx \sup \left\{\|u \circ m\|_{1}: u \in \mathcal{L}\left(Y, X^{*}\right),\|u\| \leq 1\right\}
$$

We use the notation $\Pi_{p}(X, Y)$ for the space of p-summing operators from X into Y and write $\pi_{p}(u)$ for the p-summing norm. The reader is referred to [5] for the basics in the theory of summing operators.

Corollary 3.2. Let Y be a Grothendieck space, i.e. $\Pi_{1}(Y, H)=\mathcal{L}(Y, H)$ for any Hilbert space H. Then

$$
\begin{equation*}
\beta_{H}(m, \pi, Y) \approx\|m\| . \tag{7}
\end{equation*}
$$

PROOF. Note that $\sum m\left(A_{j}\right)$ is an unconditionally convergent series in Y for any sequence of pairwise disjoint sets A_{j}. Now for any operator from $u: Y \rightarrow H$ one has and then $\sum\left\|u\left(m\left(A_{j}\right)\right)\right\| \leq K_{G}\|u\|\|m\|$, where K_{G} is the Grothendieck constant. Now use Corollary 3.1.

Proof of Theorem 1.1

(i) Let $Y=L^{p}$ and $X=L^{p^{\prime}}$ then choosing $u=I d: L^{p} \rightarrow\left(L^{p^{\prime}}\right)^{*}$, one concludes that $\|u \circ m\|_{1}=\|m\|_{1}$. This shows $\beta_{L^{p^{\prime}}}\left(m, \pi, L^{p}\right)=\|m\|_{1}$
(ii) follows from the following observation: If X^{*} is isomorphic to a complemented subspace of Y then $\beta_{X}(m, \pi, Y) \approx\|m\|_{1}$.

Indeed, assume $i d: Y \rightarrow Y$ factors through X^{*} as $i d=u_{1} \circ u_{2}$ where $u_{2}: Y \rightarrow X^{*}$ and $u_{1}: X^{*} \rightarrow Y$ are bounded operators. Now observe that $\|m\|_{1} \leq\left\|u_{1}\right\|\left\|u_{2} \circ m\right\|_{1}$ and use Corollary 3.1.

Now use that the space $R a d$ is complemented in $L^{p}([0,1])$ and isomorphic to ℓ^{2} (see Thm $1.12[5]$) and therefore to L^{2}, to conclude that

$$
\begin{equation*}
\beta_{L^{2}}\left(m, \pi, L^{p}([0,1])\right) \approx\|m\|_{1}, 1<p<\infty . \tag{8}
\end{equation*}
$$

(iii) follows from Corollary 3.2.

We now recall a lemma that we will need in the sequel.

Lemma 3.3. (i) Let $1<q<\infty$ and let Y be a Banach space such that $Y^{*} \in R N P$. If $u: Y \rightarrow L^{q^{\prime}}(\nu)$ belongs to $\left(L^{q}(\nu) \hat{\otimes}_{\gamma_{q}} Y\right)^{*}$ then $\pi_{q^{\prime}}(u) \leq\|u\|_{\left(L^{q}(\nu) \hat{\otimes}_{\gamma_{q}} Y\right)^{*}}$.
(ii) Let $1<p<\infty$ and let X be a Banach space such that $X^{*} \in R N P$. If $u: L^{p}(\mu) \rightarrow X^{*}$ belongs to $\left(X \hat{\otimes}_{\Delta_{p}} L^{p}(\mu)\right)^{*}$ then $\pi_{p^{\prime}}\left(u^{*}\right) \leq\left\|u^{*}\right\|_{\left(X \hat{\otimes}_{\Delta_{p}} L^{p}(\mu)\right)^{*}}$.

PROOF. (i) It is well known (see Example 2.11, [5]) that if $g \in L^{q^{\prime}}\left(\nu, Y^{*}\right)$ then $v_{g}: Y \rightarrow L^{q^{\prime}}(\nu)$ given by $v_{g}(y)=\langle g, y\rangle$ is q^{\prime}-summing and $\pi_{q^{\prime}}\left(v_{g}\right) \leq\|g\|_{L^{q^{\prime}}(\nu, Y)}$. Now use that, under the assumptions, $\left(L^{q}(\nu) \hat{\otimes}_{\gamma_{q}} Y\right)^{*}=L^{q^{\prime}}\left(\nu, Y^{*}\right)$ and $u=v_{g}$ for certain $g \in L^{q^{\prime}}\left(\nu, Y^{*}\right)$.
(ii) Note that $u=u_{f}$ for some $f \in L^{p^{\prime}}\left(\mu, X^{*}\right)$. Hence $v_{f}=u^{*}: X^{* *} \rightarrow L^{p}(\mu)$ is p^{\prime}-summing and $\pi_{p^{\prime}}\left(u^{*}\right) \leq\|f\|_{L^{p^{\prime}}\left(\mu, X^{*}\right)}=\|u\|_{\left(L^{q}(\nu) \hat{\otimes}_{\gamma_{q}} Y\right)^{*}}$.

Proof of Theorem 1.2

The case $p=1$ is included in (iii) Theorem 1.1.
Assume now $1<p<\infty$ and let $m: \Sigma \rightarrow L^{p}$ be a vector measure. Given $u: L^{p} \rightarrow L^{2}$ with $u \in\left(L^{2} \hat{\otimes}_{\Delta_{p}} L^{p}\right)^{*}$ we can use (ii) in Lemma 3.3 to conclude that there exist $f \in L^{p^{\prime}}\left([0,1], L^{2}\right)$ such that $v_{f}: L^{2} \rightarrow L^{p^{\prime}}$ given by $\phi \rightarrow \int_{0}^{1} \phi(y) f(x, y) d y$ is p^{\prime}-summing and $u=u_{f}=\left(v_{f}\right)^{*}$. Hence, using Theorem 2.21 in [5], one has that $\left(v_{f}\right)^{*}=u: L^{p} \rightarrow L^{2}$ is 1 -summing. Therefore

$$
\left\|u_{f} \circ m\right\|_{1} \leq C\left\|u_{f}\right\|\|m\| \leq C\|f\|_{L^{p^{\prime}}\left([0,1], L^{2}\right)}\|m\| .
$$

Let us mention another useful lemma.
Lemma 3.4. (Prop. 6, [1]) Let Y be a Banach space of finite cotype r and let $\sum_{j} y_{j}$ be an unconditionally convergent series in Y.
(i) If $r=2$ then there exist $\left(\alpha_{j}\right) \in \ell^{2}$ and a sequence in $\left(y_{j}^{\prime}\right) \subset Y$ such that $y_{j}=\alpha_{j} y_{j}^{\prime}$ and

$$
\begin{gathered}
\sum_{j}\left|\alpha_{j}\right|^{2} \leq \sup _{\left\|y^{*}\right\|=1} \sum_{j}\left|\left\langle y_{j}, y^{*}\right\rangle\right| \\
\sup _{\left\|y^{*}\right\|=1} \sum_{j}\left|\left\langle y_{j}^{\prime}, y^{*}\right\rangle\right|^{2} \leq \sup _{\left\|y^{*}\right\|=1} \sum_{j}\left|\left\langle y_{j}, y^{*}\right\rangle\right| .
\end{gathered}
$$

(ii) If $r>2$ then for any $q>r$ there exist $\left(\alpha_{j}\right) \in \ell^{q}$ and a sequence in $\left(y_{j}^{\prime}\right) \subset Y$ such that $y_{j}=\alpha_{j} y_{j}^{\prime}$ and

$$
\begin{gathered}
\left(\sum_{j}\left|\alpha_{j}\right|^{q}\right)^{1 / q} \leq\left(\sup _{\left\|y^{*}\right\|=1} \sum_{j}\left|\left\langle y_{j}, y^{*}\right\rangle\right|\right)^{1 / q} . \\
\left(\sup _{\left\|y^{*}\right\|=1} \sum_{j}\left|\left\langle y_{j}^{\prime}, y^{*}\right\rangle\right|^{q^{\prime}}\right)^{1 / q^{\prime}} \leq\left(\sup _{\left\|y^{*}\right\|=1} \sum_{j}\left|\left\langle y_{j}, y^{*}\right\rangle\right|\right)^{1 / q^{\prime}} .
\end{gathered}
$$

PROOF. (i) Let $T: c_{0} \rightarrow Y$ such that $T\left(e_{j}\right)=y_{j}$. Note that $\mathcal{L}\left(c_{0}, Y\right)=\Pi_{2}\left(c_{0}, Y\right)$ for any cotype 2 space Y. Now apply Lemma 2.23 in [5] to the sequence $\left(e_{j}\right)$ which satisfies $\sup \left\{\sum_{j}\left|\left\langle e_{j}, z\right\rangle\right|:\|z\|_{\ell^{1}}=1\right\}$ to conclude that $T\left(e_{j}\right)=y_{j}=\alpha_{j} y_{j}^{\prime}$ with the desired properties.
(ii) Repeat the proof using now $L\left(c_{0}, Y\right)=\Pi_{q}\left(c_{0}, Y\right)$ for any $q>r$ (see Theorem 11.14 [5]).

Proof of Theorem 1.3

Note Theorem 1.2 and (4) give

$$
\begin{equation*}
\beta_{L^{2}}\left(m, \gamma_{2}, L^{p}\right) \approx\|m\|, \quad 1 \leq p \leq 2 \tag{9}
\end{equation*}
$$

To obtain (ii) we simply use the following more general result.
Theorem 3.5. If Y has cotype $r<\infty$ and Y^{*} has the RNP then

$$
\begin{gather*}
\beta_{L^{2}(\nu)}\left(m, \gamma_{2}, Y\right) \approx\|m\|, \quad r=2 \tag{10}\\
\beta_{L^{q}(\nu)}\left(m, \gamma_{q}, Y\right) \approx\|m\|, \quad q>r>2
\end{gather*}
$$

PROOF. We only prove (11). The other is exactly the same.
Let $\left(A_{j}\right)$ be a sequence of pairwise disjoint sets. Since $m\left(A_{j}\right)$ is unconditionally convergent in Y, Lemma 3.4 implies that there exist $\left(\alpha_{j}\right) \in \ell^{q}$ and a sequence in $\left(y_{j}\right) \subset Y$ with $m\left(A_{j}\right)=\alpha_{j} y_{j}$ and

$$
\begin{gathered}
\left(\sum_{j}\left|\alpha_{j}\right|^{q}\right)^{1 / q} \leq\left(\sup _{\left\|y^{*}\right\|=1} \sum_{j}\left|\left\langle m\left(A_{j}\right), y^{*}\right\rangle\right|\right)^{1 / q} \\
\left(\sup _{\left\|y^{*}\right\|=1} \sum_{j}\left|\left\langle y_{j}, y^{*}\right\rangle\right|^{q^{\prime}}\right)^{1 / q^{\prime}} \leq\left(\sup _{\left\|y^{*}\right\|=1} \sum_{j}\left|\left\langle m\left(A_{j}\right), y^{*}\right\rangle\right|\right)^{1 / q^{\prime}}
\end{gathered}
$$

On the other hand if $u \in\left(L^{q}(\nu) \hat{\otimes} Y\right)^{*}$, using (i) in Lemma 3.3, one has $u \in$ $\Pi_{q^{\prime}}\left(Y, L^{q^{\prime}}\right)$. Therefore

$$
\begin{aligned}
\sum_{j}\left\|u\left(m\left(A_{j}\right)\right)\right\| & =\sum_{j}\left|\alpha_{j}\right|\left\|u\left(y_{j}\right)\right\| \\
& \leq\left(\sum_{j}\left|\alpha_{j}\right|^{q}\right)^{1 / q}\left(\sum_{j}\left\|u\left(y_{j}\right)\right\|^{q^{\prime}}\right)^{1 / q^{\prime}} \\
& \leq \pi_{q^{\prime}}(u)\left(\sum_{j}\left|\alpha_{j}\right|^{q}\right)^{1 / q}\left(\sup _{\left\|y^{*}\right\|=1} \sum_{j}\left|\left\langle y_{j}, y^{*}\right\rangle\right|^{q^{\prime}}\right)^{1 / q^{\prime}} \\
& \leq C\|u\|_{\left(L^{q}(\nu) \hat{\otimes} Y\right)^{*}}\|m\|
\end{aligned}
$$

4. Measures of infinite X-semivariation

We shall present now some necessary conditions to have bounded X semivariation.

Proposition 4.1. (i) Assume that $X \hat{\otimes}_{\tau} Y$ is of finite cotype q. If $m: \Sigma \rightarrow Y$ be a vector measure then

$$
\|m\|_{q} \leq C_{q} \beta_{X}(m, \tau, Y)
$$

for some constant C_{q} independent of m.
In particular, if X has finite cotype q and $1 \leq p<\infty$ then

$$
\|m\|_{\max \{q, 2, p\}} \leq C \beta_{X}\left(m, \Delta_{p}, L^{p}(\mu)\right)
$$

(ii) Let $1 \leq q<\infty$, let ν be a finite measure for which there exists a sequence of pairwise disjoint sets with $\nu\left(B_{j}\right)>0$ and let $m: \Sigma \rightarrow Y$ be a vector measure. Then

$$
\|m\|_{q} \leq C_{q} \beta_{L^{q}(\nu)}\left(m, \gamma_{q}, Y\right)
$$

PROOF. (i) Let $\left(x_{j}\right)$ be a sequence in the unit ball of X and a sequence of pairwise disjoint sets A_{j}. Hence, for $0 \leq t \leq 1$, one has

$$
\left\|\sum_{j=1}^{k} r_{j}(t) x_{k} \otimes m\left(A_{j}\right)\right\|_{X \hat{\otimes}_{\tau} Y} \leq \beta_{X}(m, \tau, Y)
$$

where r_{j} stands for the Rademacher sequence. Now integrate over $[0,1]$ and use the cotype estimate to get

$$
\left(\sum_{j=1}^{k}\left\|x_{k}\right\|^{q}\left\|m\left(A_{j}\right)\right\|^{q}\right)^{1 / q} \leq C_{q} \beta_{X}(m, \tau, Y)
$$

Taking the sup over $\left(x_{j}\right)$ and $\left(A_{j}\right)$ one obtains the desired result.
Note that $L^{p}(\mu, X)$ has cotype equals $\max \{p, q, 2\}$.
(ii) Take $x_{j}=\frac{\chi_{B_{j}}}{\nu\left(B_{j}\right)^{1 / q}}, \phi=\sum_{j=1}^{k} x_{j} \chi_{A_{j}}$ for some sequence of pairwise disjoint sets in Σ and notice that, for any $A \in \Sigma$,

$$
\|\phi \otimes m(A)\|_{L^{q}(\nu, Y)}=\left(\sum_{j=1}^{k}\left\|m\left(A \cap A_{j}\right)\right\|^{q}\right)^{1 / q}
$$

This gives the result
Corollary 4.2. Let Y be infinite dimensional Banach space, $1 \leq q<2$ and ν be a finite measure for which there exists a sequence of pairwise disjoint sets with $\nu\left(E_{n}\right)>0$.
(i) There exist Y-valued measure such that $\beta_{L^{q}(\nu)}\left(m, \gamma_{q}, Y\right)=\infty$.
(ii) If $L^{p}(\mu)$ is infinite dimensional then there exist $L^{p}(\mu)$-valued measures m such that $\beta_{L^{q}(\nu)}\left(m, \Delta_{p}, L^{p}(\mu)\right)=\infty$ for $1 \leq q<2$ and $q \geq p$.

PROOF. (i) Select an unconditionally convergent series $\left(y_{n}\right)$ with $\sum_{k}\left\|y_{k}\right\|^{q}=\infty$ (this can be done for $1 \leq q<2$, see, for instance [5])).

Now we define the measure over \mathbb{N} given by $m(\{k\})=y_{k}$. Clearly $\|m\|_{q}=\infty$ and therefore $\beta_{L^{q}(\nu)}\left(m, \gamma_{q}, Y\right)=\infty$ from (ii) in Proposition 4.1.
(ii) follows from (i) and the estimate (3).

A very important example to analyze is $m_{p}: \Sigma \rightarrow L^{p}(\mu)$ given by $m_{p}(A)=$ χ_{A}. We shall see that these measures are enough to produce examples with $\beta_{L^{q}(\nu)}\left(m, \gamma_{q}, L^{p}(\mu)\right)=\infty$ for $q<p$.
Theorem 4.3. Let $\mu\left(\Omega_{1}\right)<\infty, \nu\left(\Omega_{2}\right)<\infty, X=L^{q}(\nu)$ and $Y=L^{p}(\mu)$. Then the $L^{p}(\mu)$-valued measure $m_{p}(A)=\chi_{A}$ has finite $L^{q}(\nu)$-semivariation in $L^{q}(\nu) \hat{\otimes}_{\gamma_{q}} L^{p}(\mu)$ if and only if $L^{q^{\prime}}\left(\nu, L^{p^{\prime}}(\mu)\right) \subseteq L^{1}\left(\mu, L^{q^{\prime}}(\nu)\right)$.

PROOF. Let $g: \Omega_{1} \times \Omega_{2} \rightarrow \mathbb{R}$ be such that

$$
\|g\|_{L^{q^{\prime}}\left(\nu, L^{p^{\prime}}(\mu)\right)}=\int_{\Omega_{2}}\left(\int_{\Omega_{1}}|g(y, x)|^{p^{\prime}} d \mu(x)^{q^{\prime} / p^{\prime}} d \nu(y)\right)^{1 / q^{\prime}}<\infty .
$$

Note that the operator $v_{g}: L^{p}(\mu) \rightarrow L^{q^{\prime}}(\nu)$ becomes

$$
v_{g}(\psi)(y)=\int_{\Omega_{1}} g(y, x) \psi(x) d \mu(x)
$$

hence, we have $v_{g} \circ m_{p}(A)=\int_{A} g(y, x) d \mu(x)$ for all $A \in \Sigma_{1}$. This shows that $v_{g} \circ m_{p}$ is the $L^{q^{\prime}}(\nu)$-valued measure with Radon-Nikodym derivative $g(y,$.$) . Therefore$ $\left\|v_{g} \circ m_{p}\right\|_{1}=\int_{\Omega_{1}}\left(\int_{\Omega_{2}}|g(y, x)|^{q^{\prime}} d \nu(y)\right)^{1 / q^{\prime}} d \mu(x)$.

Now Theorem 2.2 shows that m_{p} is of bounded $L^{q}(\nu)$-semivariation in $L^{q}(\nu) \hat{\otimes}_{\gamma_{q}} L^{p}(\mu)$ if and only if there exists $C>0$ such that

$$
\int_{\Omega_{1}}\left(\int_{\Omega_{2}}|g(y, x)|^{q^{\prime}} d \nu(y)\right)^{1 / q^{\prime}} d \mu(y) \leq C \int_{\Omega_{2}}\left(\int_{\Omega_{1}}|g(y, x)|^{p^{\prime}} d \mu(x)^{q^{\prime} / p^{\prime}} d \nu(x)\right)^{1 / q^{\prime}} .
$$

That is to say $L^{q^{\prime}}\left(\nu, L^{p^{\prime}}(\mu)\right) \subset L^{1}\left(\mu, L^{q^{\prime}}(\nu)\right)$.
Corollary 4.4. Let $1 \leq p<\infty$ and $m_{p}: \Sigma \rightarrow L^{p}(\mu)$ given by $m_{p}(A)=\chi_{A}$. Then $\beta_{L^{q}(\nu)}\left(m_{p}, \gamma_{q}, L^{p}(\mu)\right)<\infty$ for $p \leq q$.

PROOF. Note that for $p \leq q$ one obviously has

$$
L^{q^{\prime}}\left(\nu, L^{p^{\prime}}(\mu)\right) \subset L^{q^{\prime}}\left(\nu, L^{q^{\prime}}(\mu)\right)=L^{q^{\prime}}\left(\mu, L^{q^{\prime}}(\nu)\right) \subset L^{1}\left(\mu, L^{q^{\prime}}(\nu)\right) .
$$

Apply now Theorem 4.3.
Actually the previous result is also a consequence of the following general fact.
Proposition 4.5. Let $1 \leq p<\infty, X$ a Banach space and let $m: \Sigma \rightarrow L^{p}(\mu)$ be a positive vector measure, that is $m(A) \geq 0$ for all $A \in \Sigma$. Then

$$
\beta_{X}\left(m, \Delta_{p}, L^{p}(\mu)\right)=\|m\| .
$$

In particular, if m is positive and $p \leq q$ then

$$
\beta_{L^{q}(\nu)}\left(m, \gamma_{q}, L^{p}(\mu)\right)=\|m\| .
$$

PROOF. It is well-known that $\left(L^{p}(\mu, X)\right)^{*}=\left(L^{p}(\mu) \hat{\otimes} X\right)^{*}$ can be identified with the space of X^{*}-valued measures in $V^{p^{\prime}}\left(\mu, X^{*}\right)$ (see [4]). In particular, if $u \in$ $\left(L^{p}(\mu) \hat{\otimes} X\right)^{*} \subset L\left(L^{p}(\mu), X^{*}\right)$ (see for instance [3]) there exists $\phi \in L^{p^{\prime}}(\mu)$ such that $\|\phi\|_{p^{\prime}} \leq\|u\|_{\left(L^{p}(\mu) \hat{\otimes} X\right)^{*}}$ and satisfies that

$$
\|u(\psi)\| \leq \int_{\Omega} \phi(t) \psi(t) d \mu(t)
$$

for any positive function $\psi \in L^{p}(\mu)$. Therefore, if $\|u\|_{\left(L^{p}(\mu) \hat{\otimes} X\right)^{*}}=1$ then

$$
\begin{aligned}
\sum_{j=1}^{k}\left\|u\left(m\left(A_{j}\right)\right)\right\| & \leq\|\phi\|_{p^{\prime}} \int_{\Omega} \sum_{j=1}^{k} \frac{|\phi(t)|}{\|\phi\|_{p^{\prime}}} m\left(A_{j}\right)(t) d \mu(t) \\
& \leq \sup \left\{\sum_{j=1}^{k}\left|\left\langle\phi^{\prime}, m\left(A_{j}\right)\right\rangle\right|:\left\|\phi^{\prime}\right\|_{L^{p^{\prime}}}=1\right\}
\end{aligned}
$$

Hence $\left\|u_{f} \circ m\right\|_{1} \leq\|m\|$. Apply now Theorem 2.2.
In the case $X=L^{q}(\nu)$ and $p \leq q(4)$ allows us to conclude the proof.
We shall now see that the range of values in Theorem 4.3 is sharp.
Lemma 4.6. If $p>q$ then there exists $f:[0,1]^{2} \rightarrow \mathbb{R}^{+}$such that

$$
\int_{0}^{1}\left(\int_{0}^{1} f(x, y)^{q} d y\right)^{p / q} d x<\infty
$$

and

$$
\int_{0}^{1}\left(\int_{0}^{1} f(x, y)^{p} d x\right)^{1 / p} d y=\infty
$$

PROOF. Denoting $\beta=p / q>1$ and $g(x, y)=f(x, y)^{q}$ it suffices to find g : $[0,1]^{2} \rightarrow \mathbb{R}^{+}$such that

$$
\int_{0}^{1}\left(\int_{0}^{1} g(x, y) d y\right)^{\beta} d x<\infty
$$

and

$$
\int_{0}^{1}\left(\int_{0}^{1} g(x, y)^{\beta} d x\right)^{1 / p} d y=\infty
$$

Recall that the Hardy operator $T(\phi)(x)=\frac{1}{x} \int_{0}^{x} \phi(y) d y$ is bounded on $L^{\beta}([0,1]$ for $\beta>1$ and define

$$
g(x, y)=\frac{1}{x} \chi_{[0, x]}(y) \phi(y)
$$

for a function $\phi \in L^{\beta}([0,1])$ to be chosen later.
Clearly

$$
\begin{aligned}
\int_{0}^{1}\left(\int_{0}^{1} g(x, y) d y\right)^{\beta} d x & =\|T(\phi)\|_{\beta}^{\beta} \\
& \leq\|T\|^{\beta}\|(\phi)\|_{\beta}^{\beta}
\end{aligned}
$$

On the other hand

$$
\begin{aligned}
\int_{0}^{1}\left(\int_{0}^{1} g(x, y)^{\beta} d x\right)^{1 / p} d y & =\int_{0}^{1} \phi(y)^{\beta / p}\left(\int_{y}^{1} \frac{d x}{x^{\beta}}\right)^{1 / p} d y \\
& \geq C \int_{0}^{1} \phi(y)^{\beta / p} \frac{1}{y^{(\beta-1) / p}} d y \\
& =C\left(\int_{0}^{1}\left(\frac{\phi(y)}{y^{1 / \beta^{\prime}}}\right)^{\beta / p} d y\right. \\
& \geq C\left(\int_{0}^{1} \frac{\phi(y)}{y^{1 / \beta^{\prime}}} d y\right)^{\beta / p}
\end{aligned}
$$

Now select $\phi(y)=\frac{1}{y^{1 / \beta} \log (1 / y)}$ to have $\phi \in L^{\beta}([0,1])$ and

$$
\int_{0}^{1} \frac{\phi(y)}{y^{1 / \beta^{\prime}}} d y=\int_{0}^{1} \frac{d y}{y \log (1 / y)}=\infty
$$

Corollary 4.7. For $q<p$ the $L^{p}([0,1])$-valued measure $m_{p}(A)=\chi_{A}$ has infinite $L^{q}([0,1])$-semivariation in $L^{q}([0,1]) \hat{\otimes}_{\gamma_{q}} L^{p}([0,1]$.

References

[1] J.L. Arregui, O. Blasco (p, q)-summing sequences J. Math. Anal. Appl. 247 (2002), 812-827.
[2] R. Bartle A general bilinear vector integral Studia Math. 15 (1956), 337-351.
[3] O. Blasco, P. Gregori Lorentz spaces of vector-valued measures J. London Math. Soc. 67 (2003), 739-751.
[4] N.Dinculeanu Vector measures, International Series of Monographs in Pure and Applied Mathematics, Vol 95, Pergamon Press, 1967.
[5] J. Diestel, H. Jarchow, A. Tonge Absolutely summing operators, Cambrigde Univ. Press, Cambrigde, 1995.
[6] J. Diestel, J. J. Uhl Vector measures, 1995.
[7] B. Jefferies and S. Okada Bilinear integration in tensor products Rocky Mountain J. Math. 28 (2) (1998), 517-545.
[8] B. Jefferies and S. Okada Bilinear integration with positive vector measures J. Austral. Math. Soc. 75 (2003), 279-293.
[9] B. Jefferies and S. Okada Semivariation in L^{p}-spaces Comment. Math. Univ. Carolin. 44 (2005), 425-436.
[10] B. Jefferies, S. Okada and L. Rodrigues-Piazza L^{p}-valued measures without finite X semivariation for $2<p<\infty$. Preprint.

Department of Mathematics, Universitat de Valencia, Burjassot 46100 (Valencia) Spain

E-mail address: oscar.blasco@uv.es

